Monotone AC-Tree Automata

Hitoshi Ohsaki, Jean-Marc Talbdt Sophie Tisod and Yves Roo%

!National Institute of Advanced Industrial Science and Technology
and
PRESTO, Japan Science and Technology Agency

ohsaki @i . ai st.go.jp

2 Laboratoire d’Informatique Fondamentale de Lille
Universié des Sciences et Technologies de Lille, France

{tal bot,tison,yroos}@ifl.fr

Abstract. We consider several questions abowinotone AC-tree automata, a

class of equational tree automata [21] whose transition rules correspond to rules
in Kuroda normal form of context-sensitive grammars. Whereas it is known that
this class has a decision procedure to determine if a given monotone AC-tree
automaton accepts no term [23], other decidability and complexity results have
not been well-investigated yet. In the paper, we prove that the membership prob-
lem for monotone AC-tree automata RSPACE-complete. We then study the
expressiveness of monotone AC-tree automata: precisely, we prove that the fam-
ily of AC-regular tree languages is strictly subsumed in that of AC-monotone
tree languages. This result immediately yields the answers to two open problems,
specially that the family of monotone AC-tree language®wixlosed under com-
plementation, and that the inclusion problem for monotone AC-tree automata is
undecidable.

Keywords : equational tree languages, complementation, decidability.

1 Introduction

Tree automata [5] have been applied successfully in many area of computer science,
such as protocol verification [1, 12], type inference [7, 11], checking the sufficient com-
pleteness of algebraic specifications [3], and checking the consistency of semi-structured
documents [17]. This widespread use is due to good closure properties of tree automata,
such as the (effective) closedness under Boolean operations and rewrite descendant
computation, as well as efficient decision procedures. However, the standard frame-
work of tree automata is not powerful when some algebraic laws such as associativity
and commutativity have to be taken into account. In particular, it is known that the reg-
ularity of tree languages is not preserved for the congruence closure with respect to
an equational theory. To overcome this problem, Ohsaki [21] in 2001 and Goubault-
Larrecq and Verma [14] in 2002 independently proposed extensions of tree automata.
Their ideas in new frameworks are to combine tree automata with equational theories,
and each of their studies considers by coincidence the case in particular where some of
the function symbols have associative (A), commutative (C), and/or some other equa-
tional properties like the identity (I) and nilpotent (U) axioms. The notion of accepted

languages may differ for these two approaches, however, they coincide in the regular
case for any combination of the axioms A, C, | and U.

The AC case is of particular interest since this kind of automata which are able to
deal with AC symbols are closely related to tree automata with arithmetical constraints,
such as multitree automata [20] and Presburger tree automata [27]. Further discussion
on this relationship can be found in our recent paper [2]. It has been shown that for
AC-tree automata good properties of “classical” tree automata remain: the membership
and emptiness are decidable and the closure of automata by Boolean operations can be
computed [21, 28, 29].

Motivated by cryptographic protocol verification, Goubault-Larrecq and Verma pro-
posed to extend AC-tree automata by considering two-way and/or alternating compu-
tations [14]. They proved on one hand that two-way AC-tree automata are not more
powerful than (one-way) AC-tree automata. On the other hand, the alternation strictly
increases the expressiveness of AC-tree automata while the emptiness problem is unde-
cidable.

Inspired by multiset grammars (alternatively, called commutative grammars) [13, 18],
Ohsaki proposed another extension of AC-tree automata [21], called monotone AC-tree
automata; he proved that both emptiness and membership remains decidable for mono-
tone AC-tree automata and that the languages defined by these automata are closed
under union and intersection. Furthermore, Ohsaki and Takai develop the automated
system, called ACTAS, manipulating AC-tree automata computation by using the exact
and approximation algorithms [24].

In this paper, we further investigate monotone AC-tree automata. First, we prove that
the membership problem of deciding, “given a teérand an automatad /AC, whether

t belongs to the language defined Ay AC” is PSPACE-complete: we give a non-
deterministic algorithm running in polynomial space with respect to the size of the
input tree and automaton. For the lower bound, we reduce the validity problem of quan-
tified Boolean formulas to the membership problem. Then we show that the class of
monotone AC-tree automata is strictly wider than the class of regular AC-tree automata
by exhibiting a tree language accepted by a monotone AC-tree automaton but that can-
not be defined by any regular AC-tree automaton. Following the same ideas, we prove
that the family of AC-monotone tree languagesds closed under complement while

this class is closed under union and intersection. Finally, using similar techniques, we
show that the inclusion problem for monotone AC-tree automata is not decidable.

The paper is organized as follows. Definitions and terminologies concerning equational
tree language theory are introduced in Section 2. The closure properties and the decid-
ability of equational tree automata are also summarized. In Section 3, we discuss the
complexity of the membership problem for monotone AC-tree automata, proving that
the problem is PSPACE-complete. Section 4 is devoted to the study of the relative ex-
pressiveness of AC-tree automata. Using the proof technique introduced in the previous
section, we show in Section 5 that AC-monotone tree languages are not closed under
complementation. Section 6 contains the proof for the undecidability of the inclusion
problem. Finally, we conclude by summarizing the results obtained in the paper that
give us the solutions to open questions in [6].

