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Abstract

In a multiple priors model a la Gilboa and Schmeidler (1989), we provide necessary and sufficient
behavioral conditions ensuring the countable additivity and non-atomicity of all priors.

Key words: non-expected utility, multiple priors, countable additivity, non-atomicity.

JEL Classification: D81.

1 Introduction

Decision theorists have often debated whether to use countably or finitely additive probabilities to model
decision makers’ subjective beliefs. The two most notable advocates of finite additivity were de Finetti and
Savage, who argued that countable additivity is a purely technical property devoid of a clear behavioral
content and whose assumption prevents the analysis of significant phenomena (see Savage, 1954, and de
Finetti 1931, and 1970).

On the other hand, countable additivity is a very convenient property, which leads to many important
results in probability theory like, for example, the classic limit laws. As a result, its use is pervasive in
mathematical economics and finance. For a decision theorist the problem is, therefore, to understand whether
the added analytic power of countable additivity offsets its supposed shaky behavioral underpinning.

An important contribution to this issue was provided by Arrow (1970), who identified the precise be-
havioral conditions under which subjective beliefs can be represented by a countably additive probability.
By building on Villegas (1964), Arrow (1970) obtained a subjective expected utility representation with
a countably additive probability by adding the following monotone continuity axiom to a set of standard

Savage-type axioms.

Axiom 1 (Monotone Continuity) Given any acts f = g in L, consequence x in X, and sequence of
events {Eyp},~, i X with By O Ey O ... and (), En =0, there exists n > 1 such that

T if s € En T if s € En

f(s) ifs¢Ex =g and fr g(s) ifs¢ Ex
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With his result, Arrow (1970) showed that monotone continuity is the behavioral condition which un-
derlies the use of countably additive probabilities in subjective expected utility theory. The question is,
therefore, whether or not a most useful condition like monotone continuity is also a sensible behavioral
property. It is not, however, our purpose to expatiate on this, ultimately subjective, issue.

In contrast, our aim in this paper is to study the implications of monotone continuity for the multiple
priors model, a popular generalization of subjective expected utility theory. In this model the decision
makers’ beliefs are represented by a set C' of priors in order to capture the vagueness of beliefs (also called
ambiguity), and acts are ranked according to the minimum expected utilities with respect to C' (see Gilboa
and Schmeidler, 1989) or, more generally, according to a weighted average of the minimum and the maximum
expected utilities with respect to C'. Conventional subjective expected utility theory is the special case in
which the set of priors C' is a singleton, modelling in this way a situation where there is no vagueness.

Not surprisingly, countable additivity turns out to be a very convenient property in applications of the
multiple priors model. For example, the recent applications in economics and finance of Epstein and Wang
(1994) and (1995), Billot, Chateauneuf, Gilboa, and Tallon (2000), Delbaen (2000), and Chen and Epstein
(2002) critically depend on the countable additivity of the probabilities forming the decision makers’ set of
priors, and on some compactness properties of such a set.

It is natural to wonder whether such a convenient property has its behavioral counterpart in the monotone
continuity of preferences. Theorem 1 below shows that, fortunately, this is indeed the case. In particular, a
preference relation having a multiple priors representation is monotone continuous if and only if the set of
priors is a relatively weak compact subset of countably additive probabilities.

As well-known, the subjective probability derived in Savage (1954) is convex ranged. This is another
convenient property, which recently has been used in a multiple priors setting (see Nehring, 2001, and
Amarante, 2002 and 2003). Theorem 2 below extends another classic result of Villegas (1964) by showing
that a simple atomlessness property of preferences is a necessary and sufficient condition for the range
convexity of all the priors in C, while Theorem 3 shows that a more demanding property is needed to
obtain the convex-rangedness of the whole set C' as a vector measure. Finally, all proofs are relegated to the

Appendix.

2 Set-up

2.1 Mathematical Preliminaries

Throughout the paper, 3 is a o-algebra of subsets of a space S. Subsets of S are understood to be in X even
where not stated explicitly.

