
MONOTONE HOMOMORPHISMS
OF COMPACT SEMIGROUPS

C. E. CLARK

(Received 29 March 1967)

1. Introduction

The problem of determining the class of homomorphic images of a
given class of topological semigroups seems to have received little attention
in the literature. In [4] Cohen and Krule determined the homomorphic
images of a semigroup with zero on an interval. Anderson and Hunter in
[1] proved several theorems in this direction.-In general, the problem seems
to be rather difficult. However, the difficulty is lessened somewhat if all
of the homomorphisms of the semigroups in question must be monotone.
Phillips, [7], showed that every homomorphism of a standard thread is
monotone and hence every homomorphic image of a standard thread is
either a standard thread or a point. In this paper a larger class of topological
semigroups which admit only monotone homomorphisms is given. These
results are used to determine the topological nature of the homomorphic
images of certain classes of topological semigroups. These include products
of standard threads with min threads, certain semilattices on a two-cell,
and compact connected lattices in the plane.

The author gratefully acknowledges the suggestions of R. J. Koch in
the preparation of this paper.

2. Preliminaries

In this paper, the term 'semigroup' will mean topological semigroup.
A homomorphism from a semigroup S into a semigroup T is a continuous
function f : S-> T satisfying f(ab) = /(«)/(&) for ail a, be S. A right (left)
congruence on a semigroup S is a subset & oi SxS which is an equivalence
relation and satisfies the property: (xz, yz) e <S( (zx, zy) e #) if (x, y) e #
and z e S. If <€ is both a left and a right congruence, then # will be called
a congruence. A homomorphism / from a semigroup S onto a semigroup T
gives rise to the congruence # = {(x, y) eSxS\f(x) = f{y)}- In this case
<% is a closed congruence, that is, is a closed subset of SxS.

A standard thread I is a semigroup whose underlying space is homo-
167

https://doi.org/10.1017/S1446788700005735 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005735


168 C. E. Clark [2]

morphic to a closed interval of real numbers such that one endpoint is a
zero for I and the other endpoint is an identity for / . A min thread, is a
thread which is isomorphic to the interval [0, 1] with multiplication defined
by xy = min {x, y}. A min thread will be denoted by It. A usual thread
(denoted by 72) is a thread which is isomorphic to [0, 1] with the usual
multiplication of real numbers. A nilpotent thread (denoted by 73) is a
thread which is isomorphic to [-|, 1] with multiplication defined by
x o y = max {xy, £} where xy denotes the usual product. For a complete
description of the structure of threads, the reader is referred to [3] or [6]

If S is a compact semigroup and x e S, then the set

r(x) = {x, xs, xs, • • •}*

is a compact subsemigroup of S whose minimal ideal K{x) is a compact
topological group consisting of the cluster points of the sequence
{x, x2, x3, • • •}. For details see Koch [5]. (̂ 4* denotes the topological closure
of A.)

Familiarity with the cyclic element theory of Whyburn, [10], will be
assumed.

3. Congruences on compact semigroups

If A and B are subsets of a semigroup S, we define:

B . • A = {t e S\At C B},
and

B • . A = {t e S\tA C B}.

THEOREM 3.1. Let ^ be a closed right congruence on a compact semigroup
S, and let (a, ax) e # for some a.xeS. Then {a}xa[K(x) . • K(x)] C <€.

PROOF. Since ^ is a right congruence and (a, ax) e (€, we have
(ax, ax2) e ^ and by the transitivity of %', (a, ax2) e *&. Iterating this proce-
dure, we obtain (a, axn) e # for each positive integer n. Since # is closed,
it follows that (a, ak) e'tf for each keK(x).

Now let t e K(x) . • K(x). Then (at, axnt) e %! for each positive integer n.
Fix keK(x); then (at, akt)e<g. But kteK(x), and by the preceding
paragraph (a, akt) e # . We conclude then that (a, at) e ft.

THEOREM 3.11. Let & be a closed left congruence on a compact semigroup
S and let (a, xa) e <€ for some a,xeS. Then {a}x [K(X) • . K(x)]a C <g.

DEFINITION. Let S be a semigroup. The symbol S1 will denote S if S has
an identity element and will denote S with isolated identity adjoined if
S has no identity element.
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DEFINITION. Let S be a commutative semigroup, B a closed subset
of S, and aeS. Then, <£(a, B) = {(c, d) e aS1xaS1\cB = dB) u A (A
denotes the diagonal of SxS.)

