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Abstract: A piecewise rational cubic function is developed to preserve the shape of monotonic data. The
rational cubic function has two free parameters in its description. Rational cubic functions are extended to
rational bicubic partially blended functions. Simple data dependent constraints are derived on free
parameters in the description of rational functions to conserve the shape of monotone 2D and 3D data. The
developed schemes have unique representation. The error bounds of the piecewise rational cubic function is

established as O( hy).
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INTRODUCTION

Data visualization is very important component of
scientific research. It is a technique to convert data into
visual display for gaining understanding and insight
into the data. Data visualization has proved its
importance in many areas including computer graphics,
medical imaging, reverse engineering, architectural
design, automotive, aerospace industries, earth and
atmospheric science (geology, meteorology,
oceanography and hydrology).

The data that is known may represent only a
sample and may not be sufficient for physical
interpretation of phenomenon of designer. To overcome
this difficulty data is visualized in the form of curves
and surfaces. It is required that visual model (curve or
surface) must exhibit its inherent shape property to
illustrate the meaning of scientific experiment.
Monotone data arises in many physical process,
engineering problems and scientific applications. To
visualize the shape of the data such as ESR level in
cancer patients and blood uric acid level in gout
patients are examples of monotone curves. Non
monotone visual models of these experiments misguide
us about the health of the patient.

Smoothness is another significant requirement for
the pleasing visual display of the data. If inherent shape
properties of data are preserved but smoothness is not
ensured then curves and surfaces will contain undesired
oscillations. Cubic Hermite function schemes generate
smooth curves and surfaces but are not helpful for the
interpolation of the shaped data. Highly misguided

results, violating the inherited features of the data, can
be seen when visual models contain undesired wiggles
and bumps as in Fig. 4 and 7.

In recent years, researchers [1-15] have spent
considerable time in the field of data visualization and
shape perservation. For instance, Asaturyan et al. [1]
presented an automatic algorithm for the construction
of local shape preserving interpolating splines. These
splines satisfy the convexity and torsion criteria relative
to the polygonal line connecting interpolation points.
Casciola and Romani [2] discussed rational interpolants
with tension parameters; they presented some rational
interpolating techniques to reconstruct shape preserving
bivariate NURBS. Duan et al. [4] discussed the error
estimation of a rational cubic spline. Fritsch and
Butland [6] presented a method for constructing
local monotone piecewise cubic interpolation. Fritsch
and Carlson [7] derived necessary and sufficient
condition for a cubic function to be monotone on an
interval where the degree of smoothness attained is C'.
Hussain and Sarfraz [9] discussed monotony of
piecewise rational cubic interpolation by imposing
constraints on free parameters. For this purpose, they
introduced a C' piecewise rational cubic spline. Hussain
and Maria [10] developed schemes for the visualization
of monotone data. They, in their work, also attained the
degree of smoothness as C'. Sarfraz [15] also used a
C' rational cubic spline for the visualization of 2D
monotone data whereas Hyman [11] discussed
monotony preservation using cubic interpolation.
Sarfraz et al. [13] discussed the problem of positive
2D and 3D data.
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This paper is a continuation of contribution
towards representing and visualizing the shaped data
when it inherits monotone feature of shape. The shape
preserving schemes, in the form of curves and surfaces,
have been presented for monotone 2D and 3D data
respectively. It is very important to mention here that
the proposed schemes are different from their counter
parts [9, 10, 13, 15] on the similar subject. It differs in
various aspects including the followings:

e It introduces and develops a new piecewise
rational cubic spline curve representation of the
form cubic/quadratic and then extends it to its
corresponding surface.

e [t presents monotony of curves as well as surfaces.

e The newly proposed piecewise rational cubic
spline curves have two free parameters in its
piecewise representations which are further
extended to their corresponding surfaces.

e Instead of calculating derivative parameters by
arithmetic mean method, which usually does not
work for monotone data, the derivative parameters
are estimated by geometric mean method which is
the appropriate estimator for the visualization of
monotone data.

e The error bounds of the proposed piecewise

rational cubic are established as O( h}).

e The proposed schemes reduce the higher order
arithmetic into lower degree arithmetic and are
local.

