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Abstract. Recent artificial neural networks for machine learning haveexploited
transient dynamics around globally stable attractors, inspired by the properties
of cortical microcolumns. Here we explore whether similarly constrained neural
network controllers can be exploited for embodied, situated adaptive behaviour.
We demonstrate that it is possible to evolve globally stableneurocontrollers con-
taining a single basin of attraction, which nevertheless sustain multiple modes
of behaviour. This is achieved by exploiting interaction between environmental
input and transient dynamics. We present results that suggest that this globally
stable regime may constitute an evolvable and dynamically rich subset of recur-
rent neural network configurations, especially in larger networks. We discuss the
issue of scalability and the possibility that there may be alternative adaptive be-
haviour tasks that are more ‘attractor hungry’.
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1 Introduction

Certain regions of the cortex are organised into neural microcolumns. It has been sug-
gested that the computational power of these cortical microcolumns stems from their
transient dynamics rather than their attractor structure [1]. This could be the result of
weak coupling between the neurons, both in terms of their connectivity and weight
strength, which can confer global stability on their dynamics [2]; consider that ripples
on the surface of a liquid are only a temporary echo of a stone dropped into a it. Any
“computation” undertaken by such a system may only be achieved by exploiting inter-
action between its environmental input and its transient dynamics within a single basin
of attraction. Recently, the echo state and liquid state approaches have employed artifi-
cial neural networks that share this constrained dynamics [1, 3]. They have been shown
to perform well on a range of machine learning tasks [4]. Despite this, and notwith-
standing the biological heritage of these artificial neuralnetworks (ANNs), it is not
immediately obvious that they can serve as effective control systems for adaptive be-
haviour since, in general, such controllers must cope with an agent that is embodied
and situated in a changing environment that demands different modes of behaviour in
different circumstances.

Here we explore whether continuous-time recurrent neural networks (CTRNNs)
constrained to exhibit transient dynamics around a globally asymptotically stable fixed
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point attractor are capable of successfully completing a task that demands different
behavioural modes. First, we briefly recap the role of attractor dynamics in the use and
understanding of ANNs. Subsequently, we introduce a state-hungry task and evolve a
solution that employs bistability. Section 3 presents results from evolutionary studies
in which systems constrained to exhibit a single attractor are demonstrated to solve
the task. After making a preliminary investigation of the difference between the two
kinds of solution, we go on to consider the scalability of this type of constrained neural
network. We conclude by discussing the implications of these results.

1.1 Mechanisms of State Retention in Neural Networks

Much of the early work on artificial neural networks focused on feedforward architec-
tures [5]. Here, information is processed along a unidirectional pipeline mapping sen-
sory input onto motor output. This process is necessarily atemporal and does not involve
internal state. Stateful networks only really arrived in the 1980s, when Hopfield pop-
ularised recurrent neural networks (RNNs). Hopfield’s (1982) RNNs were constrained
such that each was guaranteed to exhibit a number of fixed point attractors. In such
networks, an input is a static or slowly time-varying signaland the system is allowed
to converge to an equilibrium. The particular attractor that is achieved is interpreted
as a recognition or recall event. The success of Hopfield style systems resulted in the
attractor becoming the dominating neurological metaphor for memory and state within
biological organisms.

More recent work in neuroscience and adaptive behaviour research have reconsid-
ered organisms as dynamical systems, and foregrounded the role of time [7]. This has
led to the frequent observation that, far from settling intostable attractor states, neural
systems often spend most of the time exhibitingtransientdynamics, often far from equi-
librium. Systems that tend to settle into static states whenexamined in isolation (either
in a petri dish or as computational models) may in fact be far from equilibrium when
coupled to bodies and environments. However, while one neednot subscribe to the idea
that attractors within the agent’s control system dynamicsare ‘representational’, intu-
itively, it may still be attractive to interpret the presence of distinct attractors as enabling
for tasks that demand distinct behavioural modes.

Here we probe this intuitive correspondence between behavioural modes and dis-
tinct attractors by comparing control systems that are constrained to exhibit a single
attractor with those that are capable of exhibiting multiple fixed-point and/or cyclic at-
tractors. Before defining the task, agent architecture and evolutionary scheme that will
be employed for the remainder of the paper, we introduce and formalise some con-
straints on global asymptotic stability.