2 Preiminaries

A signature is a finite setF of function symbols together with natural numbersA
natural number associated wittf, denoted byrity(f) = n, is thearity of f. Function
symbols of arity0 are calledconstants. We assume the existence of countably infinite
set)V of variables. The seT (F, V) of terms overF with V is inductively defined as
follows: V C T(F,V); f(t1,....,t,) € T(F,V) if arity(f) = nandt; € T (F,V) for

all 1 < ¢ < n. Elements in the sef (F, @) are calledground terms. In the paper, we
write 7 (F) for T (F, @).

Let O be a fresh constant, namedhale. Elements in the sef (F U {00}, V) of terms,
denoted by (F, V), arecontexts. Theempty context is the hol€&l. If C' is a context with

n holes andy, ..., t, are terms, thed@[t,,...,t,] represents the term obtained from
C by replacing the holes from left to right by, . .., ¢, in F(F,V). Termsty, ..., t,
aresubterms of C[ty, ..., t,].

A tree automaton (TA for short) A is a 4-tuple(F, Q, Qfn, A), whose components
are the signaturé-, a finite setQ of states such that N Q = @, a subseQg,, of Q
consisting of the so-callefihal states, and a finite sefA of transition rules in one of the
following forms:

(TYPEl) f(plavpn)ﬁq (TYPEZ) f(p17'~'vpn)_)f(qla“'aqn)

for somef € F with arity(f) = nandpy,...,0n,4,q1,---,Gn € Q.

An equational system (ES for sho#l)is a set of equations = ¢, wheres, t are terms
over the signature= with the setV of variables. For two terms, ¢, we writes =¢ ¢
wheneves, t are equivalent modulo the equational systgme. s, t are the elements in
the same equivalence class of the quotient term m®d&l, V) /=¢. Theassociativity
andcommutativity axioms for a binary function symbglin F are the equations

f(f(@,y),2) = f(=z, f(y, 2)) flx,y) = [y, @),

respectively, where:, y, z are variables inV. In the paper, we writery for the set of
binary function symbols with associativity lavesly, and Fxc for the set of binary
symbols equipped withoth associativity and commutativity. The ESconsists of the
associativity axioms for each € F, andAC is the ES consisting of the associativity
and commutativity axioms for eache Fuc.

An equational tree automaton (ETA for short).4/€ is a pair of a TAA and an EE
over the same signatus€. An ETA A4/€ is called

— regular if it has only rules of TYPE 1,

— monotoneif it is allowed to have rules off'yPE 1 and TYPE 2.
We sayA/€ is a AC-TA (A-TA) if £ = AC (resp.£ = A). Besides, in the following
discussion, we suppos® = & when consideringd/AC; likewise, Fyc = @ for A/A.
The readers are recommended to consult [21] for a more detailed presentation.
We write s — 4/¢ t if there exists’,t’ such thats =¢ s', s' = CJl], t =¢ ¢’ and
t'" = CJr] for some transition rulé — r € A and contextC € C(F U Q). This
relation— 4,¢ on7 (F U Q) is called amove relation of A/£. The transitive closure
and reflexive-transitive closure ef 4 /¢ are denoted by»j;t /e and—7 J&n respectively.

For an ETAA/E with £ = @, we simply write— 4, —>jg and—?*, instead.

regular AC-TA monotone A-TA | monotone AC-TA
closure under Yes [4] Yes Yes
union, intersection
closure under Yes [4] Yes)
complement
deudalqlllty of Linear No Yes
emptiness
decidability of NP-complete | PSPACE-complets ?
membership
de_C|dab|_I|ty of Yes No)
inclusion

Fig.1. Some closure properties and decidability results

Atermt is accepted by A /€ if t € T(F) andt —>j‘4/5 g for someg € Qg,. Elements

in the set£(A/&) are ground terms accepted by/E. A tree language L over F is

a subset off (F). A tree languagd. is £-regular (£-monotone) if there exists some
regular (resp. monotond}-tree automatond/€ such thatl = L(A/E). If Lis &-
regular with€ = @, we sayL is regular. Likewise, we say. is monotone ifL is
@-monotone.

Let op be ann-ary mapping fromp(7 (F))" — (7 (F)). The family of E-regular
(resp.£-monotone) languages é¢osed under op if wheneverL, ..., L, areE-regular
(resp.£-monotone) languages then s®ig L1, . .., L,,). We say that the family of -
regular (resp€-monotone) languages @fectively closed under op if there exists an
algorithm which, given regular (resp. monotone) EPA/E, ..., A, /E, computes a
regular (resp. monotone) ETA/E suchthatl (A/€) = op(L(A1/E), ..., L(AL/E)).

One should note that non-regular and equational tree automata defined in [21] are in
the above monotone case. It is folklore that whenéer @ then o-regular andz-
monotone languages coincide. Things are different when some equational theory is
taken into account. For instance, it has been shown in [22] that monotone A-TA are
strictly more expressive than regular A-TA. But the question remained open in the case
of AC.

We sum up in the table of Fig. 1 some known results concerning respectively regular
AC-TA, monotone A-TA and monotone AC-TA. The positive results are marked with
“Yes”, and the negative cases are marked with “No”. In case the results are proved in our
previous work, the references are omitted. The complexity of the emptiness for regular
AC-TA is a direct consequence of Lemma 2 in [21] and the result of regular TA [5].
Question marks “?” in the three columns denote open problems registered in [6].