We denote by ba (S, %) and ca (S, X), respectively, the vector spaces of finitely additive and countably
additive bounded real-valued set functions on 3; we call charges the elements of ba (S, X)and measures
the elements of ca (S,%). Clearly, ca(S,X) is a vector subspace of ba (S,X). In particular, both ca (S, X)
and ba (S,X) become Banach spaces when equipped with the variation norm. An element p of ca (S,Y) is
non-atomic if, for all A € ¥ with pu (A) # 0, there exists B € X such that B C A and u(A4) # pu(B) # 0;
non-atomic elements of ca (.5, X) form a closed subspace of ca (S, X) (see, e.g., Aumann and Shapley 1974 p.
28).

We denote by B (5,%) the set of all bounded and Y-measurable functions ¢ : S — R. The vector space
B(S,Y) is a Banach space with respect to the supnorm ||-||,. The standard duality between ba (.S, %) and

Tt may be interesting to know Arrow’s opinion. In Arrow (1970) he wrote that “the assumption of Monotone Continuity

seems, I believe correctly, to be the harmless simplification almost inevitable in the formalization of any real-life problem.”



B (S,3) endows ba (S, X)) and its subsets of a weak* topology.?
Finally, ba' (S,X) and ca! (S, ) denote, respectively, the sets of probabilities in ba (S, %) and ca (S, X);
we reserve the letter P for elements of ba! (S,3) and ca® (S, Y).

2.2 Decision-theoretic Preliminaries

States of nature and events are represented by the pair (S, X), while X is the space of consequences. An act
isamap f:S — X and it is simple when it is finite valued; Lg denotes the set of all simple ¥-measurable
acts. The decision maker has a preference relation = on Lg, which in turn induces a preference over X,
obtained in the standard way by identifying consequences with constant acts.

A binary relation 2Z on Lo is an a-mazimin expected utility (a-MEU) preference relation if there exists a
utility index v : X — R, a non-empty set C' C ba' (S, ) and a constant « € [0, 1] such that = is represented
by the preference functional V' : Ly — R defined by

V() =ant [u(f(s))dP(s) + (1 —a)sup [u(f(s)) dP (s) (1)
= PeC
for all f € Lg. When C = {P} is a singleton, a-MEU preferences collapse to the Subjective Expected Utility
(SEU) case V (f) = [u(f(s))dP (s).

We assume that the range « (X) of w is not a nowhere dense subset of R, that is, the interior of the
closure u (X) is non-empty. This is the case when u (X) is an interval of R; for instance, when X is a convex
set and u is non-constant and affine, or when X is a connected topological space and u is non-constant and
continuous. This assumption implies that X has to be at least countably infinite.

Notice that, given any set of priors C' C ba' (S,Y), we have

V(f)=a min _ [u(f(s))dP(s)+(1—«) max [u(f(s))dP(s). (2)

Pccow=(O) Pccow(C)

For this reason the set C itself is often assumed to be convex and weak™® closed.

Axiomatic characterizations of this kind of preferences for « = 1 (MEU) can be found in Gilboa and
Schmeidler (1989), Casadesus-Masanell, Klibanoff, and Ozdenoren (2000), and Ghirardato, Maccheroni,
Marinacci, and Siniscalchi (2001), while the general case of a € [0, 1] is considered in Ghirardato, Maccheroni,
and Marinacci (2002) and Kopylov (2002).

Let L be the set of all acts f : S — X that are both preference measurable, i.e., {s € S: f(s) zZ z} and
{s €S : f(s) >z} belong to ¥ for all z in X, and preference bounded, i.e., there exist z and T in X such
that T 22 f(s) 5z for all s € S. Since for all f € L we have uo f € B(S,%), the natural extension of the
functional V' defined by (1) from Lg to L allows to extend =~ from Lo to L too; the extensions of V' and =
to L are still denoted by V and .

3 Monotone Continuity
We can now state our main result.

Theorem 1 Let = be an a-MEU preference relation on L, with a set C of priors. Then, the following

conditions are equivalent:

(i) 7, is monotone continuous.