It is trivial to show that ^(a, B) is a closed congruence on S.

THEOREM 3.2. If S is a compact commutative semigroup and a,xeS,
then the smallest closed congruence on S containing {a, ax) is ^(a, K(x)).

PROOF. First note that there is a unique minimal closed congruence
on S containing (a, ax), namely the intersection of all closed congruences
on S containing (a, ax). Let <& denote this congruence. To show that
<€Q(€(a,K(x)), it will suffice to show that (a, ax) e & (a, K (x)). But
xK(x) — K(x) and hence (ax)K(x) = aK{x), which gives (a, ax) e ^(a, K(x)).

Now let (c, d) e V(a, K(x)). If (c, d) e A, then (c, d) e <€.
Suppose then that c = ay, d = aw, (y, w e S1), and cK(x) = dK(x).

Then since (a, ax) e ^ we have (ya, yax) e'tf, and by Theorem 3.1,
(ya, yat)e& for each t eK(x) . • K(x). Similarly, (wa, wot) e ^ for each
t eK(x) . • K{x). Let k1eK(x); then there exists k2eK(x) such that
yaki = wak2 since (ya)K(x) = (wa)K(x). Now klt k2 eK(x) . • K(x) and
hence

(ya, yakj = (ya, wak2) e <£,

and (wa, wak2) e
 <€. Hence (ya, wa) = (c, rf) e ^ .

THEOREM 3.3. Let S be a compact commutative semigroup with an identity
element and a, xeS. If K(x) . • K(x) is connected, then ^(a, K(x)) is mono-
tone, (i.e., the congruence classes are connected).

PROOF. Let C be a nondegenerate congruence class of 5 with respect
to ^(a, K(x)) and c, d eC. Then there exist y,w eS 1 such that c = ay,
d = aw, and cK(x) = dK(x). It was noted in the proof of Theorem 3.2
that (c, ct) and (d, dt) are in ^(a, K(x)) for each teK(x) . • K(x). Therefore

c[K(x) . • K(x)] u d[K(x) . • K(x)] C C.
But

K(x) CK(x) . • K(x) and cK(x) = dK(x).
Hence

c[K(x) . • K(x)} n d[K(x) . • K(x)] * D,
and thus

c[K(x) . • K(x)] u d[K(x) . • K(x)]

is connected. It follows that C is connected.

THEOREM 3.4. Let S be a compact semigroup with an identity element 1
and suppose that
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i) for each pair a, b e S, there exists an element e e S such that either
ae = a and be e aS; or be = b and ae e bS; and

ii) K(x) . • K(x) is connected for each x e S.
Then every closed right congruence on S is monotone.

PROOF. Let 9? be a closed right congruence on S and let C be a con-
gruence class of S with respect to ft. Let a, b e C. Then there exists an
element eeS satisfying one of the two conditions of i). Suppose ae = a
and be = ax for some x e S. Then (ae, be) = (a, ax) e & and by Theorem
3.1 we have that a[K{x) . • K(x)] C C. But also (ae, be) = (a, be) e # and
hence (b, be) eft. Again by Theorem 3.1, we have b[K(e) . • K(e)]C C.
Now the sets

a[K(x) . • K(x)] and b[K(e) . • K(e)]
are connected and

ax = bee a[K(x) . - K(x)] n b[K(e) . • K(e)].
Hence

a[K(x) . • K(x)] u b[K(e) . • K(e)]

is connected, is a subset of C, and contains a and b since

1 e [K(x) . • K(x)] n \K(e) . • K(e)].

It follows that C is connected and hence # is monotone.

COROLLARY 3.5. Every closed congruence on a standard thread is mono-
tone. (This theorem is originally due to Phillips, [7].)

PROOF. For a,b eT, take e = 1. This will give condition i) of Theorem
3.4. To see that condition ii) is satisfied, we note that, for x e T, K(x) . • K(x)
is the interval [h, 1] where h = sup {/ e T\fx = /} and therefore is connected.

COROLLARY 3.6. If S is a compact semilattice (commutative idempotent
semigroup) and if K(x) . • K(x) is connected for each x e S, then every closed
congruence on S is monotone.

PROOF. For condition i) of Theorem 3.4, take a = e. Condition ii) is
given in the hypothesis. (We remark that the set K(x) . • K(x) in this case
is just the set {t e S\xt = x) and is usually denoted by M(x).)

