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1 Introduction

Games with strategic substitutes (GSS) and games with strategic complements (GSC)

formalize two basic economic interactions and have widespread applications. In GSC,

best-response of each player is weakly increasing in actions of the other players. GSS

have the characteristic that the best-response of each player is weakly decreasing in

the action of each of the other players.

There is a long literature developing the theory of GSC. Some of this work can

be seen in Topkis (1978), Topkis (1979), Bulow, Geanakoplos, and Klemperer (1985),

Lippman, Mamer, and McCardle (1987), Sobel (1988), Milgrom and Roberts (1990),

Vives (1990), Milgrom and Shannon (1994), Milgrom and Roberts (1994), Zhou

(1994), Shannon (1995), Villas-Boas (1997), Edlin and Shannon (1998), Echenique

(2002), Echenique (2004), Quah (2007), and Quah and Strulovici (2009), among oth-

ers. Extensive bibliographies are available in Topkis (1998), in Vives (1999), and in

Vives (2005).

There is a growing literature on GSS: confer Amir (1996), Villas-Boas (1997),

Amir and Lambson (2000), Schipper (2003), Zimper (2007), Roy and Sabarwal (2008),

Acemoglu and Jensen (2009), Amir, Garcia, and Knauff (2010), Acemoglu and Jensen

(2010), Roy and Sabarwal (2010), Jensen (2010), and Roy and Sabarwal (2012) among

others.

This paper focuses on games with both strategic substitutes and strategic com-

plements. Relatively little is known about such games even though several economic

interactions exhibit these properties. For example, a classic application in Singh

and Vives (1984) considers a duopoly in which one firm behaves as a Cournot-firm

(exhibiting strategic substitutes) and the other as a Bertrand-firm (with strategic

complements). Another example is that of a Becker (1968) type game of crime and

1



punishment with a criminal and police: the criminal exhibits strategic substitutes

(the greater is law enforcement, the lower is crime) and the police exhibit strategic

complements (the greater is crime, the greater is law enforcement). Such games also

arise in studies of pre-committment in industries with learning effects, see Tombak

(2006), who terms these as games with strategic asymmetry. Moreover, Fudenberg

and Tirole (1984) and Dixit (1987) also present examples of pre-committment where

the strategic property of one player’s action is opposite to that of the other player.

Games with both strategic substitutes and complements may behave differently

from either GSC or GSS.

In a related paper, Monaco and Sabarwal (2011), we show that the nice order and

structure properties of GSC do not survive a minimal introduction of strategic sub-

stitutes, in the following sense. Consider a game in which all-but-one players exhibit

strategic complements (with one player exhibiting strict strategic complements), and

the remaining player exhibits strict strategic substitutes. In this case, no two equi-

libria in the game are comparable (in the product order). Those results are stronger,

and show that in any lattice game, if there is reason to believe that either (1) just one

player has strict strategic complements and another player has strict strategic substi-

tutes, or (2) just one player has strict strategic substitutes and has singleton-valued

best-responses, then without any restrictions on the strategic interaction among the

other players, no two equilibria are comparable.

In particular, our earlier result implies that in such cases, with multiple equilibria,

there is no largest or smallest equilibrium, and therefore, the standard technique (in

GSC) of using extremal equilibria to show monotone comparative statics in parame-

terized GSC is invalid.

In this paper, we first show that in parameterized games with both strategic substi-
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tutes and complements, equilibria do not decrease as the parameter increases. More-

over, using newer techniques, we provide conditions that guarantee that an increase

in the parameter leads to an increase in the equilibrium; in other words, conditions

under which monotone comparative statics is guaranteed.

For two-player games in which one player exhibits strategic substitutes, the other

player exhibits strategic complements, and each player has a linearly ordered strategy

space, we characterize monotone comparative statics via a condition on the best

response of only the player with strategic substitutes. (No additional condition is

imposed on the player with strategic complements.) The condition is intuitive and

is based on a trade-off between the direct parameter effect and the indirect strategic

substitute effect.

This characterization does not hold more generally: either for two-player games

with more general strategy spaces, or for games with more players, as shown in several

examples. In this regard, games with both strategic substitutes and complements

behave differently from GSS.

For more general cases, we present sufficient conditions that guarantee monotone

comparative statics. As in the two-player case, these conditions are needed only for

players with strategic substitutes. The conditions are stronger than in the two-player

case, but still involve a trade-off between the direct parameter effect and the indirect

strategic substitute effect.

The paper is organized as follows. The next section gives several basic examples

of games with strategic asymmetry. Section 3 presents the formal definition of such

games. Section 4 shows that in such games there are no decreasing equilibria. Section

5 anaylzes two-player games and section 6 presents the results for multi-player games.

Section 7 concludes.
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2 Motivating Examples

Example 1 (Differentiated Duopoly). Consider the differentiated duopoly in

Singh and Vives (1984), where firm 1 chooses price as a strategic variable, and firm 2

chooses quantity. Inverse market demand for each firm is given by p1 = a1−b1q1−cq2

and p2 = a2− cq1− b2q2.
1 Re-writing firm 1’s demand yields q1(p1, q2) =

1
b1
(a1− cq2−

p1), and assuming zero cost, firm 1’s profit is π1(p1, q2) = p1q1(p1, q2). Similarly, using

firm 1’s demand, and assuming zero cost, we may write firm 2’s profit as π2(p1, q2) =
(

a2 −
c
b1
(a1 − cq2 − p1)− b2q2

)

q2. It is easy to check that ∂2π1

∂q2∂p1
= − c

b1
< 0 and

∂2π2

∂q2∂p1
= c

b1
> 0. In other words, firm 1’s best response is decreasing in firm 2’s

quantity choice, and firm 2’s best response is increasing in firm 1’s price choice.

Indeed, (the linear) best responses are given as follows: for firm 1, p1 = a1−cq2
2

, and

for firm 2, q2 =
a2b1−a1c+cp1
2(b1b2−c2)

.