For most of the results described in the present paper, we will consider a rather simple
signature consisting in a finite number of constant symbols and a single AC s§mbol

In this case, theegular transition rulesf(p;,p2) — ¢ anda — ¢ correspond to the
production rules; — p;p2 andg — a of context-free grammars in Chomsky nor-
mal form. In case of monotone TA, the additional foffp;, p2) — f(q1, ¢2) together

with the previous two forms corresponds to context-sensitive grammar in Kuroda nor-
mal form [19]. Following the same approach for monotone AC-TA, the transition rules

correspond to the production rules of some commutative context-sensitive grammar.
The commutative context-sensitive grammars are known to be close to Petri nets [10].
Therefore, most of our developments are related to Petri nets. For this reason, on the
other hand, the complexity of the emptiness problem for monotone AC-TA is unclear,
that may correspond to the reachability problem for Petri nets [9].

3 TheComplexity of the M ember ship Problem

In this section, we investigate the complexity of the membership problem for mono-
tone AC-tree automata. To show in particular the PSPACE-hardness, we use a proof
technique proposed by Esparza [8] where he shows that the reachability problem for
one-safe Petri nets is PSPACE-hard.

Theorem 1. Given a monotone AC-tree automaton .A/AC and a term ¢, the problem
whether ¢ € £(A/AC) is PSPACE-complete. O

To show that the membership problem for monotone AC-TA is in PSPACE, it suffices
to prove that the size of any ground tetmeachable from an initial terry by the move
relation of 4/AC is polynomial relative to the size @f and.4/AC. This allows us to
prove that the existence of a successful runtfoimplies that there exists a “short”
successful run at most exponential with respect to the sizg ahd.4/AC. We use

this property to devise a non-deterministic polynomial space algorithm for the member-
ship problem using that the execution of the move relation can be done in polynomial
time. Then we appeal to Savitch’s theorem [26] stating that NPSPACE = PSPACE to
conclude.

Let us define the special notation of terms. We assume that asterithis section is
represented by the following grammar:

t o= f(t1,...,tn) | a

where f is a function symbol inF with arity(f) > 0, anda is a constant. Moreover,
(t1,...,t,) is @ non-empty sequence of terms. . ., t,, such that:

1. if fis a non-AC symbol, then is the arity off,
2. if fisan AC symbol, them > 2 and the root symbol of; is not f.

Given a subterm position and a rule to be applied at the subterm position, the corre-
sponding transition step byl/AC can be performed on the above term representation
in linear time with respect to the size of a term. In the transition steps, there are two
non-standard cases, that are done by the transitions rules of th¢ fprow.) — ¢ and
f(p1,p2) — f(q1,q2) with f an AC symbol. In both of the two cases, instead of the
standard pattern matching, we fipd p» among subterms, ..., ¢, of f(t1,...).

By definition of monotone AC-TA, if a term is reachable from by — 4 /ac, the size

|s| is less than or equal to|+ |.A4/AC|, where|.4/AC| is the number of state symbols of
A/AC. Then we can show that for any treadmitting a successful run ¢ —7/ac 4

with ¢ a final state ofA/AC, there exists a successful ruh ¢ _’Z/Ac q reaching the

same state of the length at mos2/tI+14/ACl |n fact, we suppose to the contradiction
that ¢ —>j‘/AC q is the shortest successful run whose length is strictly greater than

5

281+ 4/ACl Then terms reachable fromby — 4/ac can be described using a space
relative to the size at most| + |.A/AC|. This implies that the previous shortest run
t—"/ac 4 can be represented 8S—~7y /ac U —>;/AC u =% ac 4- BY ghrinking this
run by chopping off the loop of, one can obtain a successful run strictly shorter than
the original, leading to the contradiction to the minimality assumption.
Based on the above observation, let us define (non-deterministic) algorithm to solve
the question it € £(A/AC). We write in the algorithmapply(u, v/, r) for denoting
to “apply the transition rule- at the position of a subterm’ of u.” This algorithm
needs for the computation a polynomially bounded space with respect to th¢ size
|A/AC|: Let t be a term over the signatute and.A/AC a monotone AC-TA with
A= (F,Q, Qfin, AQ).
membership(t, A/AC) {
c:=1; u:=t;
while (¢ < 2tFIA/AC) ¢
if (u€ Qpn) then {
return true }
else {
guess r: transition rule in4d, «': subterm ofu to whichr is applied at the roat
nu: = apply(u, v, r) ;
w:=nu }
c.=c+1
}

return false }

Let us estimate the space complexity of this algorithm. One can seegigtruns in
polynomial time, and thus, in polynomial space. F@mbership we observe that this
procedure requires the space for the countand the terms:, v’ andnu. Obviously

this space can be bounded linearlyin+ |.A/AC|. So,membership can be executed by

a non-deterministic machine using polynomial space.

Next, to show that the membership problem is PSPACE-hard, we consider the validity
problem for closedjuantified Boolean formulas (QBF). This problem is known to be
PSPACE-complete. Every formulacan be represented by the following grammar:

pu=a | o | oeAp | Tx.p (z: a proposition variable)

This assumption is justified by the fact that any quantified Boolean formula can be
translated into a formula of the above form in linear time. We assume also that each
variablez in the formula occurs in the scope of some quantiieior vz and that each
variable is bounded exactly once in the formula.

