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Abstract. Recent artificial neural networks for machine learning hexgoited
transient dynamics around globally stable attractorgiiad by the properties
of cortical microcolumns. Here we explore whether simjlarbnstrained neural
network controllers can be exploited for embodied, sitdateéaptive behaviour.
We demonstrate that it is possible to evolve globally staklerocontrollers con-
taining a single basin of attraction, which neverthelesstasn multiple modes
of behaviour. This is achieved by exploiting interactiorivizen environmental
input and transient dynamics. We present results that stighat this globally
stable regime may constitute an evolvable and dynamicillysubset of recur-
rent neural network configurations, especially in largdwoeks. We discuss the
issue of scalability and the possibility that there may herahtive adaptive be-
haviour tasks that are more ‘attractor hungry’.
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1 Introduction

Certain regions of the cortex are organised into neuralgn@umns. It has been sug-
gested that the computational power of these cortical ra@tonns stems from their
transient dynamics rather than their attractor structlifeThis could be the result of
weak coupling between the neurons, both in terms of theineotivity and weight
strength, which can confer global stability on their dynesri2]; consider that ripples
on the surface of a liquid are only a temporary echo of a stooppd into a it. Any
“computation” undertaken by such a system may only be aeldiéy exploiting inter-
action between its environmental input and its transientdyics within a single basin
of attraction. Recently, the echo state and liquid stateagaihes have employed artifi-
cial neural networks that share this constrained dynanic&[ They have been shown
to perform well on a range of machine learning tasks [4]. Mesgis, and notwith-
standing the biological heritage of these artificial neurgtworks (ANNSs), it is not
immediately obvious that they can serve as effective cbsirstems for adaptive be-
haviour since, in general, such controllers must cope witlagent that is embodied
and situated in a changing environment that demands diffenedes of behaviour in
different circumstances.

Here we explore whether continuous-time recurrent neusavorks (CTRNNS)
constrained to exhibit transient dynamics around a glglzeymptotically stable fixed
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point attractor are capable of successfully completingsi that demands different
behavioural modes. First, we briefly recap the role of atirastynamics in the use and
understanding of ANNs. Subsequently, we introduce a $tatery task and evolve a
solution that employs bistability. Section 3 presents lteftom evolutionary studies
in which systems constrained to exhibit a single attracterdemonstrated to solve
the task. After making a preliminary investigation of théfetience between the two
kinds of solution, we go on to consider the scalability o§ttyipe of constrained neural
network. We conclude by discussing the implications of ¢éhresults.

1.1 Mechanisms of State Retention in Neural Networks

Much of the early work on artificial neural networks focusedfeedforward architec-
tures [5]. Here, information is processed along a unidioeetl pipeline mapping sen-
sory input onto motor output. This process is necessaginabral and does not involve
internal state. Stateful networks only really arrived ie #980s, when Hopfield pop-
ularised recurrent neural networks (RNNs). Hopfield's @9BNNs were constrained
such that each was guaranteed to exhibit a number of fixed ptilactors. In such
networks, an input is a static or slowly time-varying sigaat the system is allowed
to converge to an equilibrium. The particular attractort kaachieved is interpreted
as a recognition or recall event. The success of Hopfiel@ stystems resulted in the
attractor becoming the dominating neurological metapbonfemory and state within
biological organisms.

More recent work in neuroscience and adaptive behavioeareb have reconsid-
ered organisms as dynamical systems, and foregroundedlthefrtime [7]. This has
led to the frequent observation that, far from settling isti@ble attractor states, neural
systems often spend most of the time exhibitimagsientdynamics, often far from equi-
librium. Systems that tend to settle into static states wh@mined in isolation (either
in a petri dish or as computational models) may in fact befamfequilibrium when
coupled to bodies and environments. However, while one netslubscribe to the idea
that attractors within the agent’s control system dynarares‘representational’, intu-
itively, it may still be attractive to interpret the preseraf distinct attractors as enabling
for tasks that demand distinct behavioural modes.

Here we probe this intuitive correspondence between behealimodes and dis-
tinct attractors by comparing control systems that are ttaimed to exhibit a single
attractor with those that are capable of exhibiting mugtifsked-point and/or cyclic at-
tractors. Before defining the task, agent architecture antligonary scheme that will
be employed for the remainder of the paper, we introduce anddlise some con-
straints on global asymptotic stability.