The proposed methods, in this paper, have also the
following important and advantageous features:

e It produces C' interpolant.

e No additional points (knots) are needed.

e The curve interpolant is not concerned with an
arbitrary degree, it is a rational cubic spline of the
form cubic/quadratic, it reduces to a Hermite cubic
in a special setting of shape parameters. Same
features are true for the surface interpolant.

e  Once, the shape parameters are selected, the curve
and surface representationsare unique in its
solutions.

e [t provides a guaranteed and unique alternate
solution.

e The proposed methodsare automated monotonic
data preserving schemes.

e There is no restriction on the number of data
points, the curve and surface schemes work for any
number of data points.

This paper has been organized as follows. In
Section 2, a rational cubic function is introduced with

two free parameters in its description. Derivative
approximation scheme is also introduced, in this
section, together with error analysis of the rational
cubic functions. In Section 3, a scheme is developed to
visualize monotone data in the view of C' monotone
curves by making constraints on free parameters. In
Section 4, rational cubic function is extended to rational
bicubic partially blended function. In Section 5, a
scheme is presented to visualize 3D monotone data in
the view of monotone surfaces. Section 6 concludes the
paper.

RATIONAL CUBIC FUNCTION

In this section, a C' rational cubic function with
two free parameters has been developed. Let
{(%,£),i=12,3,...,n} be given set of data points where

X<%<...<X,. In each interval | = [x, %+ ], a rational
cubic function S;(x) may define as:

S(x)=8(x;)
wiU; (1-0) + Wo(1-0) + T (1-0)+v;vie* (1)
i (1=0)7 + (i +v;) 6(1—0)+ v;6?

with
Ui =fi, W, =pihid; + (20 +0)f,

T, =—vihidi g + (1 +20; ) fipps Vi =fiy,
hi =Xir1 —Xi» 6=(x— Xl)/hl’lz 1,2,3,...,11—1

Rational cubic function
interpolatory properties:

(1) has following

S(Xi):fi’ S(Xi+l): fi
S(l)( %)= dj, S(l)(xm) =dj;1,

where S(l)(xi) denotes derivative with respect to x and d;
denotes derivative value given or estimated by some
approximate method at the knot x. In each interval [x,
X+1], the rational cubic function S(x)eC'[x,x,] has

free parameters s, and u;s.

Remark 1: In each interval [x;, x.;], it can be noted

that when p; = v; = 1, the rational cubic function (1)
becomes the standard cubic Hermite function.

Determination of derivatives: It often happens that the
derivative parameters {ds} are not given and hence are

needed to be determined by some suitable methods. In
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this work, they are computed from the geometric mean Theorem [5], the error of rational cubic function in each
method. These are the non-linear approximations which subinterval [; = [x;, x4 ] is as follows:
are defined as follows:

1 Xi+1 2
o A= 0 A 0. R[fJ=r(x)-S(x) =3 j ()R, [(x _T)Jdr )
e A?_‘{(hi" +hi )A?i"/(h"‘+h‘) otherwise,i=1,2,...,n—1 ‘
Considering the absolute value of Equation (2),
q 0 ifA;=0o0rA;=0
= X+
YA, {AI/AM}“‘/}‘2 otherwise |f(x)S(x)|:}% j f(3)(T)RX [(X*‘t)i}dl’
X
d = 0 ifA, =0 0rd,, =0 Using the uniform norm, the above equation takes
! An—l {An—l/An.n —2} hn*l/h * OtherWise the fOI‘m:
where 1.3) it 2
F(x)-s(x) < ()] ] RX[(Xfr)J dr,
X
Az =(f5~f)/(x3-%1), gz =(E — £ 2)/(x0 —%55) where
. : 2 n(r.x), xj<t<x
Error estimation: In this section the error bound of R, [(x - r)J = .
the rational cubic function is estimated when the &(r.x), x <t <xin

rational cubic function being interpolated is C'. The

interpolating scheme developed in Section 2 is local R, [(x _ T)ﬂ is called Kernel of the integral in Equation
that allows to investigate the error bounds of rational

cubic function in an arbitrary subinterval I; = [, Xi1] (2). Also, the kernel functions m(t,x) and & (t.x), are
without loss of generality. Using Peano Kernel presented as follows:

n(r,x)= (x —r)2 —ﬁ{ﬂz(l— 9)[(% +201)(xi+1 —17)2 _2Uihi(xi+1 —‘E)j| +Ui(Xi+1 —r)2 93}

X; <T<X

E_,(T, X) = 7%{92(1 - 9)[(#’4 +2v; )(XHI - 1:)2 72l)ihi(Xi+1 - ‘E)]+Ui (Xi+1 - 1:)2 93} X <T<Xjy