We suppose thaty, ...,z are variables bounded in. We show in the following that

we can build from a closed formula a monotone AC-tree automatof, /AC and a
termt,, in polynomial time relative to the size ¢f such that,, is accepted by, /AC

if and only if ¢ is valid. For this construction, we take the signat{ie i,v, e}, where

@® is an AC symbol and,v,e are constants. We denote by a term consisting of
exactlyk constants of, a constant of, and a constant af. For each subformula of

¢, we define the state symbajs »), q(y,7), andqy, r). In case ofy = Jr.z Az,

the two subformulag’s are distinguished in this construction. For each variahle

(1 < i < k), we take the two stat@gue/,, and gaise/r,- The stateyg,, is the final

state. Let us describe the intended meaning of each state symbol. The truth value of
the formulay is computed recursively in our encoding. Along this idea, the gtate,

means that the subformujacan be taken into consideration. When the computation for

v is performed, the statg ., - is "transformed” to either,, 1y or q(y, r), depending

on the truth value ofy. The statey,, 1y means that is true, andq,,) means thaty

is false. The two stateg e/, anNdgr.ise/.., are the environment to store the information

for the valuation ta;.

Using the above state symbols, next we define the transition rules. For the constants
i,v, e, we take the following transition rules:

= (o, vV — gy € — e

The first rule is used to initiate the computation. We define the transition rules for in-
stantiating a variable; (1 < < k) to true or false:

A(z:,7) D Gtruefz; = (z:,T) D Qtrue/a; A(z:,7) D ralsefx; = Q(zi,F) D Gfalse/x;
The rules for negation are defined as follows: for a subformulaf the formulap,
qd(-p,7) D e = qyp,7) D ge
and
4y, 1) D e = q(—y,F) D ¢e 4y, F) D ge = G-y, 1) D Ce-

The first rule decomposes and the last two rules re-construst) with the truth
value by usingy with the truth value. Similarly, the rules for the conjunction can be
defined. For any subformuta A ¢’ of the formulap,

a7y D e = qyp,7) D e

Ay, F) B e = dyry' . F) Dde Au,1) Dle = dy',7) D e

Uy, F) Dle = dpnry . F) Dde Ay, 1) D de = dypay,T) D G-
In the above definitiom) A ¢’ is evaluated in a sequential manner: first we consider
the subformulay and evaluate it, and then we take the remaining subformul&or
the existential quantificatiofiz;.1), we need to consider both valuations for the bound
variablex,; and the computation fap:

q(3z;.4p,7) S — Qtrue /z; S q(«,?)

Qtrue/z; D A, 1) = 4@z, T) D Qrruefz; Qtruefo; P A, F) — alse/z; D A7)

Qfalse/x; D A, 1) = 4(3x;.4,T) S3) Qfalse/z; Gfalse/x; D A, F) = 4(3z;.9,F) D Qfalse/x;

In the above definition, we start with the valuation associating the Boolean wakie
with z;. If v turns out to berue under this valuatiordz.«) is alsotrue; otherwise, the
valuation associating the Boolean valiagse with z; is tried. The following rules are
used to finalize the computation:

@(Q(Lp,T)aqe) — Qfin 3] (qtrue/acmqf) — Qfin @ (qfalse/mq,v(Jf) — dfin

We can show that the previous encoding is correct, by using the induction over the
structure of the formula. The remainder of the proof is obtained from the following
observation: Let,, ») be a term that contains exactlyg, -, age, andn,, occurrences

of ¢, (¢, being either the constamor the statey,, andn,, being the number of variables
that do not freely occur in)) and for each free variable;, , ..., z;,, eitherqt,ue/xij

OF Gfalse/a; Suppose) is the Boolean valuation defined fex,, ..., z;, such that
associates withx;; the valuetrue if gy /a:; @ppears int(, 7, andfalse otherwise.
Then we have:

— t(yp,?) _’fél/w/AC t,r) if and only if ¢/ is valid unders, wheret,, 1) is the same
ast(y,7) except
1. quy,7) Int(y 2 is replaced by, 1),
2. ifx; ...,z arebound variables in, thenm occurrences of andgy in
t(y,7) arereplaced bngl/mHl soe oy Qo iy, with by, ..., b, € {true, false}.

— t(p,7) =/p/ac tw,r) if and only if ¢ is not valid unders, wheret,, r) is the
same agy, ») except
1. qup,7) Int(y 2y is replaced by, r),
2. ifw; ...,z arebound variables in, thenm occurrences of andgy in
t(y,7) are replaced bgbl/,“Hl seo ey Qo iy, with by, ..., b, € {true, false}.

4 Expressiveness: Regular vs. Monotone AC-Tree Automata

Obviously, by definition, monotone AC-tree automata are at least as expressive as reg-
ular AC-tree automata. We show in this section that monotone AC-tree automata are
strictly more expressive than the regular AC-tree automata. In other words, we are go-
ing to present a monotone AC-tree automaton whose accepted language can not be
defined by any regular AC-tree automaton.