1.2 Single Fixed-Point Attractorsand the Echo State Property

An echo state machine, comprising a large neural networsefi®ir’ and a simple
feedforward network “readout”, must satisfy the echo spatperty, typically achieved
by enforcing global asymptotic fixed-point stability (GAS)formally, the echo state
property demands that the dynamics of the recurrent neatadank (the reservoir) will

“wash out” all information from the initial conditions aftsome sufficient period of
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time [3]. One formulation of this condition demands that distance between any two
trajectories in the system is a monotonically decreasingtfan of time, i.e., the system
exhibits a single limit set [3]. Jaeger providesdficientcondition for GAS, however, it
is difficult to check efficiently. Furthermore, it is belieléo be overly restrictive since
many systems which do not meet this strict condition may @KIBAS. In practice,
a simpler but onlynecessargondition can be derived for systems with an equilibrium
coincident with the centre of each node’s transfer fundfi@n centre-crossing networks
[8]). While not sufficient for GAS, this condition has beerpam to confer the echo
state property in the majority of echo state applicatiofs [3

In this paper we modify this condition so that it can be useti @iCTRNN equation
given by:

TiVi = —Y; + Z wij tanh(yj + 9j) + I; (1)
J

Herey; represents the activation at tii€ neuronw;; is the weight of the connection
from neuronj to neuroni, 6; is the bias value at th&" neuron,r; defines the rate of
leakage or decay of the activation, amdh is the transfer function. While this equation
is notidentical to either Jaeger or Beer’s formulatiorisath networks fall in the larger
class of Cohen and Grossberg networks [9] to which the fafigwtability results will
apply.

As stated above, we first require that the network is in théreesrossing configura-
tion. While this is not trivial to impose in general [8], fogHation (1) it can be achieved
by setting all of the system’s biases to zero ensuring thaktls an equilibrium at the
zero state, i.ey* = 0, wherey* is a vector describing the position of an equilibrium
point. We then construct a criterion for local stability lxydarising the system around
this point. Given that the slope of thenh function is equal to unity at its centre, the
linear dynamics is completely described by a Jacobian aédudibrium point given

by:
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This system will be locally stable around the zero statd ifeal parts of the eigenvalues
of the Jacobian are negative, otherwise it will be unstab@®.[Local stability is a
necessary but not sufficient precondition for global statlf the full, nonlinear centre-
crossing system [11]. For a full discussion of the condtfon$ocal and global stability
in CTRNNSs see [10].

2 Methods

In order to experimentally investigate the role of attrastoucture in an embodied, be-
having agent, we needed to construct a task that demandssthencourages multiple
modes of behaviour. We carried out experiments using a astedllagent required to
perform phototaxis towards a sequence of lights using desiight sensor. The task
was made more challenging by alternating the location ofigfne sensor intermittently
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between the front and back of the agent’s body througholiféetime. Since the agent
cannot reverse, the nature of the agent’s phototactic safkndamentally altered by
this unsignalled change to its sensor. In previous work @ttsk evolved solutions
employed bistable controllers [12].

The experiment consists of a circular agent with radius Eguanity located in an
infinite 2-D plane. (Distance and time are measured in antyitunits.) At the start of
each trial, a single light source is presented, located ahdam distance] from the
agent, drawn from a uniform random distribution over thegeaf10, 15], in any random
direction. After a variable time period drawn uniformly andom from the range [40,
60], the trial finishes, and a new trial commences with a newvdoanly re-positioned
light. Less frequently, the sensor is switched from thetftorthe back of the agent (or
vice-versa) at the start of a trial.

The agentis controlled by a neural network receiving inputfthe light sensor and
driving two motors, which differentially steer the robottwitheir output (in range [0,
1]). The light sensor accepts incoming light so long as itasatcluded by the agent’s
body, and provides a valuég, in [0, 1] varying inversely with the distance between the
sensor and the light source up to a maximum of 150% of the sang@ssible initial
distance between the agent and the light.

The agentis controlled by a network of continuous time resmtmeurons governed
by Equation (1). Time constants;J were scaled as®: with z; drawn from the uniform
distribution [0, 5], and weighta);; and biase®; drawn from the uniform distribution
[-10, 10]. The sensor value is scaled by a sensor weigitiform in [-10, 10], and is
made available to the first neuron, only. The outputs of eddhelast two neurons
were used to generate left and right motor speeds, resphctiv

Motor neuron outputs are first scaled by a motor weightand translated by a mo-
tor bias,,., before being squashed and rescaled in the range [0, 1]vemireeversing.
Thus, the speed of the right motet,was derived from the output of the right motor
neurony,, asr = % [1 4 tanh(w,y, + 6.)]. The network (and other simulation vari-
ables) are integrated with an Euler time-step of 0.1 duripign@sation of the agent’s
controller, and 0.01 during analysis (to ensure stability)

Network parameters were optimised using a genetic algor@gmploying pairwise
tournament selection and a population of 50, for up to 600@geions. A losing geno-
type was replaced with a copy of the winner subject to paranmetitation via Gaussian
perturbation (zero mean, variance scaled between 0.02.86d6 the previous gener-
ation’s elite genotype fitness varies between 0.4 and OiB)e$s was calculated as the
normalised average distance of the agent from the lighindutie last 25 time units
of each trial. The first trial after the sensor was switchedsdoot contribute towards
fitness, allowing for a possible adaptation phase to occtirowt punishing the agent.