Example 2 (Crime and Punishment). Consider a simplified version of Becker

(1968): there is a criminal (player 1) and a police force (player 2). When police

enforce law with intensity x ≥ 0, the benefit a criminal derives from commiting

a crime of intensity y ≥ 0 is uC(x, y) =
√
y

2+xy
. The benefit the police derive is

uP (x, y) = −xc4 − y2

x
, where xc4 reflects cost of law enforcement and y2

x
refers to

damage due to criminal activity. The damage is increasing in criminal activity and

decreasing in law enforcement. It is easy to check that for the police, ∂2uP

∂x∂y
= 2y

x2 > 0.

The best response function for the police is given by x = y

c2
, and it is increasing in

y. For the criminal, ∂2uC

∂x∂y
=

√
y

2(2+xy)3
(xy − 6), and therefore, ∂2uC

∂x∂y
< 0, if, and only if,

xy < 6. Moreover, it is easy to compute that the criminal’s payoff is concave in y,

if, and only if, xy < 2 +
√

16/3 ≈ 4.31. With these constraints, the criminal’s best

response function is given by y = 2
x
and it is decreasing in x. (For reference, it is easy

1As usual, we assume that a1, a2, b1, b2, c > 0, and b1b2 − c2 > 0.
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to show that in Nash equilibrium, xy = 2.)

Example 3 (Cournot Duopoly with Spillovers). Consider two firms, an in-

cumbent (firm 1) and an entrant (firm 2) competing as Cournot duopolists, pro-

ducing quantities x1 and x2, respectively. Inverse market demand is given by p =

a − b(x1 + x2). Firm 1’s costs are linear, given by a constant marginal cost c1 > 0.

Thus, the incumbent’s profit is given by π1(x1, x2) = (a − b(x1 + x2))x1 − cx1. As

∂2π1

∂x2∂x1

= −b < 0, firm 1’s best response is decreasing in x2. Indeed, firm 1’s best re-

sponse is given by x1 =
a−c1−bx2

2b
. Suppose there is a one-way spillover from the incum-

bent to the entrant, say, in the form of defection of some employees with technology-

specific skill, and this lowers firm 1’s costs. The spillover may depend on firm 1’s out-

put, and is denoted s(x1). Suppose firm 2’s costs are given by c2x2s(x1). Its profits are

given by π2(x1, x2) = (a−b(x1+x2))x2−c2x2s(x1). In this case, ∂2π2

∂x2∂x1

= −b−c2s
′(x1),

and therefore, ∂2π2

∂x2∂x1

> 0 exactly when s′(x1) < − b
c2
. (Two spillover functions satis-

fying these conditions are: s(x1) = −2b
c2
x1, and s(x1) = ln

(

1
x1

)

− b
c2
x1.) With this as-

sumption on the spillover function, firm 2’s best response is given by x2 =
a−c2s(x1)−bx1

2b
,

and is increasing in x1.

3 Parameterized Lattice Games

As usual, a lattice is a partially ordered set in which every two elements, x and y,

have a supremum, denoted x∨ y, and an infimum, denoted x∧ y. A complete lattice

is a lattice in which every non-empty subset has a supremum and infimum in the

set.2 A function f : X → R (where X is a lattice) is quasi-supermodular if (1)

f(x) ≥ f(x∧ y) =⇒ f(x∨ y) ≥ f(y), and (2) f(x) > f(x∧ y) =⇒ f(x∨ y) > f(y). A

function f : X×T → R (where X is a lattice and T is a partially ordered set) satisfies

2This paper uses standard lattice terminology. See, for example, Topkis (1998).
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single-crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, (1) f(x′, t′) ≤

f(x′′, t′) =⇒ f(x′, t′′) ≤ f(x′′, t′′), and (2) f(x′, t′) < f(x′′, t′) =⇒ f(x′, t′′) < f(x′′, t′′).

Consider finitely many players, I, and for each player i, a strategy space that

is a partially ordered set, denoted (Xi,�i), a real-valued payoff function, denoted

ui(xi, x−i, t), and a partially ordered set of parameters, T . As usual, the product of

the strategy spaces, denoted (X,�), is endowed with the product order and topology.3

The strategic game Γ =
{

(Xi,�i, ui)
I
i=1, T

}

is a parameterized lattice game if for

every player i,

1. Xi is a non-empty, complete lattice, and

2. For every every player i and every (x−i, t), ui is quasi-supermodular and upper

semi-continuous in xi,
4 and

3. For every player i and every x−i, ui satisfies single-crossing property in (xi; t).

This general definition allows for games with strategic complements, games with

strategic substitutes, and mixtures of the two.

For each t ∈ T , and for each player i, the best response of player i to x−i is

denoted βi
t(x−i), and is given by argmaxxi∈Xi

ui(xi, x−i, t). As the payoff function is

quasi-supermodular and upper semi-continuous, and the strategy space is compact in

the order interval topology, for every i, and for every (x−i, t), β
i
t(x−i) is a non-empty,

complete sub-lattice. When convenient, we use β
i

t(xi
) = sup βi

t(xi
), and βi

t
(x

i
) =

inf βi
t(xi

).

Moreover, single-crossing property in (xi; t) implies that βi
t(x−i) is non-decreasing

in t in the induced set order. (The standard induced set order is defined as follows:

3For notational convenience, we typically drop the index i from the notation for the partial order.
4In the standard order interval topology.
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for non-empty subsets A,B of a lattice X , A ⊑in B in the induced set order, if for

every a ∈ A, and for every b ∈ B, a ∧ b ∈ A, and a ∨ b ∈ B.) Thus, every player i’s

best response satisfies: for every t � t̂ and for every x−i, β
i
t(x−i) ⊑in βi

t̂
(x−i). Notice

that when best response is singleton-valued, this is equivalent to the statement that

the best response is a weakly increasing function in t: for every t � t̂ and for every

x−i, β
i
t(x−i) � βi

t̂
(x−i).

For each t ∈ T , let βt : X ։ X given by βt(x) = (βi
t(x−i))i∈I denote the joint

best-response correspondence. From properties of player best responses, it follows

that for every t � t̂ and for every x, βt(x) ⊑in βt̂(x). In other words, the joint best

response is non-decreasing in t in the induced set order. As earlier, if each player’s

best response is singleton-valued, then the joint best response is singleton-valused

and weakly increasing in t: for every t � t̂ and for every x, βt(x) � βt̂(x).