For error estimate representation, |R[f ], we first discuss the properties of the kernel functions m(t,x) and &

(t,x), then calculate the values of

Xi4

Fhenkor s b

Part 1: Study the properties of the function n(t,x). Consider n(t,x), T€[X,x] as a function of 1, n(t,X) is a quadratic
polynomial of variable t. According to the construction of kernel function n(t,x) in using the Peano-Kernal theorem,
v0e[0,1]. It is observed that: m(x,x) = 0. Now, by substituting t = x in n(t,x) and after some simplifications, it
becomes:
0% (1-0) h?
n(x,x)=———=——pu;(1-6)—v;6
(x00) == 1 -0) )

Let p;(1-6)-0;0 = 0 be considered in 0, its roots in (0,1) is

o* = Ky (3)
Hit L
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It is easy to show that n(x,x)<0 for 0<0" and when 0>0", we have N(xx)=>0. To see the sign of n(1,x) in [x;,X],
rewrite 1(T,X) as:

n(‘c,x)=ﬁ[((l +0)°(1-0) i+ 9(1—9)201)(x—r)2— 26% (1-6)" hy (i v;)(x — ) 62 (1-0)* b2 ((uy +oi)9—pi)J )

Then it can be found that second root of n(t,x) is:

- h;B((6 1)+ 6v;)
T (1+ B)ui+ el)i

beside the root T = x and when 6>9*, we have )g<r*<x and when 0<0" we have 1 >x. Thus when 6<6*, N(t,x)<0
V1e[x,x], so

x x 0°(1-0)*((2- 8)w— Ov; )3
)J; |n(r,x)|d1: = ;[(—n(r,x))dr— 3((1_ e)“i+ oiG) %)
When 6>8", the values of Nn(t,x) varr from negative to positive on the two sides of T, 50
j |n(‘c,x)dr| = I (—n(‘c,x))d‘r + .[(n(r,x))dr ,
X; X; T
or
T In(z. x)dq =%{e3(1—e)z[((2 ~0)ui— 00, )((1+ Oy + Bu; ¥ +2((2+ B)py+ 007 ) (0~ )i+ B )z}hf} 6)
where l

R =3 ((1- B)u;+ v;0)((1+ O)u;+ v6)”

Part 2: Study the properties of &t,x). Consider &t,x), T€[X, %+] as a function of 7, similar as discussed for n(t,x).
It is observed that &x1, X) =0 and &X, X) = n(X, X¥) and by similar analysis as in Part 1, one can see that when 9<0",
&x, x)<0 and when 0=0", &x,%>0. To see the sign of &(t,x) in [x;, X], rewrite &(t,x) as:

£(wx) __%[(92(1_9)2 b 0% (2 0)0;) (i1 = 920 (1- ) ulhi} )

and denoting
20 (1- 9y,
T :Xi+1 - 2 2
0°(1- O)p+ 6°(2- O)y

It is easy to show that when 6<0" &t,x) varies from negative to positive on both sides of 1+ and when 9>0",
&(t,x) remains positive in (X, X1 ), where 0" is defined as in (3). Thus when 6<0", we have:

Xy T Xin

‘J.] |€_,(T,X)dﬂ:| = I ({,(T,X))dt + J' &(t, X)dr
T e 9 - 02107 [(1-0) s+ v0)+ 301} +3((1+ e)ufﬂh?} ®)
where
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R =3 ((1- 8)u;+ 0;6)((1+ O)u;+ uie)2

and when 0>0°

X 0> (1-0)’((1+ 0) v, —(1- 0) )b
.[ E_,(’E,X)|d’C: ( ) (( ) ( ) ) (9)
X 3((1 _e)ui+ L 16)
Thus combining Equations (5) and (8), it can be shown that, when 6<6”
f(3) Xi+
|f(x)—s<x>|su2 IR G Jae= | o so0)
where
o (1;,0:,0) =02(1 —6)2[(1—9)2ui3 H1-0)(3- 9 1fu+ 8(2- G § +(4 —49—62)0?]/L (10)
with
L=6((1- 6)ui+ 6v;)((1 - § i+ (2- O v;)’
Similarly, when 00", combining the Equations (6) and (9), we have
f(3) Xit+1
|f<x>—s(x)|s“—l2 IR 0= =] it o 0)
where
oy (,0;,0) = 0 (1—6)[(—62 + 66—1)u? +(1— 0 )uizui+6(2+ G)uiuiz + 92013}/M (11)
with