2Given a subset M of ba (S,X), the weak* topology is the weakest topology for which all functionals p +— [ @du are

continuous, where ¢ € B(S,X) and p € M.



(ii) C is a relatively weak compact subset of ca (S, X).
If, in addition, C is weak* closed, then (i) is equivalent to:
(iii) Cis a subset of ca (S,X).

This theorem generalizes the aforementioned results of Arrow and Villegas, who dealt with singleton sets
of priors. It is also related to some other results in the literature. Schmeidler (1972) p. 220 noticed that
the core of a continuous exact game is a weak sequentially compact subset of ca® (S, ), while Epstein and
Wang (1995) p. 44 showed that the set of priors is a weak sequentially compact subset of ca (S, ) when the
MEU functional minpec [w(f)dP is continuous at certainty. Finally, Marinacci (2002) showed that C' is
included in ca (S, ¥) whenever 77 is monotone continuous.

Some more behavioral conditions equivalent to (i) can be found in Theorem A.9, while the Eberlein-
Smulian Theorem (see, e.g. Megginson, 1998 p. 248), Theorems IV.9.1 and IV.9.2 of Dunford and Schwartz
(1958), and Lemmas A.4 and A.6 provide several topological conditions equivalent to (ii).

4 Range Convexity

By using bets, the preference - on L induces in a well-known way a likelihood ordering —; on the event
o-algebra ¥, which takes the form A =; Bif and only if

inf P(A)+(1- P(A)>a inf P(B)+(1— P(B).
o fuf P(A4)+ (1 —a)sup P(4) = a inf P(B)+(1-a)sup P(B)

Villegas (1964)’s results imply that for a standard monotone continuous SEU ordering -, the single proba-

bility measure P that represents 7; is non-atomic if and only if 7Z; satisfies the following condition.
Axiom 2 (Downward Atomlessness) If A >, 0, there exists B C A such that A =; B = .

In the standard SEU case, in which C' is a singleton, downward atomlessness is equivalent to:
Axiom 3 (Upward Atomlessness) If A <; S, there exists B D A such that A <, B <, S.

For « € (0,1), downward and upward atomlessness always coincide; for o € {0, 1}, some further condi-
tions are needed (see Lemma A.11). The next result shows that downward atomlessness is the appropriate
non-atomicity requirement for 0-MEU preferences, upward atomlessness is the appropriate one for 1-MEU
preferences, and any one of the two works for a-MEU preferences when a € (0,1).

Theorem 2 Let 77, be a monotone continuous a-MEU preference relation on L, with a set C of priors. If

a#1 (a0, resp.), the following conditions are equivalent:
(i) 7 is downward atomless (upward, resp.),
(i) all priors P in C are non-atomic.

As well-known, a probability measure P is non-atomic if and only if it is convez-ranged, that is, if for each
A € ¥ and each « € [0, 1], there exists B C A such that P (B) = aP (A). In other words, P is non-atomic
if and only if the set {P(B): B C A and B € ¥ } is convex and compact in R for all A € ¥.
Given a set C' of probability measures, an extension of this property is to require that for each A € X
the set
{{P(B)}PGC:BQAandBEE } (3)



is convex and weak compact in the Banach space B (C') of all real-valued bounded functions on C. In this
case, we say that C'is uniformly convez-ranged. In fact, this implies that for each A € ¥ and each a € [0, 1],
there exists B C A such that P (B) = aP (A) for all P € C.3

The next result provides a behavioral characterization of the uniform range convexity of the set of priors
C of an a-MEU preference. To state it we have to introduce few notions. An act f € L is unambiguous
given A if

[uara= [u(naas

for all P,@ € C such that P (A) and @ (A) are nonzero. Intuitively, an act is unambiguous given A if its
evaluation is not affected by the perceived ambiguity when beliefs are updated, one by one, according to
Bayes rule given that event A obtained.*

A set A € 3 is downward null if A ~; 0, while it is upward null if A° ~; S. Finally, an act f: S — X is
essentially downward (upward, resp.) constant on A if there exists a downward (upward, resp.) null subset
N of A and a consequence x € X such that f(s) ~z foralls€ A— N.