If 5 and T are compact semigroups each of which admits only monotone
left (right) closed congruences, then the product SxT (with coordinate-wise
multiplication) need not have this property. As an example, let / denote a
usual thread and let S = 1x1. Let a = ( | , 1) and b = (1, J). Let V be a
neighborhood of (1,1) such that S \ F is an ideal of S, Va n Sb = Q,
VbnSa= Q, and let A = (Sa u Sb)(S\V).

Now let <£ = {(aw, xb)\x e V] u {(xb, xa)}\x e V} u (A xA) u A. It is
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not difficult to see that ^ is a closed congruence on 5 and that {a, b} is a
congruence class. However, the following theorem is a result in this direction.

THEOREM 3.7. Let S be a compact semigroup with an identity element 1
which admits only monotone closed right (left) congruences, and let T be a
compact idempotent semigroup such that x . • x is connected for each x e T.
Then SxT admits only monotone closed right (left) congruences. Conversely
if S and T are compact semigroups and if SxT admits only monotone closed
right (left) congruences, then so also do each of S and T.

PROOF. The proof will be given for closed right congruences. Let #
be a closed right congruence on S X T and let C be a congruence class of
SxT with respect to ^ . Let a = (s1, tx) and b = (s2, t2) be elements of C.
Let ex = (1, tj) and e2 = (1, t2). Then ae1 = a and be2 = b. Hence

(ae1, bet) = (a, bex) e # and (ae2, be2) = (ae2, b) e C<S,

and by the transitivity and symmetry of <€, we have that (a, aez) e %> and
(b, bej e #. By Theorem 3.1,

a[K(e2) . • K(e2)] u b[K(ei) . • tffo)] C C.

It is clear that K(et) . • K(ei) is isomorphic to K(tt) . • K(tt), i = 1, 2, and
hence is connected. The set C n [S X {tit2}] is a congruence class of the sub-
semigroup S x {^2} (which is isomorphic to S) with respect to the closed
right congruence ^ n [5x{^ 2 } )x (5x{^ 8 } ) ] on S x ^ / j } , and hence is
connected by the hypothesis. We now have

aea[K(e2).-K(e2)],

ae2 e a[K(e2) . • K(e2)] n [C n (SxfaQ)], and

bex 6 b[K(ej) . • K(ex)] n [C n (Sx {hh})].

Hence the set

a[K(e2) . • K(e2)] u [C n (Sxfe*,})] u b[K(ex) . •

is connected, is contained in C, and contains a and b. It follows that C is
connected and that & is monotone.

Now suppose that S and T are compact semigroups and that SxT
admits only monotone closed right congruences. Let ^ be a closed right
congruence on S. Then the subset # ' of (SxT)x(SxT) defined by

«" = {((*!. <i). (*t. *i))l(*i. s,)eV, (h, t2) e TxT}

is a closed right congruence o n S x T and therefore is monotone. A con-
gruence class C of S with respect to ^ is of the form C — nx(C') where C
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is a congruence class of S X T with respect to (€' and nx is the natural projec-
tion of SxT onto S. Hence C is connected.

COROLLARY 3.8. The product of an arbitrary thread with a min thread
admits only monotone closed congruences.

COROLLARY 3.9. / / S is a compact idempotent semigroup with identity
and with x . • x connected for each x e S, then S admits only monotone closed
right congruences.

PROOF. Let 7 be a usual thread. Then by the first part of Theorem 3.7,
Sxl admits only monotone closed right congruences. The corollary follows
from the second part of Theorem 3.7.

4. Homomorphisms of /, x /

In this section Ix will denote a min thread and I an arbitrary standard
thread. For convenience of reference, we introduce the following notation:

Tn = J I X{O}, r12 = {i}xi, 7\ = r u u r12, r21 =
n = J I X{O}, r12 = {i}xi, 7\ = r u u r12, r21

T22 = / l X{i}, r2 = r21 u r22, B = T\ u T2.
We will denote I^xl by S, (0, 0) by 0, and (1, 1) by 1. Of course, B is the
boundary of S if S be considered as a subset of the plane. For a.beS,
we will say that a 5S b if a e bS. In terms of coordinates, (alt a2) t=k {blt b2)
if and only if ax 5S bx and a2 £ji b%.