M=6 ((1— B+ eui)((1+ )+ Oy )2

Theorem 1: For f(x)eCl[xl,xn],let S(x) be the

rational cubic function f(x) in [X, X4;] defined by
Equation (1) for the positive parameter b and v;, the
error of the interpolating function S(x) satisfies

|f(x)—S(x1§ #(3) h?Ci,
with ¢; = &13.;{10)(”,%6), where
,,0,,0), 0<0<0"
(D(lv'isUpe)= wl(“l Vi ) )
o) (1 0:,0), 6" <6<I1

o (4;,0;,0) and o, (4;,0;,0) are defined by Equations
(10) and (11) respectively.
Remark 2: By taking p = v; = 1, the rational cubic

function defined in Equation (1) is the cubic Hermite
function. In this case, the functions ;(u;,v;,0) and

o, (u;,v;,0) become as follows:

2 3
:m, 0< _1
3(3-20) 2

@ (0)

40 (1-0)% 1

o, (6 s
(10207 2

Since

max{ max o;(0), max m(0)=—
osesé 1( ) Esesl 1( )

It shows that the value of error coefficient is

c; :%. This is the well-known result for the standard

cubic Hermite function.
Demonstration: In this section error of the rational

cubic function is discussed numerically. For this,
consider a function:

f(x) =Jx+6.5 +x +2 )2, for xe[0,16].

One can see the interpolating values of f(x)
and S(x) are calculated at different knots x;, as shown in
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Table 1: The calculation for the function, spline and error

Table 1: Continued

i Xi F(xi) S(xi) [SCxil-/( xi) i Xi JF(xi) S(xi) ISCxil-£( i)
1 0.00 6.5495 6.5495 0.0000 49 9.60 138.5725 138.5724 0.0000
2 0.20 7.4284 7.4279 0.0005 50 9.80 143.2773 143.2773 0.0000
3 0.40 23868 8.3860 0.0008 51 10.00 148.0620 148.0620 0.0000
4 0.60 9.4246 9.4235 0.0009 52 10.20 152.9266 152.9266 0.0000
5 0.80 10,5419 10.5407 0.0009 53 10.40 157.8710 157.8710 0.0000
6 1.00 11.7386 11.7375 0.0009 54 10.60 162.8952 162.8952 0.0000
7 1.20 13.0149 13.0140 0.0009 55 10.80 167.9993 167.9993 0.0000
8 1.40 14.3707 14.3700 0.0007 56 11.00 173.1833 173.1833 0.0000
57 11.20 178.4471 178.4471 0.0000
9 1.60 15.8060 15.8056 0.0004
58 11.40 183.7908 183.7808 0.0000
10 1.80 17.3210 17.3207 0.0003
11 500 18.9155 18.9155 0.0000 59 11.60 189.2144 189.2143 0.0001
’ ' ’ ’ 60 11.80 194.7178 194.7178 0.0000
12220 20.5896 20.5898 0.0002 61 12.00 2003012 2003011 0.0001
13 240 22.3433 22.3436 0.0009 62 12.20 205.9643 205.9643 0.0000
14 260 24.1766 24.1770 0.0004 63 12.40 211.7074 211.7074 0.0000
15 2.80 26.0896 26.0900 0.0004 64 12.60 217.5304 217.5304 0.0000
16 3.00 28.0822 28.0825 0.0009 65 12.80 223.4332 223.4332 0.0000
17 3.20 30.1545 30.1547 0.0002 66 13.00 229.4159 229.4159 0.0000
18 3.40 32.3064 32.3065 0.0001 67 13.20 235.4785 235.4785 0.0000
19 3.60 34,5380 34.5380 0.0000 68 13.40 241.6209 241.6209 0.0000
20 3.80 36.8494 36.8493 0.0001 69 13.60 127.8433 247.8433 0.0000
21 4.0 39.2404 39.2404 0.0000 70 13.80 254.1456 254.1455 0.0001
22 4.20 41.7111 41.7112 0.0001 71 14.00 260.5277 260.5277 0.0000
23 4.40 44.2615 44.2617 0.0002 72 14.20 266.9897 266.9898 0.0001
25 4.80 49 6015 496017 0.0002 74 14.60 280.1535 280.1535 0.0000
26 50 523912 523913 0.0001 75 14.80 286.8552 286.8552 0.0000
27 520 55.2605 552606 0.0001 76 15.00 293.6368 293.6368 0.0000
77 15.20 300.4983 300.4983 0.0000
28 5.40 58.2096 58.2096 0.0000
78 15.40 307.4397 307.4397 0.0000
29 5.60 61.2385 61.2384 0.0001
30 5.80 643471 643471 0.0000 79 15.60 314.4611 314.4610 0.0001
’ ' ’ ’ 80 15.80 321.5623 321.5623 0.0000
31 6.00 67.5355 67.5355 0.0000 81 16.00 238.7434 238.7434 0.0000
32 6.20 70.8037 70.8037 0.0000
33 6.40 74.1517 74.1517 0.0000 Table 1. Absolute error values of f(x) and S(x) are
34 6.60 77.5794 71.5795 0.0001 shown in column 5 of Table 1. It is clear from column 5
35 6.80 81.0869 81.0870 0.0001 that up to three decimal places values of f(x) and S(x)
36 7.00 84.6742 84.6734 0.0001 is same. This shows that the order of the piecewise
37 7.20 88.3414 883414 0.0000 rational cubic function is O( hi3 ).
38 7:40 92.0883 92.0883 0.0000 Figure 1 is generated by the function
39 7.60 95.9150 95.9150 0.0000 ) ) )
40 7.80 99.8215 998215 0.0000 f(X) = ‘\]X +6.5 +(X +2 ) . fOr Xe [0,16] and Flg 2 1S
41 8.00 103.8079 103.8079 0.0000 generated by the piecewise rational cubic function
42 820 107.8741 107.8741 0.0000 S(x) developed in Section 2. Both Figures visually look
43 8.40 112.0201 112.0201 0.0000 same because error between f(x) and S(x) is very small.
44 8.60 116.2459 116.2460 0.0001 The insignificant error is demonstrated in Fig. 3.
45 8.80 120.5515 120.5516 0.0001
46 9.00 124.9370 124.9371 0.0001 MONOTONE RATIONAL CUBIC FUNCTION
47 9.20 129.4023 129.4024 0.0001 Rational cubic functi 1) has deficienci
48 940 133.9475 133.9475 0.0000 ational cubic function (1) has deficiencies to
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Fig. 1: Graph of the function f(x)
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Fig. 2: Rational cubic spline
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Fig. 3: Error between f(x) and S(x)

