
Monotone AC-Tree Automata

Hitoshi Ohsaki1, Jean-Marc Talbot2, Sophie Tison2 and Yves Roos2

1National Institute of Advanced Industrial Science and Technology
and

PRESTO, Japan Science and Technology Agency

ohsaki@ni.aist.go.jp

2 Laboratoire d’Informatique Fondamentale de Lille

Universit́e des Sciences et Technologies de Lille, France

{talbot,tison,yroos}@lifl.fr

Abstract. We consider several questions aboutmonotone AC-tree automata, a
class of equational tree automata [21] whose transition rules correspond to rules
in Kuroda normal form of context-sensitive grammars. Whereas it is known that
this class has a decision procedure to determine if a given monotone AC-tree
automaton accepts no term [23], other decidability and complexity results have
not been well-investigated yet. In the paper, we prove that the membership prob-
lem for monotone AC-tree automata isPSPACE-complete. We then study the
expressiveness of monotone AC-tree automata: precisely, we prove that the fam-
ily of AC-regular tree languages is strictly subsumed in that of AC-monotone
tree languages. This result immediately yields the answers to two open problems,
specially that the family of monotone AC-tree languages isnot closed under com-
plementation, and that the inclusion problem for monotone AC-tree automata is
undecidable.
Keywords : equational tree languages, complementation, decidability.

1 Introduction

Tree automata [5] have been applied successfully in many area of computer science,
such as protocol verification [1, 12], type inference [7, 11], checking the sufficient com-
pleteness of algebraic specifications [3], and checking the consistency of semi-structured
documents [17]. This widespread use is due to good closure properties of tree automata,
such as the (effective) closedness under Boolean operations and rewrite descendant
computation, as well as efficient decision procedures. However, the standard frame-
work of tree automata is not powerful when some algebraic laws such as associativity
and commutativity have to be taken into account. In particular, it is known that the reg-
ularity of tree languages is not preserved for the congruence closure with respect to
an equational theory. To overcome this problem, Ohsaki [21] in 2001 and Goubault-
Larrecq and Verma [14] in 2002 independently proposed extensions of tree automata.
Their ideas in new frameworks are to combine tree automata with equational theories,
and each of their studies considers by coincidence the case in particular where some of
the function symbols have associative (A), commutative (C), and/or some other equa-
tional properties like the identity (I) and nilpotent (U) axioms. The notion of accepted

languages may differ for these two approaches, however, they coincide in the regular
case for any combination of the axioms A, C, I and U.

The AC case is of particular interest since this kind of automata which are able to
deal with AC symbols are closely related to tree automata with arithmetical constraints,
such as multitree automata [20] and Presburger tree automata [27]. Further discussion
on this relationship can be found in our recent paper [2]. It has been shown that for
AC-tree automata good properties of “classical” tree automata remain: the membership
and emptiness are decidable and the closure of automata by Boolean operations can be
computed [21, 28, 29].

Motivated by cryptographic protocol verification, Goubault-Larrecq and Verma pro-
posed to extend AC-tree automata by considering two-way and/or alternating compu-
tations [14]. They proved on one hand that two-way AC-tree automata are not more
powerful than (one-way) AC-tree automata. On the other hand, the alternation strictly
increases the expressiveness of AC-tree automata while the emptiness problem is unde-
cidable.

Inspired by multiset grammars (alternatively, called commutative grammars) [13, 18],
Ohsaki proposed another extension of AC-tree automata [21], called monotone AC-tree
automata; he proved that both emptiness and membership remains decidable for mono-
tone AC-tree automata and that the languages defined by these automata are closed
under union and intersection. Furthermore, Ohsaki and Takai develop the automated
system, called ACTAS, manipulating AC-tree automata computation by using the exact
and approximation algorithms [24].

In this paper, we further investigate monotone AC-tree automata. First, we prove that
the membership problem of deciding, “given a termt and an automatonA/AC, whether
t belongs to the language defined byA/AC” is PSPACE-complete: we give a non-
deterministic algorithm running in polynomial space with respect to the size of the
input tree and automaton. For the lower bound, we reduce the validity problem of quan-
tified Boolean formulas to the membership problem. Then we show that the class of
monotone AC-tree automata is strictly wider than the class of regular AC-tree automata
by exhibiting a tree language accepted by a monotone AC-tree automaton but that can-
not be defined by any regular AC-tree automaton. Following the same ideas, we prove
that the family of AC-monotone tree languages isnot closed under complement while
this class is closed under union and intersection. Finally, using similar techniques, we
show that the inclusion problem for monotone AC-tree automata is not decidable.

The paper is organized as follows. Definitions and terminologies concerning equational
tree language theory are introduced in Section 2. The closure properties and the decid-
ability of equational tree automata are also summarized. In Section 3, we discuss the
complexity of the membership problem for monotone AC-tree automata, proving that
the problem is PSPACE-complete. Section 4 is devoted to the study of the relative ex-
pressiveness of AC-tree automata. Using the proof technique introduced in the previous
section, we show in Section 5 that AC-monotone tree languages are not closed under
complementation. Section 6 contains the proof for the undecidability of the inclusion
problem. Finally, we conclude by summarizing the results obtained in the paper that
give us the solutions to open questions in [6].