As usual, for each t ∈ T , a (pure strategy) Nash equilibrium is a profile of

player actions x such that x ∈ βt(x). The equilibrium set at t is given by E(t) =

{x ∈ X|x ∈ βt(x)}. Needless to say, at this level of generality, a lattice game may

have no Nash equilibrium. For example, the textbook two-player matching pennies

game is admissible here, and has no pure strategy Nash equilibrium. One may assume

additional conditions to invoke standard results to guarantee existence of equilibrium

via Brouwer-Schauder type theorems, or Kakutani-Glicksberg-Ky Fan type theorems,

or other types of results. We do not make these assumptions so that our results apply

whenever equilibrium exists, regardless of whether a specific equilibrium existence

theorem is invoked, or whether an equilibrium is shown to exist directly in a game.

Of particular interest to us are cases where the best-response of a player is either

increasing (the case of strategic complements) or decreasing (the case of strategic

substitutes) with respect to the strategies of the other players. Here, increasing or

decreasing are with respect to an appropriately defined set order, as follows.
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Recall that for each t, if the payoff function of player i is quasi-supermodular

in xi, and satisfies the single-crossing property in (xi; x−i), then the best-response

correspondence of player i is nondecreasing in the induced set order. That is, for

every t and every x′
−i � x′′

−i, β
i
t(x

′
−i) ⊑in βi

t(x
′′
−i). When player i’s best response is a

function, this translates into the standard definition of a weakly increasing function;

for every t and every x′
−i � x′′

−i, β
i
t(x

′
−i) � βi

t(x
′′
−i). Let us formalize this by saying

that player i has strategic complements, if for every t, player i’s best response

correspondence βi
t is non-decreasing in x−i in the induced set order.

Similarly, for each t, if the payoff function of player i is quasi-supermodular in

xi, and satisfies the dual single-crossing property in (xi; x−i),
5 then the best-response

correspondence of player i is nonincreasing in the induced set order. That is, for

every t and every x′
−i � x′′

−i, β
i
t(x

′′
−i) ⊑in βi

t(x
′
−i). When player i’s best response is a

function, this translates into the standard definition of a weakly decreasing function:

for every t and every x′
−i � x′′

−i, β
i
t(x

′′
−i) � βi

t(x
′
−i). Let us formalize this by saying

that player i has strategic substitutes, if for every t, player i’s best response

correspondence βi
t is non-increasing in x−i in the induced set order.

Notice that the definitions of strategic complements and strategic substitutes are

weak versions, because both admit a best response correspondence that is constant

in other player actions. Therefore, it is useful to define strict versions of these ideas

as well. Consider the following set order. For non-empty subsets A,B of a lattice X ,

A is strictly lower than B, denoted A ⊏s B, if for every a ∈ A, and for every

b ∈ B, a ≺ b. This definition is a slight strengthening of the following set order

5A function f : X × T → R (where X is a lattice and T is a partially ordered set) satisfies dual

single-crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, (1) f(x′′, t′) ≤ f(x′, t′) =⇒

f(x′′, t′′) ≤ f(x′, t′′), and (2) f(x′′, t′) < f(x′, t′) =⇒ f(x′′, t′′) < f(x′, t′′). This is a natural

generalization of Amir (1996).
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defined in Shannon (1995): A is completely lower than B, denoted A ⊑c B, if for

every a ∈ A, and for every b ∈ B, a � b. Notice that when A and B are non-empty,

complete sub-lattices of X , (the case of best responses here,) A is strictly lower than

B, if, and only if, supA ≺ inf B; and similarly, A is completely lower than B, if, and

only if, supA � inf B.

Let us say that player i has weakly strict strategic complements, if for

every t, and every x′
−i ≺ x′′

−i, β
i
t(x

′
−i) ⊑c β

i
t(x

′′
−i). In other words, for every t, player

i’s best response is increasing in x−i in the completely lower than set order. Notice

that when best response is singleton-valued, weakly strict strategic complements is

equivalent to strategic complements, and therefore, may not necessarily yield strictly

increasing best responses. Say that player i has strict strategic complements,

if for every t, and every x′
−i ≺ x′′

−i, β
i
t(x

′
−i) ⊏s βi

t(x
′′
−i). In other words, for every t,

player i’s best response is increasing in x−i in the strictly lower than set order. Ap-

plying a result due to Shannon (1995), if for every (x−i, t), player i’s payoff is strictly

quasi-supermodular in xi,
6 and for every t, player i’s payoff satisfies strict single-

crossing property in (xi, x−i),
7 then player i has weakly strict strategic complements.

Moreover, in finite-dimensional Euclidean spaces, Edlin and Shannon (1998) provide

an additional intuitive and easy-to-use differentiable condition regarding strictly in-

creasing marginal returns to derive a comparison in the strictly lower than set order,

and therefore, to conclude that player i has strict strategic complements.

Similarly, player i has weakly strict strategic substitutes, if for every t,

and every x′
−i ≺ x′′

−i, βi
t(x

′′
−i) ⊑c βi

t(x
′
−i). In other words, for every t, player i’s

6A function f : X → R (where X is a lattice) is strictly quasi-supermodular if for all

unordered x, y, f(x) ≥ f(x ∧ y) =⇒ f(x ∨ y) > f(y).
7A function f : X × T → R (where X is a lattice and T is a partially ordered set) satisfies

strict single-crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, f(x′, t′) ≤ f(x′′, t′) =⇒

f(x′, t′′) < f(x′′, t′′).
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best response is decreasing in x−i in the completely lower than set order. Moreover,

player i has strict strategic substitutes, if for every t, and every x′
−i ≺ x′′

−i,

βi
t(x

′′
−i) ⊏s β

i
t(x

′
−i). In other words, for every t, player i’s best response is decreasing in

x−i in the strictly lower than set order. The conditions for strict strategic complements

and weakly strict strategic complements can be easily adapted for substitutes.

4 Non-Decreasing Equilibrium Selections

The following result shows that in a broad class of games, there are no decreasing

selections of equilibria.