is required so that the visualization of monotone curve
for the monotone data could be guaranteed. This leads
towards some mathematical modeling by constraining
some suitable automated values to the free parameters.
This treatment is as follows:

1502

Let {(x; f;),i=1,2,3,....n} be a monotone set of data
such that x;<x<...x, and f; <f; ;,
f f:

i+l —

L>0
h.

1

A =

1

di>0, i = 1,2,...n-1. Now S(x) is monotonically
increasing if and only if §1)(x)20 for allx € [x, %]

One can easily manipulate the following:

s (x) = iAieil (1-0)" / (ai (6))2

where

(12)

Ay =pid,

Ay =210 (24 - ) + 204,

Ay =12 (28 —d,)+2u0, A —d, —d ]} +07 (24, - d,,,)
A, =2u0,(2A —d,)+207A,

_ .2
=vd,,

A

5

Since the denominator in (12), being a squared
quantity, is positive, therefore S(l)(x)ZO if As>0,

i=1,2,..,5 It can be easily observed that As>0 if

>0, v;i>0, Lli>di.Ai and v;>d;+1/A;. Thus, all the above
discussion is summarized in the following theorem:

Theorem 2: The rational cubic function (1) visualize
the shape of monotone data in each interval [x;, x+] if
the free parameters satisfy the following conditions:

W= ¢ +di/Ai o,>0
v = B +di1 /A B> 0

and all derivative parameters  ’s are computed from
the geometric means choice in Section 2.1.

Demonstration: This section is comprised with two
practical examples to demonstrate the proposed curve
scheme. In the first example, a monotone data is
considered in Table 2. Figure 4 is drawn using cubic
Hermite function form, it does not preserve the
monotony. Figure 5 is fitted by using the monotone
scheme developed in Section 3 which clearly
conserves the monotony. Figure 6 is the merge of
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Table 2: A monotone data Table 3: A monotone data

i 1 2 3 4 5 i 1 2 3 4 5
Xi 0 6 10 29.5 30 Xi 5 6 11 12 15
Vi 0.1 15 15 25 30 i 10 11 25 50 85

D

30

y
-

. =
. ) 7
ff A
" AN - /

/ = ;

J 20 7

0 5 10 15 20 25 30 5 6 7 8 9 10 1" 12 13 14 15
x-axis X-axis
Fig. 4: Cubic hermite function Fig. 7: Cubic hermite function
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Fig. 5: C' monotone rational cubic function Fig. 8: C' monotone rational cubic function
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Fig. 6: Comparison between cubic hermite and C Fig.9: Comparison between cubic Hermite and C

function function
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curves in Fig. 4 and 5 to see the clear difference of a
simple cubic spline curve (dotted curve) and the
proposed monotony preserving curve (solid curve) in
one frame.