Evolution progressed according to a shaping scheme. Wiedyetst agent of each of
the 15 prior generations had attained a fithess greater tBath@ phase was advanced.
During phase one, the sensor was solely located on the ffaheagent, so standard
phototaxis was all that was required. During its lifetinteg figent was subject to eight
sets of six sequential light presentation trials, with iitkeinal state reset between each
set. The average of these eight sets was taken as the overadisfiscore. Phase two
consisted of the phase one presentations followed by atiaallieight sets of six trials
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with the sensor located on the back of the agent. The overak score was the mean
of all 16 sets. A third phase proceeded as per phase two, Hutiaiible the number of
trials per set (i.e., 12). During each set of trials the senss switched to the opposite
side of the agent at the start of a random trial number dravifioumly from the range
[4, 8]. In the final phase, three changes of sensor locatmnpéace at random intervals
within each of 16 sets, each comprising 16 trials. As suah sticcessful completion
of phase four demands that an agent must be able to cope wiatezl alternation
between front-mounted and rear-mounted sensors.

3 Resaults

Before exploring the behaviour of different recurrent netke on the task described
above, we ran experiments with feedforward neural netwitrisare unable to exploit
internal state. These networks comprised nodes governéttbgtion (1). However,
all recurrent connections were removed, all time constaete set to unity4; = 1),
and each network’s Euler integration step was also set tg. @i 70 runs, not a single
evolved controller was able to progress beyond phototéhésfirst phase of the shaping
scheme). Based on these results, we conclude that it isulliffar perhaps impossible
for a reactive control system to solve the full behaviouaaktfor the agent/environment
combination explored here.

Unconstrained CTRNNs. We wish to determine whether the two behavioural modes
that were exploited in previously reported work [12] redudim bistability in the au-
tonomous dynamics of such controllers, and whether thisneaessary property of
evolved CTRNN solutions. To this end, we examined succgsfuolved four-node
CTRNNSs and compared them with four-node CTRNNSs that aresdié®vards having
global stability and hence are less likely to express bistdipnamics.

It proved somewhat difficult to evolve controllers in thiseario. Of the 50 evo-
lutionary runs evolving standard CTRNNSs, only three ageree produced that were
able to successfully complete the final phase of the task.derdo investigate whether
the intrinsic dynamics of the successful control systemewéstable, we first consid-
ered their autonomous dynamics, i.e., in the absence of.ilfaitested foautonomous
global stabilityby allowing each network to relax from 50 different randontiath con-
ditions @y; € [—10,10]). This analysis revealed that the networks were not glgball
stable, revealing the presence of two fixed point attraetitren the intrinsic dynamics
of all three of the successful control systems.

The fact that more than one fixed-point attractor is preseatmetwork’s dynam-
ics does not necessarily imply that the agent’s internaé stpends time in more than
one basin of attraction during its behaving lifetime, ia&network might exhibitife-
time global stabilityin the absence of autonomous global stability. We testedhisr
possibility by running trials of each successful agent, rdoving any sensory input
at various stages during these trials. For all of the suéglesslutions, the agent’s dy-
namics settled to one attractor when its light sensor wag-imounted, and the other
attractor when it was rear-mounted.
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Fig. 1. Phase space plots of a typical trajectory during severasexutive trials of the best
evolved unconstrained (left) and constrained (right) oeks. Half way through, the sensor
switches from the front to back. The discs indicate the etitralocations (in the absence of
input); one (the origin) in the constrained case, and twhiénlistable case.

Stable CTRNNs. We have described how, when permitted to explore the full BNR
parameter space, successful solutions exhibited bisligdtiene dynamics. In order to
determine whether it was possible to satisfy this task intevok that possessed only
a single attractor in its autonomous dynamics, the stghliibnstraint developed above
(Section 1.2) was applied during a further 50 evolutionanyst Recall: this is only a
necessarycondition for stability, and therefore can only bias the pagion towards
globally stable fixed point (monostable) solutions.