Theorem 1. In a parameterized lattice game, suppose one of the following conditions

is satisfied.

1. One player has strict strategic substitutes and singleton-valued best response.

2. One player, say player i, has strict strategic substitutes and strict single-crossing

property in (xi; t).

Then for every t∗ ≺ t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂), x̂ 6≺ x∗.

Proof. Consider condition 1, and without loss of generality, suppose it is satisfied

for player 1. Suppose x̂ ≺ x∗. As case 1, consider x̂−1 ≺ x∗
−1. Then x∗

1 = β1
t∗(x

∗
−1) ≺

β1
t∗(x̂−1) � β1

t̂
(x̂−1) = x̂1, contradicting x̂ ≺ x∗. Here, the strict inequality follows

from strict strategic substitutes, and the weak inequality follows from single-crossing

property in (x1; t). As case 2, consider x̂−1 = x∗
−1 and x̂1 ≺ x∗

1. Then x∗
1 = β1

t∗(x
∗
−1) =

β1
t∗(x̂−1) � β1

t̂
(x̂−1) = x̂1, contradicting x̂1 ≺ x∗

1.

Consider condition 2, suppose it is satisfied for player 1, and suppose x̂ ≺ x∗. As

case 1, consider x̂−1 ≺ x∗
−1. Then β1

t∗(x
∗
−1) ⊏s β

1
t∗(x̂−1) ⊑c β

1
t̂
(x̂−1), where the strictly
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lower than relation follows from strict strategic substitute, and the completely lower

than relation follows from strict single-crossing property in (x1; t). Consequently,

x∗
1 � sup β1

t∗(x
∗
−1) ≺ inf β1

t∗(x̂−1) � inf β1
t̂
(x̂−1) � x̂1, contradicting x̂1 ≺ x∗

1. As case

2, consider x̂−1 = x∗
−1 and x̂1 ≺ x∗

1. Then β1
t∗(x

∗
−1) = β1

t∗(x̂−1) ⊑c β1
t̂
(x̂−1), whence

x∗
1 � sup β1

t∗(x
∗
−1) = sup β1

t∗(x̂−1) � inf β1
t̂
(x̂−1) � x̂1, contradicting x̂1 ≺ x∗

1.

This theorem presents conditions on one player only to derive equilibrium selec-

tion results. In particular, if one player exhibits strict strategic substitutes and has a

singleton-valued best response, then without any restrictions on the strategic inter-

dependence among the other players, there are no decreasing selections of equilibria.

In particular, this theorem does not require other players to exhibit either strategic

substitutes or strategic complements.

Example 3 (Cournot Duopoly with Spillovers), continued. Recall the best

responses in the Cournot duopoly with spillovers example above, given by β1(x2) =

max{a−bx2−c1
2b

, 0}, and β2(x1) = max{a−bx1−c2s(x1)
2b

, 0}. Suppose the spillover function

is given by s(x1) =
2
3
x3
1 − x2

1 −
x1

2
+3. This game satisfies condition 1 in the previous

theorem.8 Given parameter values a = 15, b = 1
2
, c1 = 11, c2 = 3, it is easy to

check that there are three Nash equilibria: x∗ = (2, 4), y∗ = (1
2
, 7), and z∗ = (4, 0),

shown in figure 1. If we increase parameter a to 17, both best responses increase,

and there are 3 new equilibria: x̂∗ = (1.686, 8.627), ŷ∗ = (1, 10), and ẑ∗ = (6, 0).

Notice that no new equilibrium is lower than any old equilibrium, as predicted by

theorem 1. Moreover, firm 1’s output in x̂∗ = (1.686, 8.627) is lower than its output

in x∗ = (2, 4), showing that in general, we cannot strengthen the conclusion of this

theorem to conclude increasing equilibria.

Theorem 1 shows that in the presence of strategic substitutes, there are no de-

creasing equilibrium selections. Moreover, the example shows that in general, this

8It satisfies condition 2 as well, when considering a as the parameter.
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Figure 1: Non-Decreasing Equilibria For Cournot Duopoly With Spillovers

result cannot be strengthened to conclude monotone comparative statics. That is,

when a parameter increases, it is possible that there are some higher equilibria, but

it is also possible that there are equilbria that are not higher. As a step toward

monotone comparative statics, the next section characterizes increasing equilibria for

two-player games.

5 Two-Player Parameterized Lattice Games

This section considers two-player games in which one player exhibits strategic sub-

stitutes and the other one exhibits strategic comlements. For convenience, let’s term

such games two-player games with strategic asymmetry . In this setting, we

present results characterizing monotone comparative statics.
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Theorem 2. Consider a two-player, parameterized lattice game, in which player 1

has strategic substitutes, and player 2 has strategic complements. Suppose strategy

spaces are linearly ordered and best responses are singleton-valued.

For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

1. x∗
2 � x̂2

2. x∗ � x̂ ⇐⇒ x∗
1 � β1

t̂
◦ β2

t̂
(x∗

1)

Proof. Consider statement 1. As case 1, suppose x∗
1 � x̂1. Then x∗

2 = β2
t∗(x

∗
1) �

β2
t∗(x̂1) � β2

t̂
(x̂1) = x̂2, where the first inequality follows from strategic complements,

and the second from single-crossing property. As case 2, consider x∗
1 6� x̂1. Linearly

ordered strategies implies x̂1 ≺ x∗
1. In this case, x̂2 6≺ x∗

2. (For if x̂2 ≺ x∗
2, then

x∗
1 = β1

t∗(x
∗
2) � β1

t̂
(x∗

2) � β1
t̂
(x̂2) = x̂1, where, the first inequality follows from single-

crossing property and the second from strategic substitutes. This contradicts x̂1 ≺

x∗
1.) Linearly ordered strategies now yields x∗

2 � x̂2.