2

2 Preliminaries

A signature is a finite setF of function symbols together with natural numbersn. A
natural numbern associated withf , denoted byarity(f) = n, is thearity of f . Function
symbols of arity0 are calledconstants. We assume the existence of countably infinite
setV of variables. The setT (F ,V) of terms overF with V is inductively defined as
follows: V ⊆ T (F ,V); f(t1, . . . , tn) ∈ T (F ,V) if arity(f) = n andti ∈ T (F ,V) for
all 1 � i � n. Elements in the setT (F , ∅) are calledground terms. In the paper, we
write T (F) for T (F , ∅).
Let � be a fresh constant, named ahole. Elements in the setT (F ∪ {�},V) of terms,
denoted byC(F ,V), arecontexts. Theempty context is the hole�. If C is a context with
n holes andt1, . . . , tn are terms, thenC[t1, . . . , tn] represents the term obtained from
C by replacing the holes from left to right byt1, . . . , tn in F(F ,V). Termst1, . . . , tn
aresubterms of C[t1, . . . , tn].
A tree automaton (TA for short)A is a 4-tuple(F ,Q,Qfin ,∆), whose components
are the signatureF , a finite setQ of states such thatF ∩ Q = ∅, a subsetQfin of Q
consisting of the so-calledfinal states, and a finite set∆ of transition rules in one of the
following forms:

(TYPE 1) f(p1, . . . , pn) → q (TYPE 2) f(p1, . . . , pn) → f(q1, . . . , qn)

for somef ∈ F with arity(f) = n andp1, . . . , pn, q, q1, . . . , qn ∈ Q.
An equational system (ES for short)E is a set of equationss = t, wheres, t are terms
over the signatureF with the setV of variables. For two termss, t, we writes =E t
whenevers, t are equivalent modulo the equational systemE , i.e.s, t are the elements in
the same equivalence class of the quotient term modelT (F ,V)/=E . Theassociativity
andcommutativity axioms for a binary function symbolf in F are the equations

f(f(x, y), z) = f(x, f(y, z)) f(x, y) = f(y, x),

respectively, wherex, y, z are variables inV. In the paper, we writeFA for the set of
binary function symbols with associativity lawsonly, andFAC for the set of binary
symbols equipped withboth associativity and commutativity. The ESA consists of the
associativity axioms for eachf ∈ FA, andAC is the ES consisting of the associativity
and commutativity axioms for eachf ∈ FAC.
An equational tree automaton (ETA for short)A/E is a pair of a TAA and an ESE
over the same signatureF . An ETA A/E is called

– regular if it has only rules ofTYPE 1,
– monotone if it is allowed to have rules ofTYPE 1 and TYPE 2.

We sayA/E is a AC-TA (A-TA) if E = AC (resp.E = A). Besides, in the following
discussion, we supposeFA = ∅ when consideringA/AC; likewise,FAC = ∅ for A/A.
The readers are recommended to consult [21] for a more detailed presentation.
We write s →A/E t if there exists′, t′ such thats =E s′, s′ = C[l], t =E t′ and
t′ = C[r] for some transition rulel → r ∈ ∆ and contextC ∈ C(F ∪ Q). This
relation→A/E on T (F ∪ Q) is called amove relation of A/E . The transitive closure
and reflexive-transitive closure of→A/E are denoted by→+

A/E and→∗
A/E , respectively.

For an ETAA/E with E = ∅, we simply write→A, →+
A and→∗

A, instead.

3

regular AC-TA monotone A-TA monotone AC-TA

closure under
union, intersection

Yes [4] Yes Yes

closure under
complement

Yes [4] Yes ?

decidability of
emptiness

Linear No Yes

decidability of
membership

NP-complete PSPACE-complete ?

decidability of
inclusion

Yes No ?

Fig. 1. Some closure properties and decidability results

A term t is accepted by A/E if t ∈ T (F) andt →∗
A/E q for someq ∈ Qfin . Elements

in the setL(A/E) are ground terms accepted byA/E . A tree language L overF is
a subset ofT (F). A tree languageL is E-regular (E-monotone) if there exists some
regular (resp. monotone)E-tree automatonA/E such thatL = L(A/E). If L is E-
regular withE = ∅, we sayL is regular. Likewise, we sayL is monotone ifL is
∅-monotone.
Let op be ann-ary mapping from℘(T (F))n �→ ℘(T (F)). The family ofE-regular
(resp.E-monotone) languages isclosed under op if wheneverL1, . . . , Ln areE-regular
(resp.E-monotone) languages then so isop(L1, . . . , Ln). We say that the family ofE-
regular (resp.E-monotone) languages iseffectively closed under op if there exists an
algorithm which, given regular (resp. monotone) ETAA1/E , . . . ,An/E , computes a
regular (resp. monotone) ETAA/E such thatL(A/E) = op(L(A1/E), . . . ,L(An/E)).
One should note that non-regular and equational tree automata defined in [21] are in
the above monotone case. It is folklore that wheneverE = ∅ then∅-regular and∅-
monotone languages coincide. Things are different when some equational theory is
taken into account. For instance, it has been shown in [22] that monotone A-TA are
strictly more expressive than regular A-TA. But the question remained open in the case
of AC.
We sum up in the table of Fig. 1 some known results concerning respectively regular
AC-TA, monotone A-TA and monotone AC-TA. The positive results are marked with
“Yes”, and the negative cases are marked with “No”. In case the results are proved in our
previous work, the references are omitted. The complexity of the emptiness for regular
AC-TA is a direct consequence of Lemma 2 in [21] and the result of regular TA [5].
Question marks “?” in the three columns denote open problems registered in [6].
For most of the results described in the present paper, we will consider a rather simple
signature consisting in a finite number of constant symbols and a single AC symbolf.
In this case, theregular transition rulesf(p1, p2) → q anda → q correspond to the
production rulesq → p1 p2 and q → a of context-free grammars in Chomsky nor-
mal form. In case of monotone TA, the additional formf(p1, p2) → f(q1, q2) together
with the previous two forms corresponds to context-sensitive grammar in Kuroda nor-
mal form [19]. Following the same approach for monotone AC-TA, the transition rules

4

correspond to the production rules of some commutative context-sensitive grammar.
The commutative context-sensitive grammars are known to be close to Petri nets [10].
Therefore, most of our developments are related to Petri nets. For this reason, on the
other hand, the complexity of the emptiness problem for monotone AC-TA is unclear,
that may correspond to the reachability problem for Petri nets [9].