To construct such a tree language, we consider in particular the sigif@afure{ ¢ } U

Fo consisting of a single AC symbab and constant symbols, ..., a, (n > 1). We

then define the Parikh mapping[25]) associated with the signatufe, as follows. For
atermtin 7 (Fg), m(t) is a vectow in N such that theé-th component(4) is the num-

ber of occurrences af; in ¢. For instancer(®(a1, $(as,a1))) = (2,0,1,0,...,0).

The Parikh mapping is homomorphically extended to tree languages: for a tree lan-
guageL overFg, w(L) is the set of vectors iN"™ defined asr(L) = {«(t) |t € L }.

Proposition 1 ([4]). Givenan AC-regular treelanguage L over Fg, theset (L) isa
semi-linear set over N™. O

The reverse of the above property also holds; for a semi-linea,dbere effectively
exists an AC-regular tree languadewith 7(L) = S. We recall that a subsét of N*
is called alinear set if S = Lin(b,p1,...,pr), Whereb is a vector, calledbase, in N
andpy,...,p are afinite numbek of vectors, callegberiods, such that

k
Lin(b, p1, .- pk) = {b+ > (\i xpi) | A1, A €NJL
i=1

A finite union of such linear sets is calledemi-linear set.

Lemmal. Suppose Fg is defined with 5 constants. There exists a monotone AC-tree
automaton A /AC over Fg defining a tree language L such that

W(Lg) =S {(kl,k27k3,1,2) | k3 < k1><k2 for kl,kg,kg € N}

Proof. We takea, b, c, #, s for the constants af. The corresponding Parikh images
are the numbers of these constants in the above order. We define the tree automaton
A¢ = (Fg, Q, Qfin, Ag) OverFg, where

Q: Da Db Pc P# DPs Pfin Ga G ds T

Qfin: Dfin

A<5a—>pa b — pp ¢ — pc #—>p# S — ¢ qsPgqgs — Ds
P4 D Pa — P# Py DPa — q# D qa
q# Dpc — Py P#Opp — Ty

T4 Dqa — T4 DPa Ty D ps — Py D Ps P# B Ds — DPfin

We denote byt|, the number of occurrences of a constante 7, U Q) in a term¢

over Fg U Q. We observe that for any tertrover g such thatt|, = 1 and|t|s = 2
and|t|c < [tla x [t|p, there exists a derivation—7 _ ¢ psin from¢ to pg,. In order

to prove this observation, let us define the assertions and the algorithm in Fig. 2. The
functionapply in the algorithm corresponds to a single application of its argument to a
term in consideration. The derivation bfs the sequence of terms obtained during the
computation. Proofs of correctness and termination easily follow from the annotations.
Conversely, for any terrty over Fg, andt over Fg U Q, if £ —>:"4< /ac b it holds that:

[tols = ([tls + [tlps) + 2 % ([l + [E]ps) (INv 1)
ol = [t + [Elpst [tlay [ty [l (INv 2)
ltola = [tla + [tlpa + [la (INv 3)

Moreover, iftg =4 /ac Pfins then by (Nv 1), |to]s = 2 and by (Nv 2), |to]4 = 1.
Now we supposé|x = 1. Due to (Nv 3), we have

ltole = (Itle + [tlpe) < [tola < ([olo = ([tb + [tlpy)) + [tlga X (1= [¢lry) = [Elgy,-

Accordingly, if ¢y _’,*4</Ac Drin, thenltolc < |tola X |to|p- Thereforety, € L¢ if and
onIy if 7T<t0) = (k/’l,kg,k,‘g,l,?) with k3 < k1 X ko. O

Theorem 2. Thefamily of AC-regular tree languagesis properly included in the family
of AC-monotone tree languages.

Proof. Straightforward from Proposition 1 and Lemma 1, because the Parikh image of
L¢ is not semi-linear. O

5 Complementation of AC-Monotone Tree Languages

As explained in the introductionmonotone rules in tree case correspond to context-
sensitive grammars in word case. In fact, based on this observation, we proved in a

previous paper [22] that A-monotone tree languages are closed under Boolean opera-
tions by the reduction from the fact that context-sensitive languages are closed under
complementation. In this section, however, we show that AC-monotone tree languages
arenot closed under complementation.

Theorem 3. There exists an AC-monotone tree language whose complement is not an
AC-monotone tree language.

In the remaining part of this section, we devote to show the proof of Theorem 3. Our
proof proceeds in the way of proof by contradiction.

Lemma 2. Suppose Fg, is defined with 5 constants. There exists an AC-tree automaton
A~ /AC over F, defining a tree language L . such that

Lo ={(k1, ko, ks,1,2) | ks < kyxky for ky ko, ks € N}.