The stability constraint was implemented by initialisinigrgeightsw;; € [—0.3,0.3],
and rejecting any of these random networks that did notfgati® constraint. While
evolution was permitted to explore a full CTRNN weight rarfgg, € [—10, 10]), any
mutations that generated a network which failed to sattséystability constraint were
rejected, and a new offspring was attempted.

From 50 runs, two evolved working solutions. In order to confihat these so-
lutions exhibited autonomous and/or lifetime global dighiwe repeated the tests
described above for unconstrained networks. For both isokit the network’s au-
tonomous internal state always settled to same fixed paint &very initial condition
tested. Furthermore, we ensured that they exhibited aotons global stability in the
presence of constant input (over the range experienced®gibnt during its lifetime).
Straightforwardly, this carried over to stability in théifetime dynamics, also.

3.1 Contrasting Solutions

How did the bistable and globally stable solutions differnfr one another? Figure 1
depicts a projection of the internal dynamics of two suctgsentrollers undergoing a
series of trials during which the sensor’s position is shéit. The bistable solution (on
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Fig. 2. Time series for three of the four nodes plus sensory inputnguhree consecutive trials
(separated by dotted lines). The solid line depicts frontinted sensor behaviour in three con-
secutive trials. The dashed line depicts rear-mountecbsdhaviour in trials two and three. At
the outset of trial two, in both cases the light is positiosadh that it is initially occluded from
the sensor by the agent’s body.

the left) transitions between two basins of attraction jlgitihg two modes correspond-
ing to the two types of phototactic behaviour demanded byakle. By contrast, while
the dynamics of the stable system also exhibit two distin@sitoscillatory modes,
these trajectories all occur within the same basin of dttacin both cases, the tran-
sition from one basin to another is prompted by “pathologisansory input, which
occurs soon after the sensor location is changed. In thedfiocase, this is responsible
for moving the controller’s internal state across a sepianatthe system’s dynamics. In
the latter case, rather than using environmental inpuattsition across a separatrix, the
monostable controller uses it to shuttle between differegions of the same basin of
attraction. Whereas a monostable system must rely solely tips environmental cou-
pling to maintain at least one behavioural mode, a bistatilgisn may exploit itsau-
tonomousglynamics to maintain two distinct modes of behaviour. Hoeveaiccounting
for the importance of the intrinsic dynamics in the completain/body/environment
system is problematic. We will return to this issue in Satdo

Figure 2 presents time series for two runs of the same mduiestantroller, one of
which undergoes sensor relocation at the beginning of tbengktrial. In this trial the
trajectories proceed identically until the light is firsteleted, at which point they begin
to diverge. The unchanged agent’s behaviour proceeds aebefith the positive slope
of the bursts of sensory input indicating that the agents@gching the light. However
the neural trajectories diverge as the sensory input of geatavhose sensor has been
switched at the start of this trial diminishes, due to the moaadaptive behaviour. By
the third trial a different and adaptive pattern of behaviswachieved and maintained.
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3.2 Scalability and stability

The four-node networks that we have considered so far aselglmuch smaller than
typical liquid state machines and echo state networks, aed smaller than the corti-
cal networks that inspired them. Like other kernel methtfus high dimensionality of
these networks is core to their ability to use transient dyina for pattern recognition
and machine learning tasks. By contrast, high-dimensiGT&NNs are not typically
employed for adaptive behaviour tasks. This stems pariynfthe computational de-
mands of simulating large networks and partly from the ai@abhallenge that must be
overcome in understanding their behaviour.

In addition, as network size increases, significant postioihthe search space ex-
hibit saturating dynamics that may be unhelpful for the piadtbn of interesting be-
haviour [13]. One possible method for encouraging intémgsgeneric dynamics in
large networks is to bias evolutionary search toward istarg regions of parameter
space. Specifically, recall that in order to obtain the edatesproperty in the net-
works considered here, we have placed them in the centssiogpconfiguration. In
general, such networks have been shown to oscillate reattling them an appropri-
ate substrate for the evolution of, e.g., pattern genes§8)r Furthermore, it has been
suggested that networks in the centre-crossing configuratill exhibit rich dynamics
because their nodes interact at the most sensitive patgiottansfer functions. How-
ever, this oscillatory behaviour, which becomes more puowced in large CTRNNS,
can be disruptive, interfering with effective signal trdanstion. One possible solution
is to further constrain them to exhibit global asymptoficatable fixed point behaviour,
as we have done here. Such a constraint mitigates againsiata® reverberative os-
cillation while retaining sensitivity to input. This hasdreshown to encourage effective
signal propagation in large networks and has been congrttorconstitute a computa-
tionally rich subregion of CTRNN space [14].