3 The Complexity of the Membership Problem

In this section, we investigate the complexity of the membership problem for mono-
tone AC-tree automata. To show in particular the PSPACE-hardness, we use a proof
technique proposed by Esparza [8] where he shows that the reachability problem for
one-safe Petri nets is PSPACE-hard.

Theorem 1. Given a monotone AC-tree automaton A/AC and a term t, the problem
whether t ∈ L(A/AC) is PSPACE-complete. ��

To show that the membership problem for monotone AC-TA is in PSPACE, it suffices
to prove that the size of any ground termt reachable from an initial termt0 by the move
relation ofA/AC is polynomial relative to the size oft0 andA/AC. This allows us to
prove that the existence of a successful run fort0 implies that there exists a “short”
successful run at most exponential with respect to the size oft0 andA/AC. We use
this property to devise a non-deterministic polynomial space algorithm for the member-
ship problem using that the execution of the move relation can be done in polynomial
time. Then we appeal to Savitch’s theorem [26] stating that NPSPACE = PSPACE to
conclude.
Let us define the special notation of terms. We assume that a termt in this section is
represented by the following grammar:

t ::= f〈t1, . . . , tn〉 | a

wheref is a function symbol inF with arity(f) > 0, anda is a constant. Moreover,
〈t1, . . . , tn〉 is a non-empty sequence of termst1, . . . , tn such that:

1. if f is a non-AC symbol, thenn is the arity off ,
2. if f is an AC symbol, thenn � 2 and the root symbol ofti is notf .

Given a subterm position and a rule to be applied at the subterm position, the corre-
sponding transition step byA/AC can be performed on the above term representation
in linear time with respect to the size of a term. In the transition steps, there are two
non-standard cases, that are done by the transitions rules of the formf(p1, p2) → q and
f(p1, p2) → f(q1, q2) with f an AC symbol. In both of the two cases, instead of the
standard pattern matching, we findp1, p2 among subtermst1, . . . , tn of f〈t1, . . . , tn〉.
By definition of monotone AC-TA, if a terms is reachable fromt by →A/AC, the size
|s| is less than or equal to|t|+ |A/AC|, where|A/AC| is the number of state symbols of
A/AC. Then we can show that for any treet admitting a successful runr : t →∗

A/AC q

with q a final state ofA/AC, there exists a successful runr′ : t →∗
A/AC q reaching the

same stateq of the length at most2|t|+|A/AC|. In fact, we suppose to the contradiction
that t →∗

A/AC q is the shortest successful run whose length is strictly greater than

5

2|t|+|A/AC|. Then terms reachable fromt by →A/AC can be described using a space
relative to the size at most|t| + |A/AC|. This implies that the previous shortest run
t →∗

A/AC q can be represented ast →∗
A/AC u →+

A/AC u →∗
A/AC q. By shrinking this

run by chopping off the loop ofu, one can obtain a successful run strictly shorter than
the original, leading to the contradiction to the minimality assumption.
Based on the above observation, let us define (non-deterministic) algorithm to solve
the question ift ∈ L(A/AC). We write in the algorithmapply(u, u′, r) for denoting
to “apply the transition ruler at the position of a subtermu′ of u.” This algorithm
needs for the computation a polynomially bounded space with respect to the size|t| +
|A/AC|: Let t be a term over the signatureF andA/AC a monotone AC-TA with
A = (F ,Q,Qfin ,∆).

membership(t , A/AC) {
c := 1 ; u := t ;

while (c � 2|t|+|A/AC|) {
if (u ∈ Qfin) then {

return true }
else {

guess r : transition rule in∆, u′ : subterm ofu to whichr is applied at the root;

nu := apply(u, u′, r) ;

u := nu }
c := c + 1

}
return false }

Let us estimate the space complexity of this algorithm. One can see thatapply runs in
polynomial time, and thus, in polynomial space. Formembership we observe that this
procedure requires the space for the counterc and the termsu, u′ andnu. Obviously
this space can be bounded linearly in|t|+ |A/AC|. So,membership can be executed by
a non-deterministic machine using polynomial space.
Next, to show that the membership problem is PSPACE-hard, we consider the validity
problem for closedquantified Boolean formulas (QBF). This problem is known to be
PSPACE-complete. Every formulaϕ can be represented by the following grammar:

ϕ ::= x | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ (x : a proposition variable)

This assumption is justified by the fact that any quantified Boolean formula can be
translated into a formula of the above form in linear time. We assume also that each
variablex in the formula occurs in the scope of some quantifier∃x or ∀x and that each
variable is bounded exactly once in the formula.
We suppose thatx1, . . . , xk are variables bounded inϕ. We show in the following that
we can build from a closed formulaϕ a monotone AC-tree automatonAϕ/AC and a
termtϕ in polynomial time relative to the size ofϕ such thattϕ is accepted byAϕ/AC
if and only if ϕ is valid. For this construction, we take the signature{⊕, i, v, e}, where
⊕ is an AC symbol andi, v, e are constants. We denote bytϕ a term consisting of
exactlyk constants ofv, a constant ofi, and a constant ofe. For each subformulaψ of
ϕ, we define the state symbolsq(ψ,?), q(ψ,T), andq(ψ,F). In case ofψ ≡ ∃x. x ∧ x,