Consider statement 2. For sufficiency, suppose x∗ � x̂. Then x∗
1 � x̂1, and strate-

gic complements implies β2
t̂
(x∗

1) � β2
t̂
(x̂1), whence x∗

1 � x̂1 = β1
t̂
β2
t̂
(x̂1) � β1

t̂
β2
t̂
(x∗

1),

where the inequality follows from strategic substitutes. For necessity, suppose x∗ 6�

x̂. Then, using statement 1, x∗
1 6� x̂1, and linear order implies x̂1 ≺ x∗

1. Thus,

x̂2 = β2
t̂
(x̂1) � β2

t̂
(x∗

1), where the inequality follows from strategic complements.

Now, using strategic substitutes yields β1
t̂
β2
t̂
(x∗

1) � β1
t̂
(x̂2) = x̂1 ≺ x∗

1, as desired.

This result formalizes the intuition that in a two-player game with strategic asym-

metry, when the parameter (weakly) increases, the equilibrium response of the player

with strategic complements is always (weakly) higher. For monotone comparative

statics, we also need the equilibrium response of the player with strategic subsitutes

to be (weakly) higher; this is characterized by the second condition. That is, x∗
1 � x̂1

is equivalent to x∗
1 � β1

t̂
◦ β2

t̂
(x∗

1).

13



The condition x∗
1 � β1

t̂
◦β2

t̂
(x∗

1) can be viewed as follows. Starting from an existing

equilibrium strategy for player 1, x∗
1 at t = t∗, an increase in t has two effects on β1

(·)(·).

One effect is an increase in β1, because best-response is nondecreasing in t. (This is

the direct effect of an increase in t, arising from the single-crossing property in (x1; t).)

The other effect is a decrease in β1, because an increase in t increases β2
t (x

∗
1), and β1 is

decreasing in x2, due to strategic substitutes. (This is the indirect effect arising from

player 1’s response to player 2’s response to an increase in t.) The condition says that

for player 1, as long as the indirect strategic substitute effect does not dominate the

direct parameter effect, the new equilibrium response of player 1 is (weakly) larger

than x∗
1. This can be viewed explicitly in the following example.

Example 1 (Differentiated Duopoly), continued. Consider the differentiated

duopoly described above, parameterized by t = a1 = a2, and recall that best responses

are given as follows: for firm 1, β1
t (q2) = t−cq2

2
, and for firm 2, β2

t (p1) = tb1−tc+cp1
2(b1b2−c2)

.

With the same assumptions as in Singh and Vives (1984), (that is, b1 − c > 0 and

b1b2−c2 > 0,) best response of both players is increasing in t. Suppose t = 2, b1 = b2 =

2, and c = 1. In this case, the unique Nash equilibrium is given by (p∗1, q
∗
2) = (2

3
, 2
5
).

Consider an increase to t̂ = 3. In this case, β1
t̂
(β2

t̂
(p∗1)) =

43
36

> 2
3
= p∗1, and therefore,

the new equilibrium is higher than the old equilibrium, as shown in figure 2. Indeed,

the new equilbrium is (p̂1, q̂2) ≈ (1.15, 0.69). (For reference, profits of both firms have

gone up as well, from (0.31, 0.29) to (0.39, 0.72).)

For completeness, figure 3 represents graphically the case where the direct effect

does not dominate the indirect effect. If best responses change in the manner shown

in figure 3, the composite effect is lower, (β1
t̂
(β2

t̂
(p∗1)) < p∗1,) and as theorem 2 predicts,

the new equilbrium is not higher than the old equilibrium.

In order to characterize increasing equilibria with best response correspondences,

consider the following lemmas.

14



p
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β1(q2)

β2(p1)
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1
* p

1
ˆ

Figure 2: Increasing Equilibria: Differentiated Duopoly

Lemma 1. Consider a two-player, parameterized lattice game, in which player 1

has strict strategic substitutes, and player 2 has weakly strict strategic complements.

Suppose strategy spaces are linearly ordered. For every t∗ � t̂, for every x∗ ∈ E(t∗),

and for every x̂ ∈ E(t̂), x∗
2 � x̂2.

Proof. Suppose x∗
2 6� x̂2. Then linear order implies x̂2 ≺ x∗

2. Thus β1
t∗(x

∗
2) ⊑in

β1
t̂
(x∗

2) ⊏s β
1
t̂
(x̂2), where the induced set order inequality follows from single-crossing

property in (x1; t), and the strict set order inequality follows from strict strategic sub-

stitutes. This implies x∗
1 � β

1

t∗(x
∗
2) � β

1

t̂ (x
∗
2) ≺ β1

t̂
(x̂2) � x̂1. Therefore, β2

t∗(x
∗
1) ⊑in

β2
t̂
(x∗

1) ⊑c β
2
t̂
(x̂1), where the induced set order inequality follows from single-crossing

property in (x2; t), and the completely lower set order inequality follows from weakly

strict strategic complements. This implies x∗
2 � β

2

t∗(x
∗
1) � β

2

t̂ (x
∗
1) � β2

t̂
(x̂1) � x̂2, a

contradiction.

Lemma 2. Consider a two-player, parameterized lattice game, in which player 1 has

15
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Figure 3: Non-increasing Equilibria: Differentiated Duopoly

strategic substitutes, and player 2 has strategic complements. Suppose strategy spaces

are linearly ordered. For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

x∗
1 � x̂1 =⇒ x∗

1 � β
1

t̂β
2

t̂
(x∗

1).

Proof. x∗
1 � x̂1 implies β2

t̂
(x∗

1) � β2

t̂
(x̂1) � x̂2, where the first inequality follows from

strategic complements. This, in turn, implies, x∗
1 � x̂1 � β

1

t̂ (x̂2) � β
1

t̂β
2

t̂
(x∗

1), where

the last inequality follows from strategic substitutes.

Lemma 3. Consider a two-player, parameterized lattice game, in which player 1

has weakly strict strategic substitutes, and player 2 has strict strategic complements.

Suppose strategy spaces are linearly ordered. For every t∗ � t̂, for every x∗ ∈ E(t∗),

and for every x̂ ∈ E(t̂), x̂1 ≺ x∗
1 =⇒ β

1

t̂β
2

t̂
(x∗

1) ≺ x∗
1.

