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MONOTONE EMPIRICAL BAYES TESTS FOR
THE CONTINUOUS ONE-PARAMETER
EXPONENTIAL FAMILY

By J. C. vAN HOUWELINGEN
University of Utrecht, The Netherlands

Let ¢ be the natural parameter of a continuous one-parameter expo-
nential family. An empirical Bayes test is constructed for testing # < 0
against § > 0 with a piecewise linear loss function. Since the problem is
monotone, Bayes tests for a given prior distribution can be characterized
by a single parameter, e.g., the size of the test under §=0. Therefore the
construction of an empirical Bayes test can be reduced to the construction
of an estimator of this parameter. Such an estimator is constructed and the
convergence rate of its mean squared error is investigated. The empirical
Bayes test constructed in this way has not only nice asymptotic properties,
but it can also be applied to small samples because of its (weak) admissibility.

0. Introduction. Johns and van Ryzin (1972) constructed empirical Bayes
tests for the continuous one-parameter exponential family and investigated the
convergence rates of the corresponding Bayes risks. It will be shown that the
monotonicity of the problem can be used to improve the empirical Bayes tests
and to simplify the conditions on the prior distribution under which a given
convergence rate can be achieved.

1. Description of the problem. The Bayes decision problem is considered that
can be described as follows. Consider the pair (X, ©) of real-valued random
variables. The random variable X corresponds to the observable variable, the
random variable © corresponds to the unknown parameter.

The conditional distribution F(. |#) of X given ©® = # has density function

(1) f(x]0) = m(x)e*?h(0) .
The functions m and # are known. They determine which exponential family
is dealt with.

The random variable © takes values in the natural parameter space

Q= {0|h0)" = {e’!m(x)dx < 0} C R.

The distribution G of © is called the prior distribution of the parameter.
The marginal distribution F(+|G) of X has density function

2 f(x]G) = m(x) § e”"h(0) dG(0) .

Without loss of generality it may be assumed that 0 ¢ Q and that § m(x) dx = 1,
or equivalently 4(0) = 1. Moreover it is assumed that m has the following
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982 J. C. VAN HOUWELINGEN

properties:

(i) there exists an interval (a, ) (—o0 < a < b < oo0) such that

m(x) > 0 if xe(a,b)

3) =0 if x¢(a,b),

(i) m is r-times differentiable on (a, b)

|m™(x)| is bounded on each interval (a’,d) (a<a <b <b).
It is wished to test H,: 6 < 0 against H,: 6 > 0. The action space 4 = {a,, a,}.
The action a; corresponds to “accept H,.” The loss function L is defined by
L0, a;)) = max (0, 0), L@, a)) = max (—6,0).

This loss function is very common in Bayes and empirical Bayes testing.
From a practical point of view it is reasonable and it has great mathematical
advantages.

Since Bayes tests are essentially nonrandomized, attention can be restricted to
nonrandomized tests, i.e. functions on (a, b) to 4. The Bayes risk of a test ¢ is
defined by

A test is said to be a Bayes test w.r.t. G if
4) r(G, ¢) = r(G) = inf,, 1(G, ¢") .
A Bayes test w.r.t. G can be constructed as follows. Define
(5)  A(x) = $a(L(0, @) — L0, @)}f(x|0) dG(0) = f(x|G)E(O| X = x}.
Define
(6) Po(x) = @, if Ag(x) >0
= q, if Ayx) 0.

It is easy to show that ¢, is a Bayes test w.r.t. G.
Moreover, the following equality holds

(1) 1Gr$) = HG) = Vimpieresgon [Ba(¥)| dx  for each test ¢ .