6

the two subformulasx’s are distinguished in this construction. For each variablexi

(1 � i � k), we take the two statesqtrue/xi
and qfalse/xi

. The stateqfin is the final
state. Let us describe the intended meaning of each state symbol. The truth value of
the formulaϕ is computed recursively in our encoding. Along this idea, the stateq(ψ,?)

means that the subformulaψ can be taken into consideration. When the computation for
ψ is performed, the stateq(ψ,?) is ”transformed” to eitherq(ψ,T) or q(ψ,F), depending
on the truth value ofψ. The stateq(ψ,T) means thatψ is true, andq(ψ,F) means thatψ
is false. The two statesqtrue/xi

andqfalse/xi
are the environment to store the information

for the valuation toxi.
Using the above state symbols, next we define the transition rules. For the constants
i, v, e, we take the following transition rules:

i → q(ϕ,?) v → qv e → qe

The first rule is used to initiate the computation. We define the transition rules for in-
stantiating a variablexi (1 ≤ i ≤ k) to true or false:

q(xi,?) ⊕ qtrue/xi
→ q(xi,T) ⊕ qtrue/xi

q(xi,?) ⊕ qfalse/xi
→ q(xi,F) ⊕ qfalse/xi

The rules for negation are defined as follows: for a subformula¬ψ of the formulaϕ,

q(¬ψ,?) ⊕ qe → q(ψ,?) ⊕ qe

and

q(ψ,T) ⊕ qe → q(¬ψ,F) ⊕ qe q(ψ,F) ⊕ qe → q(¬ψ,T) ⊕ qe.

The first rule decomposes¬ψ and the last two rules re-construct¬ψ with the truth
value by usingψ with the truth value. Similarly, the rules for the conjunction can be
defined. For any subformulaψ ∧ ψ′ of the formulaϕ,

q(ψ∧ψ′,?) ⊕ qe → q(ψ,?) ⊕ qe

q(ψ,F) ⊕ qe → q(ψ∧ψ′,F) ⊕ qe q(ψ,T) ⊕ qe → q(ψ′,?) ⊕ qe

q(ψ′,F) ⊕ qe → q(ψ∧ψ′,F) ⊕ qe q(ψ′,T) ⊕ qe → q(ψ∧ψ′,T) ⊕ qe.

In the above definition,ψ ∧ ψ′ is evaluated in a sequential manner: first we consider
the subformulaψ and evaluate it, and then we take the remaining subformulaψ′. For
the existential quantification∃xi.ψ, we need to consider both valuations for the bound
variablexi and the computation forψ:

q(∃xi.ψ,?) ⊕ qv → qtrue/xi
⊕ q(ψ,?)

qtrue/xi
⊕ q(ψ,T) → q(∃xi.ψ,T) ⊕ qtrue/xi

qtrue/xi
⊕ q(ψ,F) → qfalse/xi

⊕ q(ψ,?)

qfalse/xi
⊕ q(ψ,T) → q(∃xi.ψ,T) ⊕ qfalse/xi

qfalse/xi
⊕ q(ψ,F) → q(∃xi.ψ,F) ⊕ qfalse/xi

In the above definition, we start with the valuation associating the Boolean valuetrue
with xi. If ψ turns out to betrue under this valuation,∃x.ψ is alsotrue; otherwise, the
valuation associating the Boolean valuefalse with xi is tried. The following rules are
used to finalize the computation:

⊕(q(ϕ,T), qe) → qfin ⊕ (qtrue/xi
, qf) → qfin ⊕ (qfalse/xi

, qf) → qfin

7

We can show that the previous encoding is correct, by using the induction over the
structure of the formulaψ. The remainder of the proof is obtained from the following
observation: Lett(ψ,?) be a term that contains exactly aq(ψ,?), aqe, andnv occurrences
of cv (cv being either the constantv or the stateqv, andnv being the number of variables
that do not freely occur inψ) and for each free variablexi1 , . . . , xi�

, eitherqtrue/xij

or qfalse/xij
. Supposeδ is the Boolean valuation defined forxi1 , . . . , xi�

such thatδ
associates withxij

the valuetrue if qtrue/xij
appears int(ψ,?), and false otherwise.

Then we have:

– t(ψ,?) →∗
A/ϕ/AC t(ψ,T) if and only if ψ is valid underδ, wheret(ψ,T) is the same

ast(ψ,?) except
1. q(ψ,?) in t(ψ,?) is replaced byq(ψ,T),
2. if xil+1 , . . . , xil+m

are bound variables inψ, thenm occurrences ofv andqv in
t(ψ,?) are replaced byqb1/xi�+1

, . . . , qbm/xi�+m
with b1, . . . , bm ∈ {true, false}.

– t(ψ,?) →∗
A/ϕ/AC t(ψ,F) if and only if ψ is not valid underδ, wheret(ψ,F) is the

same ast(ψ,?) except
1. q(ψ,?) in t(ψ,?) is replaced byq(ψ,F),
2. if xil+1 , . . . , xil+m

are bound variables inψ, thenm occurrences ofv andqv in
t(ψ,?) are replaced byqb1/xi�+1

, . . . , qbm/xi�+m
with b1, . . . , bm ∈ {true, false}.