To explore this we perform a preliminary study of the scdighof constrained ver-
sus unconstrained networks by repeating the evolutiongygraments reported above
for networks comprising ten nodes. We also evolved uncaim&d networks with all
bias values set to zero in order to distinguish the contieutb performance of the sta-
bility constraint from that of the centre-crossing progerhe results 060 evolutionary
runs per network type are reported in table 1.

(50 runs) UnconstrainedConstrainefiCentre crossing
(i) % Successful Runs 28% 60% 44%
(i) % of (i) that were Lifetime Stable 50% 90% 55%
(iii) % of (ii) that were Globally Stable ~ 43% 89% 8%

Table 1. Success and stability rates for three classes of 10-nodeNBITR

Increasing the number internodes in the networks incraasasumber of success-
ful evolutionary runs for each of three network classes. eler, both the constrained
and unconstrained centre-crossing systems produced omressful solutions than the
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unconstrained CTRNNSs, with the constrained networks peivdLthe greatest number
overall. Furthermore, the majority of solutions even focaomstrained CTRNNS em-
ployed a single basin of attraction.

4 Discussion

One of the initial demands that we placed on our agent is theirement for a con-
trol system that maintains some kind of internal state. limportant to be clear that
we are not talking about any form of representation withia éigents, but merely the
ability to retain information over temporally extended ipées. The construction of a
task thatdemandstate to be held specificallyithin a control system is problematic.
For example, doubt has been cast on how much can be undeedtoat the cogni-
tive limitations of an agent’s behaviour from the limitat®on its internal dynamics.
It has been shown that even purely reactive systems withteonial state are capable
of behaviour that can be interpreted as non-reactive [16yvéver, while many tasks
could theoretically be satisfied with a reactive controlfeinteraction with a rich and
dynamic environment, in practice, both biological andfiitil control systems fre-
quently exploit internal state. Consequently, while it nieyhard to specify tasks that
canneverbe satisfied with a purely reactive controller, it is liketyat many tasks could
be described as being at least ‘state hungry’, possiblyusecthe agents involved do
not have the necessary privileged access to their envirohme

Adaptive behaviour research typically discusses the dyesnf internal state in
terms of transients around the attractors of a system (éviea équilibirum associated
with an attractor is never reached). In this paper we haveeraagttempt to understand
the dynamics of transients in the absence of complex adiratiucture. To this end we
have examined a task that demands multiple behavioural sn@ieen the bistability
exhibited by evolved CTRNN solutions, it might be temptingeguate distinct attrac-
tors with distinct behavioural modes. However, we were sghently able to evolve
networks able to satisfy the same task with only a single fp@idt attractor. Closer
inspection reveals that both kinds of solution exhibit tvistidct bundles of transients
corresponding to the two behavioural modes. Given thatgeathas recourse to some
kind of environmental interaction with which to separatests two bundles, it need not
rely on a seperatrix to differentiate these behaviourssiautonomouslynamics.

While monostable solutions to the task were evolved, forlls@IBRNNs they did
not arise readily under a conventional evolutionary ratsatnethodology. Indeed, in or-
der to obtain such solutions we had to explicitly encouragkele controllers. However,
in larger networks (see Section 3.2) solutions that utlliaesingle basin of attraction
evolved readily, even when the networks were unconstraidee possible implica-
tion is that the utility of monostable versus multi-stabtmtollers may be sensitive to
network size.

Lastly, might there be classes of behavioural task tlaainotbe satisfied without
the presence of multiple attractors? In the same way thataneonceive of a task as
being ‘state hungry’, might a particular subset of tasksdtadctor hungry’? Consider
the challenge posed by multiple time-scales of adaptiveatietir. While a bistable
controller can retain certain state information indefiitby virtue of relaxing to one
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of many stable states, a monostable controller must relyneim@mental stimuli on an

appropriate timescale. Conversely, opting to solve a tgsntploying a minimal num-

ber of basins of attraction may also afford certain advasgag terms of evolvability,

tunability and generalisability. This is supported by thetfthat, for the task consid-
ered here, unconstrained CTRNNSs often evolve to exploibhglsibasin of attraction,
and that constraining CTRNNSs in this way improves their desnof evolving a suc-
cessful controller. However, further studies of the intéican between network scaling
and evolvability are necessary before we can confirm thatderdor larger networks
to achieve their full computational potential, they williedit from mechanisms that
constrain them into a stable centre-crossing configuration
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