Proof. Using strict strategic complements, x̂1 ≺ x∗
1 implies β2

t̂
(x̂1) ⊏s β2

t̂
(x∗

1), and

therefore, x̂2 � β
2

t̂ (x̂1) ≺ β2

t̂
(x∗

1). Using weakly strict strategic substitutes, it follows

that β1
t̂
(β2

t̂
(x∗

1) ⊑c β
1
t̂
(x̂2). Consequently, β

1

t̂β
2

t̂
(x∗

1) � β1

t̂
(x̂2) � x̂1 ≺ x∗

1.
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These lemmas yield the following theorem immediately.

Theorem 3. Consider a two-player, parameterized lattice game, in which player 1

has strict strategic substitutes, and player 2 has strict strategic complements. Suppose

strategy spaces are linearly ordered.

For every t∗ � t̂, for every x∗ ∈ E(t∗), and for every x̂ ∈ E(t̂),

1. x∗
2 � x̂2

2. x∗ � x̂ ⇐⇒ x∗
1 � β

1

t̂ ◦ β
2

t̂
(x∗

1)

These results are valid for two-player games of strategic asymmetry with linearly

ordered strategy spaces. To investigate more general cases, notice first that these

results may not necessarily hold with more general strategy spaces, as shown in the

next example.

Example 4 (Crime and Punishment-2). Consider another version of crime and

punishment: there is a criminal (player 1) and a police force (player 2). The criminal

has four actions: no crime (a1), grand theft auto (a2), bank robbery (a3), and both

grand theft auto and bank robbery (a4), with a1 ≺ a2 ≺ a4, a1 ≺ a3 ≺ a4, and a2 and

a3 are unordered. This makes X1 = {a1, a2, a3, a4} into a lattice that is not linearly

ordered. The police have two actions: low enforcement (b1) and high enforcement

(b2), with b1 ≺ b2. Suppose payoffs are given in the left panel of figure 4.

It is easy to check that the criminal exhibits strategic substitutes and the police

exhibit strategic complements. This game has a unique Nash equilibrium: (a2, b1).

Now suppose the bank receives a new, large, cash deposit – the equivalent of an

increase in a parameter representing potential value of the bank’s deposits. Denote

the new parameter t̂. The new game is given in the right panel of figure 4. It is easy

to check that compared to the left panel, the best response for each player is non-

17



b1 (low) b2 (high) b1 (low) b2 (high)

a1 (no crime) 1, 5 1, 0 a1 (no crime) 1, 5 1, 0

a2 (GTA) 10, 2 0, 0 a2 (GTA) 10, 2 0, 0

a3 (robbery) 3, 2 0, 0 a3 (robbery) 5, 2 5, 3

a4 (GTA + robbery) 5, 0 0, 10 a4 (GTA + robbery) 15, 0 0, 15

Figure 4: Crime and Punishment-2

decreasing; that is, the single-crossing property is satisfied. The new unique Nash

equilibrium is (a3, b2), which is not comparable to (a2, b1), because a2 and a3 are not

comparable.

Notice that the conditions of theorem 2 are satisfied in this case, because a2 ≺

a4 = β1
t̂
(β2

t̂
(a2)). This example shows that when we try to extend the analysis to

non-linearly ordered lattices, theorem 2 does not necessarily hold.

To investigate generalization in another direction, let’s consider cases with more

than two players.

6 Multi-Player Parameterized Lattice Games

As the following example shows, when there are more than two players, even with

linearly ordered strategy spaces, an analogue of theorem 2 may not necessarily hold.

Example 4 (Crime and Punishment-2), continued. Consider another version

18



of crime and punishment: there is a criminal (player 1) and two police forces (players

2 and 3). The criminal has four actions: a1, a2, a3, and a4, with the range of criminal

activity increasing in intensity a1 ≺ a2 ≺ a3 ≺ a4. Police force 1 has two actions:

low enforcement (b1) and high enforcement (b2), with b1 ≺ b2. Police force 2 has

two actions: low enforcement (c1) and high enforcement (c2), with c1 ≺ c2. Suppose

payoffs are given in figure 5.

It is easy to check that the criminal exhibits strategic substitutes and both police

forces exhibit strategic complements. The unique Nash equilibrium is given by x∗ =

(a3, b1, c1).

b1 (low) b2 (high) b1 (low) b2 (high)

a1 1, 5, 5 1, 0, 2 a1 1, 5, 0 1, 0, 0

a2 5, 2, 2 5, 0, 2 a2 5, 2, 0 0, 0, 0

a3 10, 2, 2 0, 0, 2 a3 3, 2, 0 0, 0, 0

a4 7, 0, 0 0, 10, 0 a4 2, 0, 10 0, 10, 10

c1 (low) c2 (high)

Figure 5: Crime and Punishment-2, before parameter change

Suppose, as earlier, an increase in the parameter corresponds to an increase in

the value of criminal activity to the criminal. Denote the new parameter t̂, and

suppose the new payoffs are given in figure 6. The unique Nash equilibrium is given

by x̂ = (a2, b2, c2), and this is not comparable to x∗ = (a3, b1, c1).

Notice that the second iterate condition from theorem 2 would be as follows: x∗
1 �
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b1 (low) b2 (high) b1 (low) b2 (high)

a1 1, 5, 5 1, 0, 2 a1 1, 5, 0 1, 

a2 5, 2, 2 5, 0, 2 a2 5, 2, 0 3, 4, 4

a3 10, 2, 2 10, 0, 2 a3 10, 2, 4 0, 4, 4

a4 15, 0, 0 7, 10, 0 a4 7, 0, 10 0, 10, 10

c1 (low) c2 (high)

Figure 6: Crime and Punishment-2, after parameter change

β1
t̂
(β2

t̂
(x∗

−2), β
3
t̂
(x∗

−3)). This condition is satisfied, because β2
t̂
(a3, c1) = b1, β

3
t̂
(a3, b1) =

c2, and therefore, x̂∗
1 = a3 � a3 = β1

t̂
(b1, c2) = β1

t̂
(β2

t̂
(x∗

−2), β
3
t̂
(x∗

−3)).

These examples show that a straightforward application of theorem 2 may not

necessarily work for more general cases.9 We now develop results that can be applied

to more general cases.