4 Expressiveness: Regular vs. Monotone AC-Tree Automata

Obviously, by definition, monotone AC-tree automata are at least as expressive as reg-
ular AC-tree automata. We show in this section that monotone AC-tree automata are
strictly more expressive than the regular AC-tree automata. In other words, we are go-
ing to present a monotone AC-tree automaton whose accepted language can not be
defined by any regular AC-tree automaton.
To construct such a tree language, we consider in particular the signatureF⊕ = {⊕}∪
F0 consisting of a single AC symbol⊕ and constant symbolsa1, . . . , an (n � 1). We
then define the Parikh mappingπ ([25]) associated with the signatureF⊕ as follows. For
a termt in T (F⊕), π(t) is a vectorv in N

n such that thei-th componentv(i) is the num-
ber of occurrences ofai in t. For instance,π(⊕(a1,⊕(a3, a1))) = (2, 0, 1, 0, . . . , 0).
The Parikh mappingπ is homomorphically extended to tree languages: for a tree lan-
guageL overF⊕, π(L) is the set of vectors inNn defined asπ(L) = {π(t) | t ∈ L }.

Proposition 1 ([4]). Given an AC-regular tree language L over F⊕, the set π(L) is a
semi-linear set over N

n. ��

The reverse of the above property also holds; for a semi-linear setS, there effectively
exists an AC-regular tree languageL with π(L) = S. We recall that a subsetS of N

n

is called alinear set if S = Lin(b, p1, . . . , pk), whereb is a vector, calledbase, in N
n

andp1, . . . , pk are a finite numberk of vectors, calledperiods, such that

Lin(b, p1, . . . , pk) = { b +
k∑

i=1

(λi × pi) | λ1, . . . , λk ∈ N }.

A finite union of such linear sets is called asemi-linear set.

8

Lemma 1. Suppose F⊕ is defined with 5 constants. There exists a monotone AC-tree
automaton A�/AC over F⊕ defining a tree language L� such that

π(L�) = { (k1, k2, k3, 1, 2) | k3 � k1×k2 for k1, k2, k3 ∈ N }.

Proof. We takea, b, c,#, s for the constants ofF⊕. The corresponding Parikh images
are the numbers of these constants in the above order. We define the tree automaton
A� = (F⊕,Q,Qfin ,∆�) overF⊕, where

Q : pa pb pc p# ps pfin qa q# qs r#

Qfin : pfin

∆� : a → pa b → pb c → pc # → p# s → qs qs ⊕ qs → ps

p# ⊕ pa → p# p# ⊕ pa → q# ⊕ qa

q# ⊕ pc → p# p# ⊕ pb → r#

r# ⊕ qa → r# ⊕ pa r# ⊕ ps → p# ⊕ ps p# ⊕ ps → pfin

We denote by|t|α the number of occurrences of a constantα (∈ F0 ∪ Q) in a termt
overF⊕ ∪ Q. We observe that for any termt overF⊕ such that|t|# = 1 and|t|s = 2
and|t|c � |t|a × |t|b, there exists a derivationt →∗

A�/AC pfin from t to pfin . In order
to prove this observation, let us define the assertions and the algorithm in Fig. 2. The
functionapply in the algorithm corresponds to a single application of its argument to a
term in consideration. The derivation oft is the sequence of terms obtained during the
computation. Proofs of correctness and termination easily follow from the annotations.
Conversely, for any termt0 overF⊕ andt overF⊕ ∪Q, if t0 →∗

A�/AC t, it holds that:

|t0|s = (|t|s + |t|ps) + 2 × (|t|pfin
+ |t|ps) (INV 1)

|t0|# = |t|#+ |t|p#+ |t|q#+ |t|r#+ |t|pfin
(INV 2)

|t0|a � |t|a + |t|pa + |t|qa (INV 3)

Moreover, if t0 →∗
A�/AC pfin , then by (INV 1), |t0|s = 2 and by (INV 2), |t0|# = 1.

Now we suppose|t0|# = 1. Due to (INV 3), we have

|t0|c − (|t|c + |t|pc) � |t0|a × (|t0|b − (|t|b + |t|pb)) + |t|qa × (1 − |t|r#) − |t|q# .

Accordingly, if t0 →∗
A�/AC pfin , then|t0|c � |t0|a × |t0|b. Therefore,t0 ∈ L� if and

only if π(t0) = (k1, k2, k3, 1, 2) with k3 � k1 × k2. ��

Theorem 2. The family of AC-regular tree languages is properly included in the family
of AC-monotone tree languages.

Proof. Straightforward from Proposition 1 and Lemma 1, because the Parikh image of
L� is not semi-linear. ��

5 Complementation of AC-Monotone Tree Languages

As explained in the introduction,monotone rules in tree case correspond to context-
sensitive grammars in word case. In fact, based on this observation, we proved in a

9

previous paper [22] that A-monotone tree languages are closed under Boolean opera-
tions by the reduction from the fact that context-sensitive languages are closed under
complementation. In this section, however, we show that AC-monotone tree languages
arenot closed under complementation.

Theorem 3. There exists an AC-monotone tree language whose complement is not an
AC-monotone tree language.

In the remaining part of this section, we devote to show the proof of Theorem 3. Our
proof proceeds in the way of proof by contradiction.

Lemma 2. Suppose F⊕ is defined with 5 constants. There exists an AC-tree automaton
A</AC over F⊕ defining a tree language L< such that

L< = { (k1, k2, k3, 1, 2) | k3 < k1×k2 for k1, k2, k3 ∈ N }.

Proof. We define the automatonA</AC exactly as is the monotone AC-tree automaton
A�/AC in Lemma 1except where the ruleqs ⊕ qs → ps replaced by the ruleqs ⊕ qs →
ps ⊕ pc. One can show as we have done forA≤/AC, that for any termt0 in T (F⊕),
t0 →∗

A</AC pfin if and only if π(t0) = (k1, k2, k3, 1, 2) with k3 < k1 × k2. ��

Let us consider the tree languageL� defined below over the above signatureF⊕ =
{⊕} ∪ { a, b, c,#, s }:

L� = { (k1, k2, k3, 1, 2) | k3 � k1×k2 for k1, k2, k3 ∈ N },

and we take the hypothesis

H : L� is an AC-monotone tree language.