In the second example, another monotone data is
considered in Table 3. Figure 7 is drawn using cubic
Hermite function form, it does not preserve the
monotony. Figure 8 is fitted by using the monotone
scheme developed in Section 3 which clearly conserves
the monotony. Figure 9 is the merge of curves in Fig. 7
and 8 to see the clear difference of a simple cubic spline
curve (dotted curve) and the proposed monotony
preserving curve (solid curve) in one frame.

RATIONAL BICUBIC FUNCTION

This section proposes an extension of the piecewise
rational cubic function (1) to a rational bicubic partially
blended function S(x,y) over the rectangular domain
D = [ab]x[c,d]. Let <x, =bbe a

partition of [a,b] and #:c=y <y, <..<y,=dbe a

mia=x < X,<..

partition of [c,d]. The rational bicubic partially blended
function is defined over each rectangular patch [x;,

X1 X[Vi, Yie1 L, 1= 1,2,...,n-1;j=1,2,...,m-1 as:
S(x,y) =—AFB" (13)
where
0 S(Xan) S(Xa)’jH)
F=| S(xi.y) S(Xi’yj) s(x-, Yj+1)

S(xi+1) S(Xiﬂa}’j) S(Xi+lan+l)

A=[-1 af0) a(®)] B=[1 bo(¢) bi(9)]
with
o=(1-0)

1-¢)’
(x xl/h1 h; =x;,; -x;,0<0<1

)
(y yJ)/J’J =Y —Yp0s¢<l

1+20),a,=0°(3-20)

(
( ¢*(3-29)

1+2¢), by

The functions S(Xij):S(XanH )s S(be) and S(XH] :Y)
are same as rational cubic functions (1) defined over the

boundary of rectangular patch [x;, X+ |%[Yi, Yi1]. These
are described in Equations (14-17) as:

4
X yJ Z 17 4 19'_1A1J/h(9) (14)

i=

with

Ajj=uiF
Agj=(2ui+v14)Fij +RihE
Ag; =(Hi,j+ 2Ui,j) Firj—
Agj=v Fa

ql(G)zuiJ(l—e) (uu+0 )6(1 6)+ulJ6

4 -
X yJ+1 z l911]3ij/‘12(9) (15)
i=1

Vj h1F+1J

with

2
Bjj=uijnb 41
B,j= (2Mi,j+1 + Ui,j+1) E i+ ui hiFj
Bs; = (Hi,j+1 + 201,j+1)Fi+1,j+1 Ui jethi B
2

Byj =vijnkbi j

- 2 2
42 (0) = pi j41 (1-6) +(”i,j+1+Ui,jo—l)e(1_e)+ui,jo—le

S(xiy) = 24:(1 —¢)4_i ¢ilcij/l3 (9) (16)

i=l

with

~n2
Cij=nifi;
C2j =(2}li,j +f)i, ) +H1 ]hJF;_]

C3; =(pij+ 26i,j)Fi 0, hF

ST VL L 4L
Cyj =08 41
q3(0)=p ;(1- 4)) (MJ 1J)¢(1 ) ‘H:li,j‘bz
4
S(xiny) = (1= 0Dy fas (s (17)
P
with
Dyj =i jE

Dy; (2“1+1 J +U1+1_])F1+1 Gt Hia th i+1,j
D (HH—IJ +20;4 _])FH—I 1~ Ois1 _]h_]FH»I_H»l
"2
Dyj =iy B4
. 2 [ - ~ 2
q4(0) = Rizr; (1-0) +(Hi+1,j+Ui+1,j)¢(1—¢)+Mi+1,j¢
Remark 3: In each rectangular domain [x, %]x[yi,
yit1], it can be noted that when , the

rational bicubic function (13) becomes the standard
bicubic Hermite function.
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Derivative for 3D data: It often happens that the derivative parameters are not given and hence are needed to be
determined by some suitable methods. In this work, they are derived from the geometric mean method stated in