The empirical Bayes method (see, for instance, Robbins (1955) and Robbins
(1964)) considers the situation where the prior distribution G is unknown but
information about G can be obtained from previous comparable experiments.
This can be formalized as follows. Let X}, - .-, X, be a sequence of i.i.d. rv’s,
independent of (X, ©), with the same marginal distribution as X. Instead of a test
based on X alone, a test is used based on X;, - --, X, X. Such a test procedure
is called an empirical Bayes test (e.B. test). Formally, an e.B. test is a sequence
(#,).5, Of functions on (a, b)*** to 4. Its Bayes risk is defined by

r.G, ¢,) = EL(®, ¢.(X,, - - -, X, X)).
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An e.B. test ¢ = (¢,),2, is said to be asymptotically optimal (a.o.) for G if
limn-voo {r'n(G’ ¢n) - r(G)} =0 *

Notice that 7,(G,9,) — r(G) = 0 by definition (4) of 7(G).
A practically useful e.B. test should be a.o. for all G in a wide class & of
prior distributions. Moreover, r,(G, ¢,) — r(G) should converge to zero rapidly.
Johns and van Ryzin (1972) constructed an estimator A, of A; and defined

$ = ($n)nz1 bY
(X, -y X, X) = a, if Au(xy, -, x,,x) >0
= a, elsewhere.
Using the results of Robbins (1964) they could easily prove that ¢ is a.o. for
all G satisfying
(8) Ey0] < oo

They also gave results concerning the convergence rate of r,(G, ¢,) — r(G).
Van Houwelingen (1973) showed that the e.B. tests of Johns and van Ryzin
can be readily improved if the monotonicity of the problem is used and the
results of Karlin and Rubin (1956) are applied.
This method yields an e.B. test that can be written as

(9) ¢n(x1’ sy Xy 'x) = a, if x > Cn(xl’ M) xn)

= a, elsewhere.
Such an e.B. test is weakly admissible in the sense that ¢,(x,, ---, x,, +) is an
admisible test for the non-empirical problem for all x,, ---, x, and all n. The

e.B. test of Johns and van Ryzin lacks this weak admissibility property.

Notice that this kind of weak admissibility does not necessarily coincide with
the strong admissibility defined by Meeden (1972). In his definition ¢ = (9,),s,
is admissible if there does not exist an e.B. test ¢ = (¢,),=; such that

r. (G, ¢,) < r. (G, ¢,) forall G andall =,

with strict inequality for at least one G and one n.
In the next sections it will be shown how an e.B. test of type (9) can be con-
structed. Moreover, its convergence rate will be investigated.

2. Reduction to a simple estimation prdblem. Consider the Bayes test, defined
by (6), in greater detail. By definition (5) of A;, ¢, can be written as

() = a, if EO|X=x)>0
= q, if E@|X=x)=<0.
Notice that E(O|X = x) = { 0e*'h(0) dG(0)/ e**h(0)dG(0) is a nondecreasing

function of x because

(10) diE(G)IX:x):Var(@]X:x)gO,
X
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To avoid degeneracy the assumption is made that
(11) lim, , E@|X = x) < 0 < lim,_,, E@|X = x).
The following consequences of (11) can easily be verified.
(i) G is nondegenerate,
(12) (ii) E(@|X = x) is strictly increasing on (a, b),
(iii) there exists a unique ¢z € (a, b)) such that E@|X =¢;) =0,
(1v) @e(x) =a;, if x>c;, Po(x)=aqa, if x=Zcq.

This shows that the Bayes test ¢, is completely determined by the single constant
cg- Let

(13) (i) M(x) = F(x|0) = (i m(y)dy
(i) ag = Py pa(X) = a} = M(cq) .

Assumption (31) implies that M has a unique inverse function M~* on [0, 1] to
[a, b]. Hence, the constant «a, also determines ¢, completely. Moreover, it
follows from (12iii) that

(14) 0<ag< 1.

An a.o. e.B. test can be constructed by constructing a consistent estimator a,, of
ag, that takes values in [0, 1] and by defining

(15) Do(Xgs 00y X,y X) = q if x> MY a,(xy, -5 X))
= a, elsewhere.

Notice that ¢, is of type (9).

It seems more natural to estimate ¢, directly, but the estimation of a, is easier
to handle.

The next lemma relates the convergence rate of r,(G, ¢,) — r(G) to the con-
vergence rate of the mean squared error of a,,.