The strategic game Γ =
{

(Xi,�i, ui)
I
i=1, T

}

is a parameterized lattice game,

if for every player i,

1. The strategy space of player i is Xi, a non-empty, compact, convex, sub-lattice

of X i, where X i is a locally convex and Hausdorff lattice vector space in the

order interval topology.10 Let x̄i = supXi.

9An additional counter-example can be constructed where two players exhibit strategic substitutes

and one player exhibits strategic complements.
10A lattice vector space is a (real) vector space that is a lattice as well.
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2. X = X1 × · · · × XI is the overall strategy space with the product order and

topology, and T is a partially ordered set.

3. For every player i, ui : X × T → R is continuous in x, quasi-supermodular and

quasi-concave in xi and satisfies single-crossing property in (xi; t).

Theorem 4. Consider a parameterized lattice game in which players 1, . . . , J have

strategic substitutes and J+1, . . . , I have strategic complements. Suppose best-responses

are singleton-valued.

For every t∗ � t̂ and every x∗ ∈ E(t∗), let ŷ = (ŷi)i∈I be defined as follows: ŷi =

βi
t̂
(x∗

−i), for i = 1, . . . , J , and ŷi = βi
t̂
((ŷj)

J
j=1; (x̄j)

I
j=J+1,j 6=i), for i = J + 1, . . . , I.

If for i = 1, . . . , J , x∗
i � βi

t̂
(ŷ−i), then there is x̂ ∈ E(t̂) such that x∗ � x̂.

Proof. For i = 1, . . . , I, let Bi = [x∗
i , ŷi], and let B = ×I

i=1Bi. For i = 1, . . . , I,

consider βi
t̂
on B−i. Notice that x∗

i � βi
t̂
(ŷ−i) by assumption, and βi

t̂
(x∗

−i) = ŷi, by

definition. Therefore, βi
t̂
(B−i) ⊆ Bi; that is, β

i
t̂
restricted to B−i maps into Bi. Simi-

larly, for i = J+1, . . . , I, consider βi
t̂
on B−i. Single-crossing property in (xi; t) yields

x∗
i � βi

t̂
(x∗

−i) and also, βi
t̂
(ŷ−i) = βi

t̂
((ŷJj=1); (ŷj)

I
j=J+1,j 6=i) � βi

t̂
((ŷJj=1); (x̄j)

I
j=J+1,j 6=i) =

ŷi, where the inequality follows from (ŷj)
I
j=J+1,j 6=i � (supXj)Ij=J+1,j 6=i = (x̄j)

I
j=J+1,j 6=i.

Therefore, βi
t̂
(B−i) ⊆ Bi. Consequently, the joint best response function satisfies

βt̂(B) ⊆ B; that is, the restriction of β to B is a self-map, and applying Brouwer-

Schauder-Tychonoff’s theorem, there is a fixed point x̂ ∈ E(t̂) such that x∗ � x̂.

The condition for multi-player games in theorem 4 is stronger than the condition

characterizing increasing equilibria in two-player games (in theorem 2). This can be

seen as follows. Consider a two-player game in which player 1 has strategic substitutes

and player 2 has strategic complements. Notice that by the single-crossing property

in (x1; t), x
∗
1 � β1

t̂
(x∗

2) = ŷ1, and therefore, using ŷ2 = β2
t̂
(ŷ1), it follows that β

1
t̂
(ŷ2) =
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β1
t̂
◦ β2

t̂
(ŷ1) � β1

t̂
◦ β2

t̂
(x∗

1). Consequently, when the condition in theorem 4 is satisfied,

that is, x∗
1 � β1

t̂
(ŷ2), the condition in theorem 2 is satisfied automatically, that is,

x∗
1 � β1

t̂
◦β2

t̂
(x∗

1). Intuitively, the condition in theorem 2 evaluates the combined direct

and indirect effects given by β1
t̂
◦ β2

t̂
at x∗

1, and the condition in theorem 4 evaluates

the combined effects at ŷ1, which is higher than x∗
1.

The need for a stronger condition in multi-player games arises due to additional

strategic interaction among the players. For example, consider a three-player game

in which player 1 exhibits strategic substitutes and players 2 and 3 exhibit strategic

complements. The natural generalization of the condition in theorem 2 would be:

x∗
1 � β1

t̂
(β2

t̂
(x∗

−2), β
3
t̂
(x∗

−3)). As shown in the Crime and Punishment-2 example above,

this is not sufficient to guarantee monotone comparative statics. Intuitively, when

the parameter increases from t∗ to t̂, the direct effect on players 2 and 3 is captured

by (β2
t̂
(x∗

−2), β
3
t̂
(x∗

−3)), which raises their strategies. But an increase for player 2

has a further impact for player 3, due to strategic complements, and vice-versa.

The Crime and Punishment-2 example essentially shows that not including these

additional effects may lead to an incorrect evaluation of the combined effects. The

condition in theorem 4 adjusts for these effects by applying the combined evaluation

on ŷ−i, which is larger than x∗
−i.

A benefit of the condition in theorem 4 is that there are no restrictions on strategy

spaces to be linearly ordered, as required by theorem 2.

A similarity between theorem 4 and theorem 2 is that the condition needs to

hold for players with strategic substitutes only. There is no additional restriction on

players with strategic complements.

The following example shows an application of theorem 4.

Example 5 (Cournot Oligopoly). Consider 3 firms competing in quantities. Firm
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1 is a large firm (or, say, an incumbent) that can produce one of three levels of output:

Low, Medium, and High (denoted L1, M1, and H1). It exhibits strategic substitutes.

Firms 2 and 3 are smaller (or, say, potential entrants) and are capable of producing

either Low or Medium level of output. Thus, X1 = {L1,M1, H1}, X2 = {L2,M2},

and X3 = {L3,M3}. Suppose the smaller firms experience a technological spillover if

enough output is produced by their rival firms, and therefore, each exhibits strategic

complements. Payoffs are as follows.