1.2 Single Fixed-Point Attractors and the Echo State Property

An echo state machine, comprising a large neural network “reservoir” and a simple
feedforward network “readout”, must satisfy the echo stateproperty, typically achieved
by enforcing global asymptotic fixed-point stability (GAS). Informally, the echo state
property demands that the dynamics of the recurrent neural network (the reservoir) will
“wash out” all information from the initial conditions after some sufficient period of
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time [3]. One formulation of this condition demands that thedistance between any two
trajectories in the system is a monotonically decreasing function of time, i.e., the system
exhibits a single limit set [3]. Jaeger provides asufficientcondition for GAS, however, it
is difficult to check efficiently. Furthermore, it is believed to be overly restrictive since
many systems which do not meet this strict condition may exhibit GAS. In practice,
a simpler but onlynecessarycondition can be derived for systems with an equilibrium
coincident with the centre of each node’s transfer function(i.e. centre-crossing networks
[8]). While not sufficient for GAS, this condition has been shown to confer the echo
state property in the majority of echo state applications [3].

In this paper we modify this condition so that it can be used with a CTRNN equation
given by:

τiẏi = −yi +
∑

j

ωji tanh(yj + θj) + Ii (1)

Hereyi represents the activation at theith neuron,ωji is the weight of the connection
from neuronj to neuroni, θi is the bias value at theith neuron,τi defines the rate of
leakage or decay of the activation, andtanh is the transfer function. While this equation
is not identical to either Jaeger or Beer’s formulations, all such networks fall in the larger
class of Cohen and Grossberg networks [9] to which the following stability results will
apply.

As stated above, we first require that the network is in the centre-crossing configura-
tion. While this is not trivial to impose in general [8], for Equation (1) it can be achieved
by setting all of the system’s biases to zero ensuring that there is an equilibrium at the
zero state, i.e.,y∗ = 0̄, wherey∗ is a vector describing the position of an equilibrium
point. We then construct a criterion for local stability by linearising the system around
this point. Given that the slope of thetanh function is equal to unity at its centre, the
linear dynamics is completely described by a Jacobian at theequilibrium point given
by:
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This system will be locally stable around the zero state if all real parts of the eigenvalues
of the Jacobian are negative, otherwise it will be unstable [10]. Local stability is a
necessary but not sufficient precondition for global stability of the full, nonlinear centre-
crossing system [11]. For a full discussion of the condtionsfor local and global stability
in CTRNNs see [10].

2 Methods

In order to experimentally investigate the role of attractor structure in an embodied, be-
having agent, we needed to construct a task that demands state and encourages multiple
modes of behaviour. We carried out experiments using a simulated agent required to
perform phototaxis towards a sequence of lights using a single light sensor. The task
was made more challenging by alternating the location of thelight sensor intermittently
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between the front and back of the agent’s body throughout itslifetime. Since the agent
cannot reverse, the nature of the agent’s phototactic task is fundamentally altered by
this unsignalled change to its sensor. In previous work on this task evolved solutions
employed bistable controllers [12].

The experiment consists of a circular agent with radius equal to unity located in an
infinite 2-D plane. (Distance and time are measured in arbitrary units.) At the start of
each trial, a single light source is presented, located at a random distance,d from the
agent, drawn from a uniform random distribution over the range [10, 15], in any random
direction. After a variable time period drawn uniformly at random from the range [40,
60], the trial finishes, and a new trial commences with a new randomly re-positioned
light. Less frequently, the sensor is switched from the front to the back of the agent (or
vice-versa) at the start of a trial.

The agent is controlled by a neural network receiving input from the light sensor and
driving two motors, which differentially steer the robot with their output (in range [0,
1]). The light sensor accepts incoming light so long as it is not occluded by the agent’s
body, and provides a value,I, in [0, 1] varying inversely with the distance between the
sensor and the light source up to a maximum of 150% of the largest possible initial
distance between the agent and the light.

The agent is controlled by a network of continuous time recurrent neurons governed
by Equation (1). Time constants (τi) were scaled asexi with xi drawn from the uniform
distribution [0, 5], and weightswij and biasesθi drawn from the uniform distribution
[-10, 10]. The sensor value is scaled by a sensor weights uniform in [-10, 10], and is
made available to the first neuron, only. The outputs of each of the last two neurons
were used to generate left and right motor speeds, respectively.

Motor neuron outputs are first scaled by a motor weight,ωr, and translated by a mo-
tor bias,θr, before being squashed and rescaled in the range [0, 1] to prevent reversing.
Thus, the speed of the right motor,r, was derived from the output of the right motor
neuron,yr, asr = 1

2
[1 + tanh(ωryr + θr)]. The network (and other simulation vari-

ables) are integrated with an Euler time-step of 0.1 during optimisation of the agent’s
controller, and 0.01 during analysis (to ensure stability).