LeEMMA 1. Let ¢, be defined by (15). Suppose that (3) and (11) hold and that
E;|0| < oo, then

(16) (G5 ¢,) — 1(G) = O(E(an(X,, - -+, X,) — ag)’) (n — o).
Proor. Let ¢, be defined by
Gux) = a, if x>MHa);  $x)=a, if x<Ma).
From (7), (12iv) and (13) it follows that
S(a) = 1(G, $o) — r(G) = Vi), Ag(x) dx .

(Notice that Ay(x) > 0 for x > M~'(a,) and Ay(x) < 0 for x < M~Y(ay).)
By definition of ¢ = ($,),21>

7w(Gs $) — 1(G) = ES(a,(X,, - - -, X)) -
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The definition of S and the differentiability properties (3ii) of m together imply
that

(i) 0= S(ag) < S(a) < (2 1Ax(x)| dx < Ef®| = C, < oo,

(if) S has a second derivative on (0, 1), |S”(a)| is bounded on each interval

(ap ay)) With 0 < a; < a, < 1,
(iii) S'(ag) = 0.
Since 0 < a; < 1 it is possible to choose a constant ¢ > 0 such that I, = [a,; —
g, aqg +¢] < (0, 1).
Let C, = sup,.,, [S"(a)|/2.
Let F, be the distribution function of a,(X;, - -+, X,), then
(G, ¢,) — 1(G) = §:S(a) dF (@) = (,e;, S(a) dF () + (401, S(@) dF,(a)
S G laer, (@ — ) dF (@) + Cy (4og, dF ()
< (G + e 'CHE(a, (X, -+, X,) — ag)?.
This completes the proof.
Note that the condition E;|0| < oo was given in (8) as a sufficient condition
for asymptotic optimality.
From Lemma 1 it is clear that ¢ = (¢,),., is a.0. for all G satisfying E;|0| < oo,

provided that a, is a consistent estimator of «,. Itappears that attention can be
restricted to the construction of an estimator «, of ay.

3. Construction of an estimator of «,. In order to estimate «, it is useful to
make the transformation Z; = M(X;). If X, has the distribution given by (2) and
(3), Z; is a random variable on (0, 1) with density function
(17) u(z) = {q "' 1(0) dG(0) .

The differentiability properties (3) of m together with (12) imply that » has the
following properties.
(i) Wiz <0 for 0<z< aq,
=0 for z=a,,
>0 for a,<z< 1.
(18) (ii) There exist constants ¢, 6 > 0 such that u”(z) = ¢ forall
zelag — 0, ag + 9].
(iii) u s (r 4+ 1)-times differentiable on (0, 1) and |u"*V(z)| is
bounded on every interval (z,z) with 0<z, <z, < 1.
To prove these properties, notice that
(19) () mM7(2)u'(z) = u(2)EO|X = M~(2)),
(il) m(M~'(2))"(z) = w(2)E(@*| X = M~Y(2)) — m'(M~'(2))u'(2) .
From (i) it follows that (18i) holds, from (ii) it follows that (18ii) holds. Pro-
perty (18iii) can be proved by repeated differentiation.
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From (18i) it follows that a, can be written as
ag =¢+ (71 _, ot/ (2)) dz if age(e, 1 —¢) 0<e< .
Suppose that #,(z) is an estimator of u’(z) based on Z,, ..., Z, and that (¢,),.,

is a decreasing sequence tending to zero.
An estimator «, of a; can be constructed as follows:

(20) a, =¢, + §imn o 01,/ (2) dz.
Let
(21) o, 2) = Eu,)(Z,, ---, Z,,2) — W (2)}.