Proof. We define the automatod. /AC exactly as is the monotone AC-tree automaton
A¢ /AC in Lemma lexcept where the rules © gs — ps replaced by the rules ® ¢s —
ps @ pe. One can show as we have done fbr /AC, that for any term, in 7 (Fg),
to _>j4</AC Dfin if and only ifﬂ'(to) = (]{31, ko, ks, 1, 2) with k3 < k1 X ka. O

Let us consider the tree languadge defined below over the above signatufg =

{@otu{ab,c,#,s}
Ly = { (k1,k2,k3,1,2) | kg > k1 xko for ky, ko, ks € N},

and we take the hypothesis
H: Ly is an AC-monotone tree language.
We then state the following property associate@{to

Lemma 3. If H holds, there exists a monotone AC-tree automaton that accepts L_
over f@ such that W(L:) = {(kl, k2, k37 1, 2) | ks = k1 X ko for kl, ko, ks € N}

Proof. Due to?, there exists a monotone AC-tree automatgry AC with £(A> /AC) =

L. Itis known that the class of monotone AC-tree automata is effectively closed under
intersection (Theorem 3, [21]). Then we IB{AC be the intersection afl /AC in the
previous section and. /AC. According to the trivial fact thatn; > n2) A (n1 < n2)

if and only if n; = no, B/AC acceptsls N L¢, and thereforel3/AC acceptsL—. O

Lemma4. If H holds, there exists an algorithm that takes as an input D a diophantine
equation and returnsasan output “ yes’ if D admits a non-negative solution; otherwise,
“no’ .

Proof. Let us assume a finite set of variables. . ., z,, ranging over the natural num-
bersN. We consider aystem of numerical equationsS = {Eqy, ..., Eq,, }, where each
Eq, (1 < £ < m)in Sisin one of the following forms:

xz; =c (c: afixed natural number) z; =x; + 2 T =xj X Ty

10

Herei must be different fronj andk, i.e.x; does not occur in the right-hand side of the
same equation. But a variahte may occur in the left hand-sides of different equations.
A solution o for an equatiorkq, is a mapping from{ x4, ..., z, } to N, such that the
structure(N, +, x, =) is a model ofEq, under the valuation. A solutiono for a system
S is a solution for every equation .
It is well-known that from any diophantine equati®h one can compute a system of
numerical equation$§ such thatD admits a solution if and only i admits a solution.
Now, for each equatiofiq, in S, we define a monotone AC-TAlg,, /ac over the sig-
natureFg = {®} U {ai,...,a,, #,S}, such that for any term in 7(Fg), t €
L(Agq,/AC) if and only if [t|, = 1, |t|; = 2 and the valuatiow defined asr(z;) =
[t]a, (for 1 < i < n) is a solution forEq,. For each kind of numerical equations, we
define the transition rules of the automaton assumingpifiats the unique final state:

— For the constraint equatiary = 0 we define the tree automatoh,,—, equipped

with the transition rules

{ps ®ps — gs, gs D Py — Pfin } U

{Pa; ®pfin — pin | j #iandl <j <n}
with the rules for constantsa; — pa, | 1 <j <n}U{# — pg, s — ps}. For
x; = ¢ (¢ > 0) we additionally take the transition rules

{Pa, ©Pfin = P1}U{Pa, ®pj = Pj11 |1 <j<c—2}U
{pai @pc—l — Pfin }

— For the linear equation; + =; = x; we define the tree automatod,, ,,—,
equipped with the transition rules

{ps@Ps — (s, s D px _’pﬁn} U {Pai @ Da, — P, Pa; D Da, —>p} U
{pa, ® pfin — Pin | ¢ #iandl # jandl # k } U
{p®&p—p, PO PAin — Pfin }
with the rules for constantsa; — pa, | 1 << n}U{# — pg, s — ps }.
— Finally, for a numerical equatian; = z; x x;, we build the automatod;, - ; xz,,;
let B/AC the automaton defined in the proof of Lemma 3. We assume without loss

of generality thapg;, is the unique final state & /AC. We then defined,, —., x,
by relabelinge by a;, a by a; andb by a,, and by adding the transition rules

{pa, ® Pfin — ppin | L #iandl # jandl # k } U

{ac—pa, 1< <0}
One should note that for the first two cases, transition ruleg-fands are not essential,
but they must be included under our construction if a sysferontains an equatidiy,,
of the multiplicationz; = x; x x.
Accordingly, for the systen6 = {Eq,...,Eq,, } of numerical equations, we can
construct a monotone AC-TAls/AC such that

L(As/AC) = [L(Ag,/AC)
1<e<m
whose accepted language is non-empty if and only #dmits a solution. Since the
emptiness problem for monotone AC-TA is decidable, there exists an algorithm under
the hypothesig{ that takes as an input a diophantine equafiband returns “yes” if
there is a non-negative solution; otherwise, “no”. a

11

It is well-known that Hilbert’s 10th problem [16] is undecidable, even only in the case
of non-negative solutions to be considered. Thus we obtain the following property.

Theorem 4. There is no monotone AC-tree automaton that accepts L over the signa-
ture Fg.

Corollary 1. The class of AC-monotone tree languages is not closed under comple-
mentation.

Proof. Straightforward from Theorem 4, as AC-monotone tree languages are closed
under intersection anfly = (L.)*N{t € T(Fg) | |t|]x =1 & |t|s =2}, whereL.
and{t € T(Fg) | |t|]x =1 & |t|s = 2 } are AC-monotone tree languages. O

6 Thelnclusion Problem for Monotone AC-Tree Automata

Using the previous tree automata construction, we show in this section that the inclusion
problem for AC-monotone tree languages is undecidable. The remainder of this section
is devoted to the proof of the following undecidability result.

Theorem 5. Given two monotone AC-tree automata .4, /AC and A, /AC over the same
signature, the problem whether £(.A4;/AC) C £(Az/AC) isnot decidable.