Network parameters were optimised using a genetic algorithm employing pairwise
tournament selection and a population of 50, for up to 6000 generations. A losing geno-
type was replaced with a copy of the winner subject to parameter mutation via Gaussian
perturbation (zero mean, variance scaled between 0.02 and 0.05 as the previous gener-
ation’s elite genotype fitness varies between 0.4 and 0.8). Fitness was calculated as the
normalised average distance of the agent from the light during the last 25 time units
of each trial. The first trial after the sensor was switched does not contribute towards
fitness, allowing for a possible adaptation phase to occur without punishing the agent.

Evolution progressed according to a shaping scheme. When the best agent of each of
the 15 prior generations had attained a fitness greater than 0.8, the phase was advanced.
During phase one, the sensor was solely located on the front of the agent, so standard
phototaxis was all that was required. During its lifetime, the agent was subject to eight
sets of six sequential light presentation trials, with its internal state reset between each
set. The average of these eight sets was taken as the overall fitness score. Phase two
consisted of the phase one presentations followed by an additional eight sets of six trials
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with the sensor located on the back of the agent. The overall fitness score was the mean
of all 16 sets. A third phase proceeded as per phase two, but with double the number of
trials per set (i.e., 12). During each set of trials the sensor was switched to the opposite
side of the agent at the start of a random trial number drawn uniformly from the range
[4, 8]. In the final phase, three changes of sensor location took place at random intervals
within each of 16 sets, each comprising 16 trials. As such, the successful completion
of phase four demands that an agent must be able to cope with repeated alternation
between front-mounted and rear-mounted sensors.

3 Results

Before exploring the behaviour of different recurrent networks on the task described
above, we ran experiments with feedforward neural networksthat are unable to exploit
internal state. These networks comprised nodes governed byEquation (1). However,
all recurrent connections were removed, all time constantswere set to unity (τi = 1),
and each network’s Euler integration step was also set to unity. Of 70 runs, not a single
evolved controller was able to progress beyond phototaxis (the first phase of the shaping
scheme). Based on these results, we conclude that it is difficult, or perhaps impossible
for a reactive control system to solve the full behavioural task for the agent/environment
combination explored here.

Unconstrained CTRNNs. We wish to determine whether the two behavioural modes
that were exploited in previously reported work [12] resultfrom bistability in the au-
tonomous dynamics of such controllers, and whether this is anecessary property of
evolved CTRNN solutions. To this end, we examined successfully evolved four-node
CTRNNs and compared them with four-node CTRNNs that are biased towards having
global stability and hence are less likely to express bistable dynamics.

It proved somewhat difficult to evolve controllers in this scenario. Of the 50 evo-
lutionary runs evolving standard CTRNNs, only three agentswere produced that were
able to successfully complete the final phase of the task. In order to investigate whether
the intrinsic dynamics of the successful control systems were bistable, we first consid-
ered their autonomous dynamics, i.e., in the absence of input. We tested forautonomous
global stabilityby allowing each network to relax from 50 different random initial con-
ditions (yi ∈ [−10, 10]). This analysis revealed that the networks were not globally
stable, revealing the presence of two fixed point attractorswithin the intrinsic dynamics
of all three of the successful control systems.

The fact that more than one fixed-point attractor is present in a network’s dynam-
ics does not necessarily imply that the agent’s internal state spends time in more than
one basin of attraction during its behaving lifetime, i.e.,a network might exhibitlife-
time global stabilityin the absence of autonomous global stability. We tested forthis
possibility by running trials of each successful agent, andremoving any sensory input
at various stages during these trials. For all of the successful solutions, the agent’s dy-
namics settled to one attractor when its light sensor was front-mounted, and the other
attractor when it was rear-mounted.
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Fig. 1. Phase space plots of a typical trajectory during several consecutive trials of the best
evolved unconstrained (left) and constrained (right) networks. Half way through, the sensor
switches from the front to back. The discs indicate the attractor locations (in the absence of
input); one (the origin) in the constrained case, and two in the bistable case.

Stable CTRNNs. We have described how, when permitted to explore the full CTRNN
parameter space, successful solutions exhibited bistablelifetime dynamics. In order to
determine whether it was possible to satisfy this task in a network that possessed only
a single attractor in its autonomous dynamics, the stability constraint developed above
(Section 1.2) was applied during a further 50 evolutionary runs. Recall: this is only a
necessarycondition for stability, and therefore can only bias the population towards
globally stable fixed point (monostable) solutions.