Section 2.1. These are defined, for 3D data, as follows:

0
FX =

1,

0

X

v

Lj

ifAi—l,j =0 or Ai,j = 0,

! A?j{(jhi*”h‘ )A?E*‘/(hifl i) otherwise,i=2.3,...n—1,j=12,---,m

ifA;=0o0rA; ;=0

A {Al,j/Azl,j} m/: o otherwise
. 0 ifAn_lyj:O orA“(n%)'J:O
A {An_l,j/A“(n_z).j} s otherwise
where
Ayp =5 =F ) (x5 =%1)s Annezyj = B —Faa )/ (Xn —Xn2 ) A j = (Fi+l,j -E; )/hi
Similarly
Fy ~ 0 ifAi’Hzo or Ai,j:()’
Lj ") ah /M +h )ah f(h +h
- A J/i i J)A‘JTI/( jithy otherwise,i =1,2,...,n,j=2,3,---,m—1
N i.j
0 ifA,=00rA =0
o PP
! A {AM/AL31 } Wi otherwise
0 ifAi,m—l = 0 or Ai,m(m»Z) = 0
F]i L= n R N "
! Ai,m -1 {Ai,m»l/Ai,m(m—Z)} i l/hm ! OtherWise
where
Az =(E3-F (v - 1) A mn-2) = Fim =Fm2)/(Ym = Ym—2)-Aij :(Fi,jH ’Fi,j)/hj
MONOTONE RATIONAL As in [2], Dbicubic partially blended surface
BICUBIC FUNCTION patch inherits all the properties of network of
boundary curves. Therefore, bicubic partially
Let blended surface patch defined in (13) will be
{(Xp yj,Fi,j);i:Lz,...n;j =1,2,...m} monotone in each rectangular patch [ = [x,

be the given set of data points defined over rectangular
grid

L :[Xi’ X X[Y_p Yj+l:|
i=1,2,...n-1;j=1,2,...m—1

the data will be monotone if it satisfy the following
conditions:

E; <F A > 0, E,; <F

i i+1,p

A;>0, By >0, B, >0, Vi, j

1505

X+ x[Yi, Yis1], if each of the boundaries curve
Sxyi) SXyj+), S(x.y) and S(xi1.,y), is monotone.
Thus, to prove the surface is monotony preserving, it is
sufficient to show that

S(l)(x,yj) >0, S(l)(x,yjﬂ) >0,

S(l)(xi, y) >0, S(l)(xm,y) >0, Vi,j

Now
5

2

i=l

gV (X’Yj)

where

= (18)

(1 _ 9)S—i eilTij/(ql (6))2
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T, =2 E

Ty =2u,0,; (28— B )+ 200 A,

T3j=uij(2A~ )+2u” IECTNES S
v, (28,,-F} )

T, =2uijoij(2Ai,j —F ) +20] A,

Ty =vi L

Thus, $"(xy)>0, if T;>0, Vi = 1,2,...,5. We can
see that T;;>0 if

EXJ Fix+1,j
p’i,j>0’ Ui,j>0’ Hi.j>?’j, Ui.j>A_Lj
Similarly
1 5 > 2
—1 A
) 30005 o 0
i=l
where
Sli=Hiz,+1Fix,}l

Sy :2Hi,j+1‘)i,’ﬂ( LT e M) +2H?,}1Ai,_+1
ng:Hiz,'ﬂ(ZA' a—E )+2ul #1951 {4A -Fl Fix,j-l}

2
+Ui,}1( F. ﬂl)

S, =2m;. Mlﬁl(ZA ~E',,)+20] A

i LT
5|= |+|fr+l +1
Thus, st (x,yj+1)>0 if §;>0, Vi= .,5. We can
see that S;;>0, if
E*. E, .
W >0, v 4, >0, o >— y >
S Ll j1 Ai.“ j1 Ai,-ﬂ'l
Similarly
2 5
—i
N ¥) = (1-0) ¢ 1Uu/ (a:(0) @0
i=1
where
S

Uzi = zﬁ'i,i()i,i (ZAi.i - E’Y,H) + 2ljliz,iAAi,i

Uy, =i, (28, B )+20, 5, {44 -F), -
+ Giz.j (2Ai,j - l:lyj 1)

U= 20,0 (ZAM _Fiy,i) +26 A,

—)2 Y
U, =v; E

Ji,41
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Thus, S(l)(xi,y)>0, if Up>0, Vi = 1,2,...,5. We can
see that U;;>0, if