The next lemma relates the mean squared error of a, to ¢,%(2).
LEMMA 2. Let a, be defined by (20) and o, by (21). Suppose that (3) and (11)
hold. Let ny be such that age (¢,, 1 — ¢,) for n = 0. Then,
(22)  EaWZy -+ Z) — )
< (Y min (1, o, ()W () dz2P  for 1= n,.
Proor. Define I(z) = I _. o(#'(2)) and I,(2) = I, _, o(4,’(2)). Letn = n,, then
E(a, — ag) = {17 Vi E[{L(2) — K2)W(z) — 1(2))] dzdz,
From Schwarz’ inequality and the equality
{Iu(2) = 1(2)f = [1(2) = I(2)]
it follows that
E(a, — ag)’ < {§i; {E|[(2) — 1(2)[}* dz}* .
Since E|I,(2) — I(2)] < P(1u,/(2) — ¥(2)] Z [W(2)]) < min (1, 0,4)/jw'()]),
E(a, — ag)* < {§i;» min (1, 0,(2)/[w'(2)]) dz}* .
This completes the proof.
Lemma 2 is stated because in most cases it is hard to find the distribution of
u,'(z). Itis only possible to give upperbounds for its bias and variance.
In order to construct an estimator u,’(z) of #’(z) ideas of Schuster (1969) and
Johns and van Ryzin (1972) are combined. Schuster pointed out that the deriva-
tive of a density function can be estimated by the derivative of a suitable kernel

estimator. Johns and van Ryzin introduced a special type of kernel. Let K be a
function on R such that

(i) K(x)=0 if xg(0,1),

(i) $K(x)dx =1,
(23) (ili) K is absolutely continuous, K(x) = {*, K'(y)dy,

(iv) |K'(x)| is bounded on R,

v) i xK(x)dx =0 for i=1,.-.,r—1.
For example, take K(x) = > 74! a,x* for xe[0, 1] with a,, - .-, a,,, such that
K(l1) = 0, { K(x)dx = 1 and {} x'’K(x)dx =0fori=1,...,r — 1.

Let (h,),s, be a decreasing sequence of constants tending to zero (h, < 3).
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Define

(24) u,(zy + v, 2,,2) = —n7'h, 30 K'((2; — 2)[hy) for 0<z<4,
=nth, "2 30 K'((z — z)/h,) for }<z<1

This yields an estimator of #’(z). Simple calculations (see Schuster (1969) and

van Houwelingen (1973)) yield that

(25) 0, X(2) = E(u,'(2) — w(2))' < Kin™'h,~0,(2) + Khw,(2)} -
Here,
(i) K, and K, are constants that only depend on K (andr),
(i) v,(2) = Supogyg, 4(z +y) for 0<z<4,
(26) = SUPygy<n, U(Z — y) for i<z<1,
(i)  wu(2) = SUPogya, (472 +y)| for 0<z<4,

= SUPggyzs, [#7H(z — y)| for 3 <z < 1.

It is obvious that the convergence rate of the right-hand side of (25) is optimal
for h, = O(n~v@+), For the sake of simplicity, take

(27) hn — Cn—1/<2r+3) 0 < C < % .
Then,
(28) 0,}(2) < n7er I {C,(2) + Cyw,(2)'} -

Note that the maximal value of r is determined by the differentiability properties
of m (see 3ii). Inequality (28) suggests that it would be advantageous to take r
as large as possible in the construction of #,'(2), i.e., in the choice of the kernel
K. Generally this is not true, because large value of r yields an estimator u,'(2)
that may be a wildly oscillating function of z, especially when n is small. So,
it is advisable to use a moderate value of r, even when m is analytic on (a, b).
A combination of Lemma 2 and inequality (28) yields the main theorem,
which gives a precise convergence rate statement for E(a, — a,)’ and hence for
r(G, ¢,) — r(G), under a simple condition on G. In order to get this convergence
rate the sequence (¢,),», must be properly chosen, namely in such a way that

(i) limn—»oo e’n = 0 b

dr+1 M—l r+1
a1

= O(log n) n—oo.

(29) (il) Supze[en,l—en] m(M_l(Z)) : Supze[ewl—en]

THEOREM. Suppose that (3) and (11) hold. Let w, be the estimator of ag con-
structed above (see (20), (23), (24), (27) and (29)). If

(30) EG‘G)V-H. < oo ’
then

31 E(a, — ay)? = O(n~/r+3 log?n n— oo.
g'n)
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REMARKS.

(i) For the normal case condition (29ii) is satisfied if 1/, = O((log n)¥/r+%).
Generally, it is recommended to take a sequence (¢,),,, With a very small first
term ¢, and with a very slow convergence to zero, e.g. ¢, = 107°/log log (e + n).