The stability constraint was implemented by initialising all weightsωij ∈ [−0.3, 0.3],
and rejecting any of these random networks that did not satisfy the constraint. While
evolution was permitted to explore a full CTRNN weight range(ωij ∈ [−10, 10]), any
mutations that generated a network which failed to satisfy the stability constraint were
rejected, and a new offspring was attempted.

From 50 runs, two evolved working solutions. In order to confirm that these so-
lutions exhibited autonomous and/or lifetime global stability, we repeated the tests
described above for unconstrained networks. For both solutions, the network’s au-
tonomous internal state always settled to same fixed point from every initial condition
tested. Furthermore, we ensured that they exhibited autonomous global stability in the
presence of constant input (over the range experienced by the agent during its lifetime).
Straightforwardly, this carried over to stability in theirlifetime dynamics, also.

3.1 Contrasting Solutions

How did the bistable and globally stable solutions differ from one another? Figure 1
depicts a projection of the internal dynamics of two successful controllers undergoing a
series of trials during which the sensor’s position is switched. The bistable solution (on
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Fig. 2. Time series for three of the four nodes plus sensory input, during three consecutive trials
(separated by dotted lines). The solid line depicts front-mounted sensor behaviour in three con-
secutive trials. The dashed line depicts rear-mounted sensor behaviour in trials two and three. At
the outset of trial two, in both cases the light is positionedsuch that it is initially occluded from
the sensor by the agent’s body.

the left) transitions between two basins of attraction, exhibiting two modes correspond-
ing to the two types of phototactic behaviour demanded by thetask. By contrast, while
the dynamics of the stable system also exhibit two distinct quasi-oscillatory modes,
these trajectories all occur within the same basin of attraction. In both cases, the tran-
sition from one basin to another is prompted by “pathological” sensory input, which
occurs soon after the sensor location is changed. In the former case, this is responsible
for moving the controller’s internal state across a separatrix in the system’s dynamics. In
the latter case, rather than using environmental input to transition across a separatrix, the
monostable controller uses it to shuttle between differentregions of the same basin of
attraction. Whereas a monostable system must rely solely upon this environmental cou-
pling to maintain at least one behavioural mode, a bistable solution may exploit itsau-
tonomousdynamics to maintain two distinct modes of behaviour. However, accounting
for the importance of the intrinsic dynamics in the completebrain/body/environment
system is problematic. We will return to this issue in Section 4.

Figure 2 presents time series for two runs of the same monostable controller, one of
which undergoes sensor relocation at the beginning of the second trial. In this trial the
trajectories proceed identically until the light is first detected, at which point they begin
to diverge. The unchanged agent’s behaviour proceeds as before, with the positive slope
of the bursts of sensory input indicating that the agent is approaching the light. However
the neural trajectories diverge as the sensory input of the agent whose sensor has been
switched at the start of this trial diminishes, due to the nowmaladaptive behaviour. By
the third trial a different and adaptive pattern of behaviour is achieved and maintained.
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3.2 Scalability and stability

The four-node networks that we have considered so far are clearly much smaller than
typical liquid state machines and echo state networks, and even smaller than the corti-
cal networks that inspired them. Like other kernel methods,the high dimensionality of
these networks is core to their ability to use transient dynamics for pattern recognition
and machine learning tasks. By contrast, high-dimensionalCTRNNs are not typically
employed for adaptive behaviour tasks. This stems partly from the computational de-
mands of simulating large networks and partly from the analytic challenge that must be
overcome in understanding their behaviour.

In addition, as network size increases, significant portions of the search space ex-
hibit saturating dynamics that may be unhelpful for the production of interesting be-
haviour [13]. One possible method for encouraging interesting generic dynamics in
large networks is to bias evolutionary search toward interesting regions of parameter
space. Specifically, recall that in order to obtain the echo state property in the net-
works considered here, we have placed them in the centre-crossing configuration. In
general, such networks have been shown to oscillate readily, making them an appropri-
ate substrate for the evolution of, e.g., pattern generators [8]. Furthermore, it has been
suggested that networks in the centre-crossing configuration will exhibit rich dynamics
because their nodes interact at the most sensitive parts of their transfer functions. How-
ever, this oscillatory behaviour, which becomes more pronounced in large CTRNNs,
can be disruptive, interfering with effective signal transduction. One possible solution
is to further constrain them to exhibit global asymptotically stable fixed point behaviour,
as we have done here. Such a constraint mitigates against destructive reverberative os-
cillation while retaining sensitivity to input. This has been shown to encourage effective
signal propagation in large networks and has been conjectured to constitute a computa-
tionally rich subregion of CTRNN space [14].