E" E’

a,>0, 5,>0, o, >=L 0 >—==
' ' h 1,) ' Al]
Similarly
> 5
i
Xi+1oY z 1 ¢ 1 1W1J (q4(¢)) (21)
i=1
where
Wli :p\'izﬂ,iFi{-l.j

Wzi zzﬁi+l,i6i+l,i(2Ai,i -F, +1)+2ﬁ12+1 in i

Wiy =175 (2A0 = Bl ) + 20, 0 {48 - B - B
+00,5(24, - E )

Wi =201,1,0,,15(24 - Bl )+ 202, A,

WSj = 6i2+1.jFiy+1 41

Thus, S(l)(xi+1,y)>0, if W;0, Vi=12,...,5. We can
see that W;>0, if

E 1

1+l| A id,41
“Hl J >0 UHIJ >0 HH»IJ > i+l,j A
i+1,j i4,]

All this discussion is summarized in the following
theorem:

Theorem 3: The rational bicubic partially blended

functions defined in (13) visualize the shape of
monotone data in each rectangular patch

L =[x %, ]x |:yj’ yw]

if the free parameters 1, ;, O, ;, By ;1 O jp By Oppn iy

and v, ; satisfy the following conditions:

F; o
Bij=a;+—==,  3;>
J J Ai,j J
E}
U,I:blj+f b, >0

B F 5 0
Hi s _Ci,j+A > Cij >
g

Fix+1 41
O, =d = d >0
g i.j A > L

i,d1
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Table 4: A 3D monotone data

Table 5: A 3D monotone data

yi/Xi -3 -2 -1 1 2 3 yi/Xi 1 2 3 4 5 6
-3 -54 -35 -28 -26 -19 0 1 0 1 10 33 76 145
-2 -35 -16 -9 -7 0 19 2 10 32 98 232 458 800
-1 -28 -9 -2 0 7 26 3 34 91 252 571 1102 1899
-26 -7 0 2 9 28 4 78 184 478 1056 2014 3448
-19 0 7 9 16 35 5 148 317 782 1693 3200 5453
0 19 26 28 35 54 6 250 496 1170 2488 4666 7920

0 o R
204
"J_,.........

For] 1 1 IR

1-3ME

AQfee
oo

ke o -anis

Fig. 10: Monotone rational bicubic function

2-8r1§

'
A

. ; s : ; ;
-EE‘:H - -1 1] 1 ) 1

Fig. 11: yzview of Fig. 10

Y
1= b
Hij =&t
i
y

E .
~ ,‘jl
O =fi;+=, f;>0

q,j>0

ij
F
A _ i+l,j
iy =8t A g;>0
i+,

E, .
O, =h,;+=—h >0

i+, i.j
i+1,j

and derivative parameters are computed from the
choice explained in Section 4.1.

i k]

-t e s

FE-clk]

Fig. 13: xz-view of Fig. 12

section

Demonstration: This demonstrates  two
examples of 3D monotone data to illustrate the
proposed scheme. The first example is the monotone
data set in Table 4 which is generated from the
following monotonic function Fj(xy) = xX+y’. The
monotone surface, in Figure 10, is generated by
Theorem 3 for the monotonic data in Table 4 with
the choices: a; =0.2, bj;=0.2, ¢; = 0.25, d;j = 0.25,
eij = 0.25, f; = 0.25, g; = 0.2 and h;; = 0.2. Figure 11
shows the yz-view of Figure 10.

Another example is taken for a monotone data set
in Table 5 which is generated from the following
function:
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Fz(x,y) =x3 +x2y3 - 2y2

The monotone surface, in Figure 12, is generated
by the Theorem 3 for the monotonic data in Table 5
with the choices: a; = 0.25, bj; = 025, ¢; =02,
di)j = 0.2, G = 0.2, f,j = 0.2, g = 0.25 and hi,j =0.25.
Figure 13 shows the xz-view of Figure 12.

CONCLUSION

A new C' rational cubic spline has been proposed
together with the error analysis investigated of order

O(h}). The proposed spline has been developed to

visualize the C' monotone curves for the monotonic
data. The C' monotone rational cubic spline has then
been extended to monotone rational bicubic partially
blended surfaces. Simple data dependent constraints are
derived on the free parameters in the description of
rational cubic functions and rational bicubic functions
to ensure the shape of the data is preserved. The
developed schemes are implemented on monotone data
to visually demonstrate of the results.
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