We then state the following property associated toH.

Lemma 3. If H holds, there exists a monotone AC-tree automaton that accepts L=

over F⊕ such that π(L=) = {(k1, k2, k3, 1, 2) | k3 = k1×k2 for k1, k2, k3 ∈ N }.

Proof. Due toH, there exists a monotone AC-tree automatonA�/AC withL(A�/AC) =
L�. It is known that the class of monotone AC-tree automata is effectively closed under
intersection (Theorem 3, [21]). Then we letB/AC be the intersection ofA�/AC in the
previous section andA�/AC. According to the trivial fact that(n1 � n2) ∧ (n1 � n2)
if and only if n1 = n2, B/AC acceptsL� ∩ L�, and therefore,B/AC acceptsL=. ��

Lemma 4. If H holds, there exists an algorithm that takes as an input D a diophantine
equation and returns as an output “yes” if D admits a non-negative solution; otherwise,
“no”.

Proof. Let us assume a finite set of variablesx1, . . . , xn ranging over the natural num-
bersN. We consider asystem of numerical equations S = {Eq1, . . . ,Eqm}, where each
Eq� (1 � 	 � m) in S is in one of the following forms:

xi = c (c : a fixed natural number) xi = xj + xk xi = xj × xk

10

Herei must be different fromj andk, i.e.xi does not occur in the right-hand side of the
same equation. But a variablexi may occur in the left hand-sides of different equations.
A solutionσ for an equationEq� is a mapping from{x1, . . . , xn } to N, such that the
structure(N,+, ∗,=) is a model ofEq� under the valuationσ. A solutionσ for a system
S is a solution for every equation inS.
It is well-known that from any diophantine equationD, one can compute a system of
numerical equationsS such thatD admits a solution if and only ifS admits a solution.
Now, for each equationEq� in S, we define a monotone AC-TAAEq�/AC over the sig-
natureF⊕ = {⊕} ∪ { a1, . . . , an,#, s }, such that for any termt in T (F⊕), t ∈
L(AEq�

/AC) if and only if |t|# = 1, |t|s = 2 and the valuationσ defined asσ(xi) =
|t|ai

(for 1 � i � n) is a solution forEq�. For each kind of numerical equations, we
define the transition rules of the automaton assuming thatpfin is the unique final state:

– For the constraint equationxi = 0 we define the tree automatonAxi=0 equipped
with the transition rules
{ ps ⊕ ps → qs, qs ⊕ p# → pfin } ∪
{ paj ⊕ pfin → pfin | j �= i and1 � j � n }

with the rules for constants{ aj → paj
| 1 � j � n } ∪ {# → p#, s → ps }. For

xi = c (c > 0) we additionally take the transition rules

{ pai
⊕ pfin → p1 } ∪ { pai

⊕ pj → pj+1 | 1 � j � c − 2 } ∪
{ pai

⊕ pc−1 → pfin }.
– For the linear equationxi + xj = xk we define the tree automatonAxi+xj=xk

equipped with the transition rules

{ ps ⊕ ps → qs, qs ⊕ p# → pfin } ∪ { pai
⊕ pak

→ p, paj
⊕ pak

→ p } ∪
{ pa�

⊕ pfin → pfin | 	 �= i and	 �= j and	 �= k } ∪
{ p ⊕ p → p, p ⊕ pfin → pfin }

with the rules for constants{ a� → pa�
| 1 � 	 � n } ∪ {# → p#, s → ps }.

– Finally, for a numerical equationxi = xj×xk, we build the automatonAxi=xj×xk
;

letB/AC the automaton defined in the proof of Lemma 3. We assume without loss
of generality thatpfin is the unique final state ofB/AC. We then defineAxi=xj×xk

by relabelingc by ai, a by aj andb by ak and by adding the transition rules

{ pa�
⊕ pfin → pfin | 	 �= i and	 �= j and	 �= k } ∪

{ a� → pa�
| 1 � 	 � n }.

One should note that for the first two cases, transition rules for# ands are not essential,
but they must be included under our construction if a systemS contains an equationEqk

of the multiplicationxi = xj × xk.
Accordingly, for the systemS = {Eq1, . . . ,Eqm } of numerical equations, we can
construct a monotone AC-TAAS/AC such that

L(AS/AC) =
⋂

1���m

L(AEq�
/AC)

whose accepted language is non-empty if and only ifS admits a solution. Since the
emptiness problem for monotone AC-TA is decidable, there exists an algorithm under
the hypothesisH that takes as an input a diophantine equationD and returns “yes” if
there is a non-negative solution; otherwise, “no”. ��

11

It is well-known that Hilbert’s 10th problem [16] is undecidable, even only in the case
of non-negative solutions to be considered. Thus we obtain the following property.

Theorem 4. There is no monotone AC-tree automaton that accepts L� over the signa-
ture F⊕.

Corollary 1. The class of AC-monotone tree languages is not closed under comple-
mentation.

Proof. Straightforward from Theorem 4, as AC-monotone tree languages are closed
under intersection andL� = (L<)c ∩ { t ∈ T (F⊕) | |t|# = 1 & |t|s = 2 }, whereL<

and{ t ∈ T (F⊕) | |t|# = 1 & |t|s = 2 } are AC-monotone tree languages. ��

6 The Inclusion Problem for Monotone AC-Tree Automata

Using the previous tree automata construction, we show in this section that the inclusion
problem for AC-monotone tree languages is undecidable. The remainder of this section
is devoted to the proof of the following undecidability result.