To explore this we perform a preliminary study of the scalability of constrained ver-
sus unconstrained networks by repeating the evolutionary experiments reported above
for networks comprising ten nodes. We also evolved unconstrained networks with all
bias values set to zero in order to distinguish the contribution to performance of the sta-
bility constraint from that of the centre-crossing property. The results of50 evolutionary
runs per network type are reported in table 1.

(50 runs) UnconstrainedConstrainedCentre crossing
(i) % Successful Runs 28% 60% 44%
(ii) % of (i) that were Lifetime Stable 50% 90% 55%
(iii) % of (ii) that were Globally Stable 43% 89% 8%

Table 1. Success and stability rates for three classes of 10-node CTRNN.

Increasing the number internodes in the networks increasesthe number of success-
ful evolutionary runs for each of three network classes. However, both the constrained
and unconstrained centre-crossing systems produced more successful solutions than the
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unconstrained CTRNNs, with the constrained networks producing the greatest number
overall. Furthermore, the majority of solutions even for unconstrained CTRNNS em-
ployed a single basin of attraction.

4 Discussion

One of the initial demands that we placed on our agent is the requirement for a con-
trol system that maintains some kind of internal state. It isimportant to be clear that
we are not talking about any form of representation within the agents, but merely the
ability to retain information over temporally extended periods. The construction of a
task thatdemandsstate to be held specificallywithin a control system is problematic.
For example, doubt has been cast on how much can be understoodabout the cogni-
tive limitations of an agent’s behaviour from the limitations on its internal dynamics.
It has been shown that even purely reactive systems with no internal state are capable
of behaviour that can be interpreted as non-reactive [15]. However, while many tasks
could theoretically be satisfied with a reactive controllerin interaction with a rich and
dynamic environment, in practice, both biological and artificial control systems fre-
quently exploit internal state. Consequently, while it maybe hard to specify tasks that
canneverbe satisfied with a purely reactive controller, it is likely that many tasks could
be described as being at least ‘state hungry’, possibly because the agents involved do
not have the necessary privileged access to their environment.

Adaptive behaviour research typically discusses the dynamics of internal state in
terms of transients around the attractors of a system (even if the equilibirum associated
with an attractor is never reached). In this paper we have made an attempt to understand
the dynamics of transients in the absence of complex attractor structure. To this end we
have examined a task that demands multiple behavioural modes. Given the bistability
exhibited by evolved CTRNN solutions, it might be tempting to equate distinct attrac-
tors with distinct behavioural modes. However, we were subsequently able to evolve
networks able to satisfy the same task with only a single fixedpoint attractor. Closer
inspection reveals that both kinds of solution exhibit two distinct bundles of transients
corresponding to the two behavioural modes. Given that the agent has recourse to some
kind of environmental interaction with which to separate these two bundles, it need not
rely on a seperatrix to differentiate these behaviours in itsautonomousdynamics.

While monostable solutions to the task were evolved, for small CTRNNs they did
not arise readily under a conventional evolutionary robotics methodology. Indeed, in or-
der to obtain such solutions we had to explicitly encourage stable controllers. However,
in larger networks (see Section 3.2) solutions that utilised a single basin of attraction
evolved readily, even when the networks were unconstrained. One possible implica-
tion is that the utility of monostable versus multi-stable controllers may be sensitive to
network size.

Lastly, might there be classes of behavioural task thatcannotbe satisfied without
the presence of multiple attractors? In the same way that onecan conceive of a task as
being ‘state hungry’, might a particular subset of tasks be ‘attractor hungry’? Consider
the challenge posed by multiple time-scales of adaptive behaviour. While a bistable
controller can retain certain state information indefinitely, by virtue of relaxing to one
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of many stable states, a monostable controller must rely on environmental stimuli on an
appropriate timescale. Conversely, opting to solve a task by employing a minimal num-
ber of basins of attraction may also afford certain advantages in terms of evolvability,
tunability and generalisability. This is supported by the fact that, for the task consid-
ered here, unconstrained CTRNNs often evolve to exploit a single basin of attraction,
and that constraining CTRNNs in this way improves their chances of evolving a suc-
cessful controller. However, further studies of the interaction between network scaling
and evolvability are necessary before we can confirm that in order for larger networks
to achieve their full computational potential, they will benefit from mechanisms that
constrain them into a stable centre-crossing configuration.
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