L3 M3 L3 M3 L3 M3

L2 15, 20, 20 25, 20, 10 L2 40, 15, 15 10, 15, 10 L2 0, 10, 10 0, 5, 5

M2 25, 10, 20 10, 10, 10 M2 10, 10, 15 5, 10, 10 M2 0, 5, 5 0, 10, 10

L1 M1 H1

Figure 7: Cournot Oligopoly, before parameter change

Notice that a smaller firm is only willing to produce the medium level of output, if

both competitors produce their maximum levels. Also notice the strategic substitutes

property of the large firm: it is only willing to produce a level other than L1 if both

competitors produce low levels. It is easy to check that the unique equilibrium is

x∗ = (M1, L2, L3). Now let the parameter t increase to some t̂, t̂ ≻ t∗, and consider

the following payoffs.

Notice that the parameter increase is (weakly) complementary for each firm. Firm

3 is more willing to increase its output: it will produce M3 as long as one of its

competitors is producing more than the low level of output. Firm 2 is now willing

to produce M2, if, and only if, firm 1 produces H1. The condition in theorem 4

needs to be checked for firm 1 only (the firm with strategic substitutes). In this case,
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L3 M3 L3 M3 L3 M3

L2 20, 25, 25 25, 25, 15 L2 45, 20, 15 30, 20, 20 L2 5, 10, 10 5, 10, 15

M2 25, 15, 15 20, 15, 25 M2 30, 15, 15 10, 15, 20 M2 5, 15, 10 5, 15, 15

L1 M1 H1

Figure 8: Cournot Oligopoly, after parameter change

ŷ1 = β1
t̂
(x∗

2, x
∗
3) = β1

t̂
(L2, L3) = M1, ŷ2 = β2

t̂
(ŷ1, x̄3) = β2

t̂
(M1,M3) = L2, and ŷ3 =

β3
t̂
(ŷ1, x̄2) = β3

t̂
(M1,M2) = M3. Therefore, x∗

1 = M1 � M1 = β1
t̂
(L2,M3) = β1

t̂
(ŷ−1).

Consequently, there is a higher equilibrium: x̂ = (M1, L2,M3).

The result in theorem 4 can be extended to best response correspondences, as

follows. The intuition remains the same.

Theorem 5. Consider a parameterized lattice game in which players 1, . . . , J have

strategic substitutes, and players J+1, . . . , I have strategic complements and the strict

single-crossing property in (xi; t).

For every t∗ ≺ t̂ and every x∗ ∈ E(t∗), let ŷ = (ŷi)i∈I be defined as follows: ŷi =

β
i

t̂(x
∗
−i), for i = 1, . . . , J , and ŷi = β

i

t̂((ŷj)
J
j=1; (x̄j)

I
j=J+1,j 6=i), for i = J + 1, . . . , I.

If for i = 1, . . . , J , x∗
i � βi

t̂
(ŷ−i), then there is x̂ ∈ E(t̂) such that x∗ � x̂.

Proof. Notice that for every i, x∗
i � ŷi, as follows. For i = 1, . . . , J , using

single-crossing property, x∗
i � β

i

t∗(x
∗
−i) � β

i

t̂(x
∗
−i) = ŷi. And for i = J + 1, . . . , I,

x∗
i � β

i

t∗(x
∗
−i) � β

i

t∗((ŷj)
J
j=1; (x̄j)

I
j=J+1,j 6=i) � β

i

t̂((ŷj)
J
j=1; (x̄j)

I
j=J+1,j 6=i) = ŷi, where the

second inequality follows from strategic complements, and the last inequality from

single-crossing property.

For i = 1, . . . , I, let Bi = [x∗
i , ŷi], and let B = ×I

i=1Bi. For i = 1, . . . , I, consider βi
t̂
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on B−i. Then x∗
i � βi

t̂
(ŷ−i) by assumption, and β

i

t̂(x
∗
−i) = ŷi, by definition. Therefore,

βi
t̂
(B−i) ⊆ Bi; that is, β

i
t̂
restricted to B−i maps into Bi. Similarly, for i = J+1, . . . , I,

consider βi
t̂
on B−i. Strict single-crossing property in (xi; t) yields x∗

i � β
i

t∗(x
∗
−i) �

βi

t̂
(x∗

−i). Moreover, βi
t̂
(ŷ−i) = βi

t̂
((ŷJj=1); (ŷj)

I
j=J+1,j 6=i) ⊑in βi

t̂
((ŷJj=1); (x̄j)

I
j=J+1,j 6=i),

where the induced set order inequality follows from strategic complements. Therefore,

β
i

t̂(ŷ−i) � β
i

t̂((ŷ
J
j=1); (x̄j)

I
j=J+1,j 6=i) = ŷi. Thus, β

i
t̂
(B−i) ⊆ Bi. Consequently, the joint

best response correspondence satisfies βt̂(B) ⊆ B; that is, the restriction of β to B is

a self-map, and applying Kakutani-Fan-Glicksberg’s theorem, there is a fixed point

x̂ ∈ E(t̂) such that x∗ � x̂.

7 Conclusion

This paper focuses on games with both strategic substitutes and strategic comple-

ments. In general, such games may behave differently when compared to either GSC

or GSS.

We show that in games with both strategic substitutes and complements, equi-

libria do not decrease as the parameter increases. Moreover, using newer techniques,

we provide conditions that guarantee that an increase in the parameter leads to an

increase in the equilibrium; in other words, conditions under which monotone com-

parative statics is guaranteed.

For two-player games in which one player exhibits strategic substitutes, the other

player exhibits strategic complements, and each player has a linearly ordered strategy

space, we characterize monotone comparative statics via a condition on the best

response of only the player with strategic substitutes. (No additional condition is

imposed on the player with strategic complements.) The condition is intuitive and

is based on a trade-off between the direct parameter effect and the indirect strategic
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substitute effect.

This characterization does not hold more generally: either for two-player games

with more general strategy spaces, or for games with more players, as shown in several

examples. In this regard, games with both strategic substitutes and complements

behave differently from GSS.

For more general cases, we present sufficient conditions that guarantee monotone

comparative statics. As in the two-player case, these conditions are needed only for

players with strategic substitutes. The conditions are stronger than in the two-player

case, but still involve a trade-off between the direct parameter effect and the indirect

strategic substitute effect.
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