Theorem 5. Given two monotone AC-tree automata A1/AC and A2/AC over the same
signature, the problem whether L(A1/AC) ⊆ L(A2/AC) is not decidable.

As we did in the previous section, we consider a systemS = {Eq1, . . . ,Eqm } of
numerical equations defined over a finite set of variables{x1, . . . , xn }. One should
note that according to the syntax,Eqi is an equation in the form ofxj = e, wheree is
either a fixed natural numberc, the additionxk +x�, or the multiplicationxk ×x�, such
thatxj �= xk andxj �= x�.
We then define the systemS� of inequations obtained by replacing each equationxi =
e by the inequationxi � e. Namely,S� = {xi � e | xi = e ∈ S }.
Finally we define, for eachk with 1 � k � m, Sk a system of inequations obtained
fromS� by replacing only thek-th inequationxi � ek by the strict inequationxi < ek.

From previous sections, we know that one can effectively associate with each inequation
Ineqk (being eitherxj � ek or xj < ek) a monotone AC-tree automatonAIneqk

such
that a termt from T (F⊕) is accepted by an automatonAIneqk

/AC if and only if |t|# =
1, |t|s = 2 and eitherIneqk is of the form

– xi � c and|t|ai � c (resp.xi < c and|t|ai < c),
– xi � xv + xw and|t|ai

� |t|av
+ |t|aw

(resp.xi < xv + xw and|t|ai
< |t|av

+
|t|aw

), or
– xi � xv ∗xw and|t|ai

� |t|av
∗|t|aw

(resp.xi < xv ∗xw and|t|ai
< |t|av

∗|t|aw
).

Moreover, we let

AS�/AC =
⋂

Ineq∈S�

AIneq/AC,

ASk
/AC =

⋂

Ineq∈Sk

AIneq/AC

for all 1 � k � m. In the above definition,
⋂

Ineq∈S� AIneq/AC represents an AC-TA
that accepts the tree language accepted byAIneq/AC for all Ineq ∈ S.

12

Lemma 5. L(AS�/AC) �⊆ L(
⋃

1�i�m ASi
/AC) if and only if S admits a solution. ��

Theorem 5 follows easily from Lemma 5 and the effective closedness under union and
intersection of monotone AC-tree automata.

7 Concluding Remarks

In this paper, we have shown the 4 new results (Theorems 1, 2, 5 and Corollary 1) for the
class of monotone AC-tree automata. Our proof technique used for showing the expres-
siveness of AC-monotone tree languages explains also a new idea of how to interpret by
AC-tree automata thearithmetic constraints over the natural numbers, while an obser-
vation obtained from this tree automata construction gives rise to the negative closure
property of the complementation and the undecidability of the inclusion problem.
For further research along monotone AC-tree automata, it might be interesting to con-
sider the question about decision problems concerning regularity, called theregular-
ity problem; it is not clear how to determine, given a monotone AC-tree automaton,
whether the accepted tree language can also be accepted by some regular AC-tree
automaton. Useful ideas to solve this decision problem are found in the study about
Petri nets. In fact, it is known that thesemi-linearity problem for Petri nets is decidable
[15]. The regularity problem for AC-monotone tree languages can be regarded in some
sense as an generalization of the above semi-linearity problem.
Another interesting question about monotone AC-tree automata is the universality prob-
lem [6]; this problem is known to be decidable for regular AC-tree automata and it is
undecidable for monotone A-tree automata.

References

1. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim, M. Rusi-
nowitch, M. Turuani, L. Vigaǹo, and L. Vigneron. The AVISS Security Protocol Analysis
Tool. In Proc. of 14th CAV, Copenhagen (Denmark), volume 2404 ofLNCS, pages 349–353.
Springer, 2002.

2. I. Boneva and J.-M. Talbot. Automata and Logics for Unranked and Unordered Trees. In
Proc. of 16th RTA, Nara (Japan), volume 3467 ofLNCS, pages 500–515. Springer, 2005.

3. A. Bouhoula, J.P. Jouannaud, and J. Meseguer. Specification and Proof in Membership Equa-
tional Logic. Theoretical Computer Science, 236:35–132, 2000.

4. T. Colcombet. Rewriting in the Partial Algebra of Typed Terms Modulo AC. InProc. of 4th
INFINITY, Brno (Czech Republic), volume 68(6) ofENTCS. Elsevier, 2002.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications, 2002. (http://www.grappa.univ-lille3.fr/tata).

6. N. Dershowitz and R. Treinen.Problem #101. The RTA List of Open Problems. Available
at http://www.lsv.ens-cachan.fr/rtaloop/.

7. P. Devienne, J.-M. Talbot, and S. Tison. Set-Based Analysis for Logic Programming and
Tree Automata. InProc. of 4th SAS, Paris (France), volume 1302 ofLNCS, pages 127–140.
Springer, 1997.

8. J. Esparza. Decidability of Model-Checking for Infinite-State Concurrent Systems.Acta
Informatica, 34:85–107, 1997.

13

9. J. Esparza. Decidability and Complexity of Petri Net Problems – An Introduction. InPetri
Nets, volume 1491 ofLNCS, pages 374–428. Springer, 1998.

10. J. Esparza. Grammars as Processes. InFormal and Natural Computing – Essays Dedicated
to Grzegorz Rozenberg, volume 2300 ofLNCS, pages 277–297. Springer, 2002.