We are now ready to state the promised characterization.

Theorem 3 Let =~ be a monotone continuous a-MEU preference relation on L, with a set C of priors, and

suppose u (X) is an interval. If a # 1 (o # 0, resp.), the following conditions are equivalent:

(i) For all non downward (upward, resp.) null events E € ¥, there exists an act f € L both unambiguous

given E and non essentially downward (upward, resp.) constant on E;

(i) The set C is uniformly convez-ranged.

In reading condition (i), it is important to observe that essentially constant acts are unambiguous given

any event E. Hence, it is key in (i) to require the act not to be essentially constant.

A Proofs and Related Material

A.1 Compactness

The following result shows a noteworthy relation existing between compactness in the weak and weak*
topologies. It is essentially due to Bartle, Dunford and Schwartz (1955) (see Maccheroni and Marinacci,
2001, for a simple proof).

Lemma 4 Let C be a subset of ca (S,%). Then, the following statements are equivalent:

(i) C is weak* closed and relatively weak compact.
(ii) C is weak* closed and norm bounded.
(#ii) C is weak® compact.

(iv) C is weak* sequentially compact.

(v) C is weak® limit point compact.

(vi) C is weak compact.

3For example, this property plays a key role in Nehring (2001).
4See Ghirardato, Maccheroni, and Marinacci (2002) for a discussion, as well as the references therein contained.



Moreover, if C C ca' (S,X) is convexr and (vi) holds, then there exists Py € C' such that for all P € C we
have P (A) = 0 whenever Py (A) = 0.

Another couple of useful lemmas.

Lemma 5 A subset C of ca (S, X) is norm bounded if and only if sup |p(A)] < oo for all A € X.
nel

We omit the proof, which follows from Theorem IV.9.8 and Lemma III.1.5 of Dunford and Schwartz
(1958).

Lemma 6 Let C be a subset of ca(S,X). The following facts are equivalent:

(i) The set map from T : ¥ — RY defined by T (A) = {u (A)},.cc takes values in B (C) and it is countably
additive in (B (C),|-||,)-

(ii) C is bounded and sup ,cc i (An)| — 0 whenever A, | (.
(i1i) C' is relatively weak compact.
Again we omit the proof, which builds on our Lemma 5 and on Theorem IV.9.1 of Dunford and Schwartz

(1958).

A.2 Monotone Continuity

Instead of directly proving Theorem 1, it is convenient to prove the slightly more general Theorem 9 below.
If f,ge L and A € 3, we set
f(s) seA

JAg(s) = { g(s) s € A

Clearly, fAg € L.
Definition 1 A binary relation = on L is:

e Strongly monotone continuous (s.m.c.) if for all acts e, f,g € L with f > g, and all sequences
of events {Eyn},~; C X with E,, | 0, there exists i € N such that: eEnf = g and f > eEgg.

o weakly left monotone continuous (w.l.m.c.) if for all v,y,2z € X with y = z, and all sequences
of events {Eyp},~; C X with E,, | 0, there exists n € N such that: *Epy > z.

e weakly right monotone continuous (w.r.m.c.) if for all x,y,z € X withy > z, and all sequences
of events {Eyn},~; C X with E,, | 0, there exists i € N such that: y = xEyzz.

e weakly monotone continuous (w.m.c.) if it is weakly right monotone continuous and weakly left
monotone continuous.

Using m.c. to abbreviate “monotone continuous”, we have

w.l.m.c.
sm.c. — m.c. — wW.Mm.cC.

w.r.m.c.



Lemma 7 Let 77 be an a-MEU preference relation on L, with a set C of priors. If « #1 (a # 0, resp.) and

7 s weakly right (left, resp.) monotone continuous, then C is a relatively weak compact subset of ca (S,X).