(ii) Condition (30) offers another argument for the advisability of taking a
moderate value of 7 in the construction of «, through u,’(z).

(iii) The result of the theorem is closely related to the results of Johns and
van Ryzin (1972). They get a covergence rate O(n~*"/?r+¥) with 0 < d < 2 if
m is (r + 1)-times differentiable and if G satisfies some conditions which for
special cases turn out to be equivalent to moment conditions like (30).

Proor oF THE THEOREM. Throughout the proof C, C, and C, are constants
that may have different values in different positions. Define

L,(2) = min (1, n=?{Cw,(2)! + Cw,(2)}/|¥(2)]) .
with 8 = r/2r + 3).

From Lemma 2 and inequality (28) it follows that it suffices to show that
§i-tn L,(z)dz = O(n~*log n). Since 0 < a; < 1 it is possible to choose a con-
stant A such that 0 < 2 < @y < 1 — 2 < 1. If nislarge enough, ¢, < 4. Then,
the integral can be split into three parts.

Vo La(2) dz = i, Lo(2) dz + §i7 Lo(2) dz + §iZpLa(2) dz .
A symmetry argument shows that it suffices to prove that

(a) (-1 L,(2)dz = O(n~*logn),

(b) § L,(2)dz = O(n~*logn).

Proor or (a). From (18iii) it follows that v, and w, are bounded on [2, 1 — 4].
Thus §i*L,(2)dz < {{*min (1, Cn?|u’'(Z)|"") dz. From (18i) and (18ii) it
follows that |u'(z)|* < C\|z — a4/~ for ze[2, 1 — ). Thisyields {}* L,(2) dz <
{3 min (1, Cn~#|z — ay|™*)dz = C,n=# + C,n~* log n.

This completes the proof of (a).

Proor oF (b). Since u(z) is a nonincreasing function of z for 0 < z < ay, it
follows from the definition of v, that there exists a constant n, such that

v,(2) = u(z) = u(ag) for 0<z<2 and n=n,.
Moreover it follows from (19i) that
(@) = m(M-{2)u(2)|E@ | X = M~(2)| .

From the monotonicity of E(®|X = M~'(z)) it follows that

|W'(z)|7t < CAu(z)™ for zele,, 4].
Here, 4, = SUP,cre, 1-c,] m(M~(z)).
The results above imply that

Ly(2) £ mH{C(2)t + Cow, (D)} (2)|
< A.n¥C, + Cyw,(2)}.
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Define B, = sup,.(, 1. |(d"*/dz"*)M~*(z)|"*. From (29ii) it follows that it
suffices to show that
(©) {2 w,(2)dz = O(B,) n—oco.
Proor oF (¢). From (17) it follows that

7 r+1
W] S CSUPrgisyr § 0" ONO) dG(0) SUPrsizron | o M)
Z‘L
Let f be an arbitrary function on (0, a], then
V !f(z)! é |f(a)| +a Supye[z,a] ‘f,(y)l .
Repeated use of this inequality yields
[ (2)] < Csup,gic 41 Ei(2)B, for e, =251,
where
E(z) = § |6]e®™ "> h(0) dG(9) .

Thus

§2 w.(2)dz < CB, sup,gic,i1 s SUPosysn, £i(Z + ) dz.
A similar argument to the one used in the proof of (18i) shows that there exists
a constant c, € [0, 1], such that

E/(2) <0 for 0<z<g,,
E/(z) >0 for ¢;<z< 1.

This implies that in the neighborhood of zero E,(z) is either bounded or de-
creasing. Moreover {} E,(z) dz = E|O]° < co.
Hence, it follows that

SUP1<isr+1 ¥ SUPo<y<h, E(z+ y)dz < supicic,rn Y SUPo<y<h, E(z+ y)dz < .
This completes the proof.
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