As we did in the previous section, we consider a systers= {Eq,...,Eq,, } of
numerical equations defined over a finite set of variafles, ..., z, }. One should
note that according to the syntekg; is an equation in the form af; = e, wheree is
either a fixed natural numbeythe additionzy, + x,, or the multiplicationz;, x z,, such
thatz; # x, andz; # x.

We then define the systefix of inequations obtained by replacing each equation=

e by the inequationr; < e. Namely,S¢ ={z; <e| z;,=¢ €S }.

Finally we define, for eack with 1 < & < m, Sk a system of inequations obtained
from S¢ by replacing only thé-th inequationz; < e, by the strictinequation; < ey.
From previous sections, we know that one can effectively associate with each inequation
Ineq,, (being eitherr; < e; or z; < e;) a monotone AC-tree automatod),q, such
that a termt from 7 (F,) is accepted by an automatgty,.q, /AC if and only if |¢|» =

1, |t|s = 2 and eithelneq,, is of the form

— z; < cand|tla, < ¢ (resp.z; < cand|t|a, < ¢),
— 2 < Ty + Ty and|t|a, < |ta, + |tla, (resp.z; < x, + xy and|tla, < [t

ltla,). or
— X < Ty * Xy, @nd|t

a, t

a, < |tla, *[t|a,,)

a, <[t

a, *|tla, (resp.x; < x,*x,, and|t
Moreover, we let
ASg /AC = ﬂ Alneq/AC7

IneqeS¢

As,/AC= [Ame/AC

IneqeSy,

forall 1 < k < m. In the above definition),.,cs_ “Aineq/AC represents an AC-TA
that accepts the tree language acceptedify, /AC for all Ineq € S.

12

Lemmab. L(As_/AC) € L(U,¢icm As:/AC) ifand onlyif S admitsasolution. O

Theorem 5 follows easily from Lemma 5 and the effective closedness under union and
intersection of monotone AC-tree automata.

7 Concluding Remarks

In this paper, we have shown the 4 new results (Theorems 1, 2, 5 and Corollary 1) for the
class of monotone AC-tree automata. Our proof technique used for showing the expres-
siveness of AC-monotone tree languages explains also a new idea of how to interpret by
AC-tree automata tharithmetic constraints over the natural numbers, while an obser-
vation obtained from this tree automata construction gives rise to the negative closure
property of the complementation and the undecidability of the inclusion problem.

For further research along monotone AC-tree automata, it might be interesting to con-
sider the question about decision problems concerning regularity, callaggier-

ity problem; it is not clear how to determine, given a monotone AC-tree automaton,
whether the accepted tree language can also be accepted by some regular AC-tree
automaton. Useful ideas to solve this decision problem are found in the study about
Petri nets. In fact, it is known that thsemi-linearity problem for Petri nets is decidable

[15]. The regularity problem for AC-monotone tree languages can be regarded in some
sense as an generalization of the above semi-linearity problem.

Another interesting question about monotone AC-tree automata is the universality prob-
lem [6]; this problem is known to be decidable for regular AC-tree automata and it is
undecidable for monotone A-tree automata.

References

1. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, 8dbtsheim, M. Rusi-
nowitch, M. Turuani, L. Vigan, and L. Vigneron. The AVISS Security Protocol Analysis
Tool. InProc. of 14th CAV, Copenhagen (Denmark), volume 2404 of NCS, pages 349-353.
Springer, 2002.

2. |. Boneva and J.-M. Talbot. Automata and Logics for Unranked and Unordered Trees. In
Proc. of 16th RTA, Nara (Japan), volume 3467 oL NCS, pages 500-515. Springer, 2005.

3. A.Bouhoula, J.P. Jouannaud, and J. Meseguer. Specification and Proof in Membership Equa-
tional Logic. Theoretical Computer Science, 236:35-132, 2000.

4. T. Colcombet. Rewriting in the Partial Algebra of Typed Terms Modulo ACPrire. of 4th
INFINITY, Brno (Czech Republic), volume 68(6) oENTCS Elsevier, 2002.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications, 2002. (http://www.grappa.univ-lille3.fr/tata).

6. N. Dershowitz and R. TreinerProblem #101. The RTA List of Open Problems. Available
at http://www.lsv.ens-cachan.fr/rtaloop/.

7. P. Devienne, J.-M. Talbot, and S. Tison. Set-Based Analysis for Logic Programming and
Tree Automata. IfProc. of 4th SAS, Paris (France), volume 1302 oL.NCS, pages 127-140.
Springer, 1997.

8. J. Esparza. Decidability of Model-Checking for Infinite-State Concurrent Systéts.
Informatica, 34:85-107, 1997.

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. J. Esparza. Decidability and Complexity of Petri Net Problems — An IntroductioBettn

Nets, volume 1491 oL NCS, pages 374-428. Springer, 1998.

J. Esparza. Grammars as ProcesseBorimal and Natural Computing — Essays Dedicated

to Grzegorz Rozenberg, volume 2300 oL.NCS, pages 277-297. Springer, 2002.

J.P. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite Tree
Automata for Set-Based Analysis of Logic ProgramsPitac. of 4th PADL, Portland (USA),
volume 2257 oLNCS, pages 243-261. Springer, 2002.