Proof. Let E, | 0 and let y, z € X be such that y > z and there exists a sequence {zj},~, of consequences
such that z, > zr41 > 2z for all kK > 1, and limy_o u (2;) = u(z). W.lo.g., set u(y) =1 and u(z) = 0.
By weak right monotone continuity, for all k¥ € N there exists n € N such that yEzz < z,. That is,
ainfpcc P (Er)+(1 — a)suppee P (En) < u(zk). Asthesequence ainfpcc P (Ey)+(1 — @) suppee P (Er)
is decreasing, this implies

lim (a inf P(E,)+ (1 —«)sup P (En)> <u(zk).
n—oo PeC PeC

Passing to the limit for £ — oo, we get
lim <a inf P(E,)+ (1—«)sup P (En)) =0. 4)
n—00 PeC PeC
Since 0 < infpeo P (E,) < ainfpec P (E,)+(1 — o) suppec P (Ey), (4) implies lim,, o (inf pec P (Ey)) =
0. Therefore,

0 = lim <a inf P(E,)+ (1 —a)sup P(En))
n—oo peC PeC
= o« lim inf P(E,)+ (1 —a) lim sup P(E,)
n—oo PeC n—o0 peC

= (I1—a) lim sup P(E,),

n—oo peC
and we can conclude
lim sup P (E,) =0. (5)

n—oo PEC

Hence, for all E,, | D and all Q € C, 0 < Q (E,) < suppee P (E,) implies Q (E,,) | 0, so that C' C ca (S, X).
Eq. (5) yields relative weak compactness by Lemma 6. The case in which o # 0 and Z is weakly left

monotone continuous is analogous. l

Lemma 8 Let = be an a-MEU preference relation on L, with a set C of priors. If C is a relatively weak

compact subset of ca (S, X)), then ¥ is strongly monotone continuous.
Proof. Let e, f,g € L with f = g, and ¥ > E,, | 0. For all € > 0,
A, ={seS:|u(f(s)—u(eE,f(s)|>ect=E,N{seS:|u(f(s)—ule(s))] >e} 0.

Then, by Lemma 6, lim,, (suppcc P (A,)) = 0. Hence, there exists n. € N such that P (4,) < ¢ for all
n>n.and all P € C. Let M = max{|uoel,,|uo f|,}. It holds:

/|uof—uo(eEnf)|dP = /A|uof—uo(eEnf)|dP+/ |uo f—uo(eE,f) dP

A

c
n

< 2Me+¢

for all n > n. and all P € C. Then [wuo (eE, f)dP — [wo fdP uniformly with respect to P € C. Whence

;lég/UO(eEnf)dPHIilelf(;/uofdPand f}ég/uo(eE"f)dP_)fil%/uofdP’

and so
V(eEnf) =V (f)>V(g).

Analogously, V (eE,g) — V (g) < V (f), as desired. B

The previous lemmas yield the following result, which in turn implies Theorem 1:



Theorem 9 Let 7= be an a-MEU preference relation on L, with a set C of priors. Then, the following

conditions are equivalent:

(i) 7= is monotone continuous.

(ii) 7 is weakly monotone continuous.

(i1i) C is a relatively weak compact subset of ca (S, ).
(iv) 7 is strongly monotone continuous.

If, in addition, C is weak* closed, then (i) is equivalent to:
(v) Cis a subset of ca (S,%).

The next proposition — which immediately follows from Lemmas 7 and 8, and from Theorem 9 — illustrates
the relations existing between weak left and right monotone continuity.

Proposition 10 Let = be an a-MEU preference relation on L. Then,
(i) If a =0, = is weakly monotone continuous iff it is weakly right monotone continuous.
(i) If a € (0,1), Z is weakly right monotone continuous iff it is weakly left monotone continuous.

(iii) If « = 1, 7 is weakly monotone continuous iff it is weakly left monotone continuous.

A.3 Range Convexity

Proof of Theorem 2. By Lemma 4, there exists Py € @" (C) such that P < P, for all P € @* (C).

Let o # 1 and let 77; be downward atomless. We show that P is non-atomic. Suppose, per contra, that
A is an atom for Py. Then Py (A) > 0, A =; 0,°> and for all B C A, either Py (B) =0 or Py (B) = Py (A).
In the former case, P (B) = 0 for all P € C, so that B ~; 0; in the latter case, Py (A — B) = 0, so that
P(A) = P(B) for all P € C, and so B ~; A. This is a contradiction, since /7; is downward atomless.
Therefore, Py is non-atomic. As a consequence any P € C' is non-atomic since P < Py (see, e.g., Marinacci
1999, p. 360).