11. J.P. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite Tree
Automata for Set-Based Analysis of Logic Programs. InProc. of 4th PADL, Portland (USA),
volume 2257 ofLNCS, pages 243–261. Springer, 2002.

12. T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. InProc. of 17th
CADE, Pittsburgh (USA), volume 1831 ofLNCS, pages 271–290. Springer, 2000.

13. S. Ginsburg.The Mathematical Theory of Context-Free Languages. McGraw-Hill, 1966.
14. J. Goubault-Larrecq and K.N. Verma. Alternating Two-way AC-Tree Automata. Research

Report LSV-02-11, Laboratoire Spécification et V́erification, November 2002. Draft avail-
able at http://www.lsv.ens-cachan.fr/Publis/.

15. D. Hauschildt. Semilinearity of the Reachability Set is Decidable for Petri Nets. Technical
Report FBI-HH-B-146/90, Universität Hamburg, 1990.

16. D. Hilbert. Mathematical Problem. InProc. of the Symposia in Pure Mathematics, Prov-
idence (USA), Matiematical Developments Arising from Hilbert’s Problems, volume 28,
pages 1–34. Americal Mathematical Society, 1976.

17. H. Hosoya, J. Vouillon, and B.C. Pierce. Regular Expression Types for XML. InProc. of 5th
ICFP, Montreal (Canada), volume 35(9) ofSIGPLAN Notices, pages 11–22. ACM, 2000.

18. M. Kudlek and V. Mitrana. Normal Forms of Grammars, Finite Automata, Abstract Families,
and Closure Properties of Multiset Languages. InMultiset Processing, volume 2235 of
LNCS, pages 135–146. Springer, 2001.

19. S.Y. Kuroda. Classes of Languages and Linear Bounded Automata.Information and Control,
7(2):207–223, 1964.

20. D. Lugiez. Counting and Equality Corstraints for Multitree Automata. InProc. of 6th FOS-
SACS, Warsaw (Poland), volume 2620 ofLNCS, pages 328–342. Springer, 2003.

21. H. Ohsaki. Beyond Regularity: Equational Tree Automata for Associative and Commutative
Theories. InProc. of 15th CSL, Paris (France), volume 2142 ofLNCS, pages 539–553.
Springer, 2001.

22. H. Ohsaki, H. Seki, and T. Takai. Recognizing Boolean Closed A-Tree Languages with
Membership Conditional Rewriting Mechanism. InProc. of 14th RTA, Valencia (Spain),
volume 2706 ofLNCS, pages 483–498. Springer, 2003.

23. H. Ohsaki and T. Takai. Decidability and Closure Properties of Equational Tree Languages.
In Proc. of 13th RTA, Copenhagen (Denmark), volume 2378 ofLNCS, pages 114–128.
Springer, 2002.

24. H. Ohsaki and T. Takai. ACTAS: A System Design for Associative and Commutative Tree
Automata Theory. InProc. of 5th RULE, Aachen (Germany), volume 124(1) ofENTCS,
pages 97–111. Elsevier, 2005.

25. R.J. Parikh. On Context-Free Languages.Journal of the ACM, 13(4):570–581, 1966.
26. W. Savitch. Relationships between Nondeterministic and Deterministic Tape Complexities.

Journal of Computer and Systems Sciences, 4(2):177–192, 1970.
27. H. Seidl, T. Schwentick, and A. Muscholl. Numerical Document Queries. InProc. of 22nd

PODS, San Diego (USA), pages 155–166. ACM, 2003.
28. K.N. Verma. On Closure under Complementation of Equational Tree Automata for Theories

Extending AC. InProc. of 10th LPAR, Almaty (Kazakhstan), volume 2850 ofLNCS, pages
183–197. Springer, 2003.

29. K.N. Verma. Two-Way Equational Tree Automata for AC-like Theories: Decidability and
Closure Properties. InProc. of 14th RTA, Valencia (Spain), volume 2706 ofLNCS, pages
180–197. Springer, 2003.

14

/* INVARIANT :

|t|pc + |t|qa + (|t|pa × |t|r#) � (|t|pa + |t|qa) × (|t|pb + |t|r#) + |t|q#
|t|p#+ |t|q#+ |t|r# = |t|ps = 1

|t|a + |t|b + |t|c = 0 */

/* Given t in T (F⊕) such that |t|# = 1 and |t|s = 2 and |t|c � |t|a × |t|b */

while (|t|a + |t|b + |t|c + |t|# + |t|s > 0) {
apply a → pa, b → pb, c → pc, # → p#, s → qs

}
apply qs ⊕ qs → ps ; /* INVARIANT & |t|p# = 1 & |t|qa = 0 */

while (|t|pb > 0) { /* INVARIANT & |t|p# = 1 & |t|qa = 0 */

while (|t|pa > 0 & |t|pc > 0) {
apply p# ⊕ pa → q# ⊕ qa ; apply q# ⊕ pc → p#

}
/* INVARIANT & |t|p# = 1 */

apply p# ⊕ pb → r# ;

/* INVARIANT & |t|r# = 1 */

while (|t|qa > 0) {
apply r# ⊕ qa → r# ⊕ pa

}
/* INVARIANT & |t|r# = 1 & |t|qa = 0 */

apply r# ⊕ ps → p# ⊕ ps

/* INVARIANT & |t|p# = 1 & |t|qa = 0 */

}
/* |t|p# = 1 & |t|qa = |t|pb = |t|pc = 0 */

while (|t|pa > 0) {
apply p# ⊕ pa → p#

}
/* t = p# ⊕ ps */

apply p# ⊕ ps → pfin

/* t = pfin */

Fig. 2. Reduction strategy and the assertions

15