T. Genet and F. Klay. Rewriting for Cryptographic Protocol VerificationProc. of 17th
CADE, Pittsburgh (USA), volume 1831 ot NCS, pages 271-290. Springer, 2000.

S. GinsburgThe Mathematical Theory of Context-Free Languages. McGraw-Hill, 1966.

J. Goubault-Larrecq and K.N. Verma. Alternating Two-way AC-Tree Automata. Research
Report LSV-02-11, Laboratoire 8pification et \&rification, November 2002. Draft avail-
able at http://www.lsv.ens-cachan.fr/Publis/.

D. Hauschildt. Semilinearity of the Reachability Set is Decidable for Petri Nets. Technical
Report FBI-HH-B-146/90, Universit Hamburg, 1990.

D. Hilbert. Mathematical Problem. Froc. of the Symposia in Pure Mathematics, Prov-
idence (USA), Matiematical Developments Arising from Hilbert's Problems, volume 28,
pages 1-34. Americal Mathematical Society, 1976.

H. Hosoya, J. Vouillon, and B.C. Pierce. Regular Expression Types for XMRrda of 5th

ICFP, Montreal (Canada), volume 35(9) ofSIGPLAN Notices, pages 11-22. ACM, 2000.

M. Kudlek and V. Mitrana. Normal Forms of Grammars, Finite Automata, Abstract Families,
and Closure Properties of Multiset Languages. Multiset Processing, volume 2235 of
LNCS, pages 135-146. Springer, 2001.

S.Y. Kuroda. Classes of Languages and Linear Bounded Automiatianation and Control,
7(2):207-223, 1964.

D. Lugiez. Counting and Equality Corstraints for Multitree AutomatePrit. of 6th FOS

SACS, Warsaw (Poland), volume 2620 of-NCS, pages 328-342. Springer, 2003.

H. Ohsaki. Beyond Regularity: Equational Tree Automata for Associative and Commutative
Theories. InProc. of 15th CSL, Paris (France), volume 2142 ofLNCS pages 539-553.
Springer, 2001.

H. Ohsaki, H. Seki, and T. Takai. Recognizing Boolean Closed A-Tree Languages with
Membership Conditional Rewriting Mechanism. Mnoc. of 14th RTA, Valencia (Spain),
volume 2706 oLNCS, pages 483-498. Springer, 2003.

H. Ohsaki and T. Takai. Decidability and Closure Properties of Equational Tree Languages.
In Proc. of 13th RTA, Copenhagen (Denmark), volume 2378 ofLNCS, pages 114-128.
Springer, 2002.

H. Ohsaki and T. Takai. ACTAS: A System Design for Associative and Commutative Tree
Automata Theory. IrProc. of 5th RULE, Aachen (Germany), volume 124(1) ofENTCS
pages 97-111. Elsevier, 2005.

R.J. Parikh. On Context-Free Languagksirnal of the ACM, 13(4):570-581, 1966.

W. Savitch. Relationships between Nondeterministic and Deterministic Tape Complexities.
Journal of Computer and Systems Sciences, 4(2):177-192, 1970.

H. Seidl, T. Schwentick, and A. Muscholl. Numerical Document Querie®rda. of 22nd
PODS, San Diego (USA), pages 155-166. ACM, 2003.

K.N. Verma. On Closure under Complementation of Equational Tree Automata for Theories
Extending AC. InProc. of 10th LPAR, Almaty (Kazakhstan), volume 2850 oLNCS pages
183-197. Springer, 2003.

K.N. Verma. Two-Way Equational Tree Automata for AC-like Theories: Decidability and
Closure Properties. IRroc. of 14th RTA, Valencia (Spain), volume 2706 ofLNCS, pages
180-197. Springer, 2003.

14

/* INVARIANT :
[tlpe + [tlaa + ([tlpa X [tlry) < ([Elpat [tlga) X ([tlpy + [tlry) + [tlay

(ot [Hlagt [ty = [tlos = 1
[tla + [t +1[tle = 0 */

/* Given t in 7(Fg) suchthat|t|» =1 and |t|s =2 and [t|c < [t|la X [t]p */
while ([tla + [t|b + [t]c + [t]x + [t]s > 0) {
apply a — pa, b —pp, € — pe, # — pg, S— s

}
apply ¢s ® gs — ps; /* INVARIANT & [t]p, =1 & [t|g, =0 */
while ([t]p, >0){ /*INVARIANT & [t|p, =1 & |t|g, =0 */
while ([t|ps >0 & |t|pe >0){
apply px ©pa— g# D ga ; apply g# ®pc — px
}
[* INVARIANT & [t[p, =1 */
apply py ©pp — ra
/* INVARIANT & \t|T# =1*
while ([t]q, >0){
apply 74 @ ga — 74 © pa
}
I* INVARIANT & [t|;, = 1& [t|g, = 0%
apply 74 @ ps — pg © ps
¥ INVARIANT & [t|p, = 1& |t|g, =0%
}
I Mp# =1& ‘t|qa = Mpb = |t|pc =0
while ([t|p, > 0){
apply pyx © pa — px
}
t=py ®ps ¥
apply px @© ps — pfin
[Ft= Dfin */

Fig. 2. Reduction strategy and the assertions

15