Conversely, let A € ¥ be such that A ; . Then suppce P (A) > 0, so that Py (A) > 0. Since P, is non-
atomic, there exists a decreasing sequence BJ, | B’ such that B, C A for all n € N and Py (B},) = 5 P (A).
Then, the sequence B,, = B], — B’ decreases to (), with B,, C A for all n € N, and Py (B,) = 2—1,1P0 (A). Thus
suppec P (By) | 0, which implies

inf P (B,)+(1- P(B,) |0,
o fuf P (Bn) + (1= @) sup P(By) |

and

ainf P(B,)+(1—a)sup P(B,) > (1—a)sup P(B,)
PeC PeC PeC

= (1-— P(B,) >
( O[)PEC_HOI'%zi(C) (Bn) 2 2n

11—«

Py (A) > 0.

For n large enough,

inf P (A)+(1- P(A)>a inf P(B,)+ (1 - P(B
o fuf P(A4)+ (1 - ) sup P(4) > a inf P(Bn)+ (1 - a) sup P(Bn) >0,

Sainfpec P(A)+ (1 —a)suppec P(A) = aminpeﬁ,w*(c) PA+(1-a) mMax pezzuw* () P(A)



that is, A =; B,, =; 0.
Let a # 0, and consider the dual likelihood relation A ! B iff B¢ =, A°. Set 3 =1—«a € [0,1) and

notice that =; is upward atomless iff >-! is downward atomless, and that

1 : c o ¢y <« : c _ c
AZ'B & a};relfc’jP(A)—i-(l a)supP(A)_a};relfCP(B)—l-(l a) sup P (B°)

pPeC PeC
&= ﬁgggP(A)+(1—ﬁ)glé%P(A) zﬁgréfcp(BH(l_m?é%P(B)'

As a result, if 2; is upward atomless, then the argument used in the case a # 1, when applied to 2!, shows
that C consists of non-atomic measures. Conversely, if C' consists of non-atomic measures, the argument
used in the case a # 1, shows that = is downward atomless and *7; is upward atomless. ll

Lemma 11 Let 7 be a monotone continuous a-MEU preference relation on L, with a set C of priors.
(a) If « € (0,1), then 7; is downward atomless iff it is upward atomless.

(b) If a € {0,1}, then, downward and upward atomlessness coincide provided that, for any A € ¥, we have
A¢ ~; 0 if and only if A~ S.

Proof. A direct proof of (a), not building on monotone continuity is possible. But, under monotone
continuity the result immediately follows from Theorem 2. Next we prove (b).

Suppose a = 1. We first show that downward atomlessness implies upward atomlessness. Let inf pec P (A4) <
1. Then infpec P (A¢) > 0. In fact, inf pec P (A°) = 0 implies A¢ ~; . Then there exists B¢ C A€ such
that 0 < infpec P(B°) < infpec P (A°). But, A C B implies infpec P(A4) < infpec P(B) < 1. If
infpec P (A) = inf pec P (B), then

0 < inf P(B—A)= inf (P(B)= P(4)) <

< inf P(B)— inf P(A)=0,
pPeC pPeC

so that inf pec P ((B — A)¢) = 1. In turn, this implies 1 — P(B)+ P (A) =1forall P € C,i.e., P(A) = P(B)
for all P € C. Hence, P (A°) = P (B¢) for all P € C, and so inf pec P (A°) = inf pc ¢ P (B¢), a contradiction.

As to the other implication, let infpec P (A) > 0. Then infpec P (A€) < 1, so that there exists B¢ D
A° such that infpec P (A°) < infpee P(B€) < 1. This implies 0 < infpce P(B) < infpee P(A). If
infpec P(A) = infpec P(B), we can proceed as before (exchanging the roles of B and A) to reach a
contradiction.

Suppose a = 0. Consider the dual likelihood relation A >=! B iff B¢ »-; A¢. Notice that,
1. A% B & infpec P (A) > infpec P (B).

2. 7 is upward atomless iff =-! is downward atomless.

3. 7 is downward atomless iff =-! is upward atomless.

4. A¢ ~t () if and only if A ~; S if and only if A° ~; ) if and only if A ~' S.

Hence, the argument used for o = 1, when applied to ! shows that ! is downward atomless iff ! is

upward atomless at S, and the same is true for 7—;. B

Lemma 12 Let 77 be a monotone continuous a-MEU preference relation on L, with a set C' of priors, and
Py € @™ (C) be such that P < Py for all P € @% (C). If a # 1 (a # 0, resp.), then E € ¥ is downward
(upward, resp.) null iff Py (FE) =0, while f € L is downward (upward, resp.) essentially constant on E iff
wo f is Py-a.s. constant on E.



Proof. Assume a # 1; we have

E~ = ozlyelfCP(E)—l-(l—a)supP(E)zo

PeC
< O=sup P(F)= max P(E)< P(E)=0.
PeC Pecov™ (O)

Next assume « # 0. Then
E¢~ S << ainf P(E)+(l—a)sup P(E)=1<«=1= inf P(E°)= min P (E°)
bec pPeC bec Pegov” (C)
— P(E=1forall Pec" (C)«<= P(E)=0foral Pecw@" (C)< P (E)=0.

Ifa#1 (a#0,resp.), f: S — X is downward (upward, resp.) essentially constant on E if there exist a
downward (upward, resp.) null subset NV of E and a consequence x € X such that f (s) ~ z forall s € E—N.
This happens if and only if there exist a subset N of E such that Py (N) = 0 and a consequence x € X such
that w (f (s)) = u () for all s € E — N, which in turn is equivalent to the existence of a subset N of E such
that Py (N) =0 and uo f is constant on £ — N. H

Proof of Theorem 3. We write ¢ (S) € u (X) if there exists a compact interval H such that ¢ (S) C H C
w(X). It is easy to check that {uo f: fe L} ={p e B(S5,%):¢(S) €u(X)}.

Let Py € C be such that P < Py for all P € " (C). Notice that for a function ¢ in Le, (Pp) the
following facts are equivalent:

o ﬁwadP:kfor all P € C such that P (E) # 0.

o [¢(lg+klpe)dP =k forall P e C.
In view of the previous observations, condition (i) becomes:

(ia) for all E' € X such that Py (E) # 0, there exist f € L and k € R such that (uo f) p is non Py-a.s.
constant on E and pigy [puo fdP = k for all P € C such that P (E) # 0.

Setting ¢ = (v o f)1g + klge, (ia) implies:

(ib) for all E € ¥ such that Py (E) # 0, there exist ¢ in Lo (Fp) and k € R such that ¢ is a.s. equal to k
on E° and non a.s. constant on E such that fS wdP =k for all P € C.

Conversely, if (ib) holds, we can take a representative ¢’ of ¢ which is bounded, equal to k on E°, and
such that ¢’ (S) € u(X).5 Hence, there exists g € L such that uo g = ¢'. Clearly, g satisfies (ia), and so
(i), (ia), and (ib) are equivalent.

Moreover, (ib) is equivalent to

(ic) for all E € ¥ such that Py (E) > 0, there exists ¢ in Lo, (Fp) which is vanishing off F, non-vanishing
on E, and [g@dP =0 forall P e C.

Finally, observe that Py (E) =0 iff P(F) =0 for all P € C and all F' € ¥ N E; that is, I' (F') = 0 for all
FeXNE, where I' : ¥ — B(C) is the vector measure defined by I' (4) = {P (A)} pc- By the Knowles
Theorem (see Diestel and Uhl, 1977 p. 263), (ic) is then equivalent to (ii). H

6In fact, u (X) has a nonempty interior, and if ¢ and k satisfy (ib), then also ap + 8 and ak + 3 do, for all a > 0 and all
B eR.
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