We will prove the following theorem:

THEOREM 4.1. / / / is a continuous homomorphism of S onto T, then T
is a cyclic chain from /(0) to /(I), (in the sense of Whyburn, [10]) where each
true cyclic element is a two-cell.

PROOF. Let t = f(x) eT. There exists a standard thread E in S from
0 to 1 containing x. Then f(E) is a standard thread from /(0) to /(I) in T
which contains t. Since f(E), and hence t, is contained in any A-set in T
containing /(0) and /(I), [10, p. 69], it follows that T is the cyclic chain
from /(0) to /(I).

Now let D be a true cyclic element of T. Then (T\D)* n D consists
of at most two points which are cutpoints of T. If T has no cutpoints,
(in which case T = D), then by Theorem 2.4 of [10], T is either a point
(if /(0) =/( l)) or a two-cell (if /(0) ^ / ( l ) ) , and the theorem is proved.
We will assume that (T\D)* n D contains two points. The other case is
similar and simpler. Denote these points by t± and t2. We proceed by several
steps.

1) For i = 1, 2, /-ip,) n 7\ # Q ^ Z"1^) n TV For if /-*(*,) n 7\ = Q,
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then since /-1(^) separates S, f~x(tt) must separate 7\ from some point
c = (clt c2) of S.

The set E formed by taking the union of the set {%} xl with the closed
subintervals [0, (clt 0)] and [(c1( 1), 1] of Tn and T22, respectively, is a
standard thread with endpoints 0 and 1. Then /""1(̂ i) n E must separate
{0, 1} from c, but this is a contradiction since / |£ is monotone and hence
Z"1^) n E is a. closed subinterval of E. A similar argument shows that
/-»(<<) " T2 # Q.

2) If /-i(^) n T21 # Q, then /-*(<,) n Tu = D-

For suppose x e/"1^) n T21 and y ef-1^) n r n . Then /(cc) = /(y) implies
that /(y) = fbf) = /(y)/(y) = /(as)/(y) = /(ay) = /(0), and /(0) cannot be
a cutpoint of 7\

3) At this point there are several cases to consider, but the proofs of
all of the cases are similar. We will consider only the following representative
case:

and

Let
= (fi, 0) ef-Hk) n Tu, x2 = (r2, 1) ef-Hh) n
= (si, 1) e / - 1 ^) n r22, y2 = (1, s2) e/"1^) n

and let e = (1, 0). We will assume that a;2 < yx on !T22. Then noting that
xxe = xx, we have f(xx) = j{xxe) = f{xSf(e) = f{x2)f(e) = f{x2e) = f{x2).
Then by Theorem 3.1, x2[K(e) . • K{e)] C / - 1 ^ ) . But K(e) = {e},
K(e).-K(e) = T12, and x2(K(e) . • K(e)) = {r2}xl C / - % ) .

We also have /(yj = f(y1)f(y1) = /(2/i)/(y2) = / ( ^ I ^ ) . and again by
Theorem 3.1, we have that y^Kfa) . • K(y2)] C f - 1 ^ ) . Now K(y2) = h
where A = sup {g e T12\gyx = g}, and K(y2) . • K(y2) is the closed subinterval
[h, 1] of T12. Hence the set yx[K(y2) . • K(y2)] contains the set

and therefore ^ C / " 1 ^ ) . A similar argument shows that the set

We now have an arc ({r2}xl) with endpoints (r2, 0) and x2 which is
contained in f ^ 1 ^ ) , and an arc (E± u E2) with endpoints yx and y2 which is
contained in j~x (t2).

4) Let D' be the closed two-cell subset of S bounded by {r2} xl, Ex\j E2,
and the closed subintervals [x2, y{\, [(r2, 0), y{\ of T2, Tlt respectively. We
will show that f(D') C D. Let x e D'. Then x lies on a standard thread E
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from 0 to 1 in S, and hence f(E) is a standard thread in T. Now f(E n D')
is a closed subinterval of f(E) with endpoints ^ and t2, and hence
/ (£ n D') C Z>, [10, p. 72], and in particular f(x) e D. Therefore f(D') C D.

5) If /(2)') has a cutpoint, say q, then Z"1^) would separate D' and it
follows easily that q is a cutpoint of D. This is contradictory to the definition
of a true cyclic element and hence f{D') has no cutpoints. It now follows
from Theorem 2.4 of [10] that f(D') is a two-cell.

6) It remains to be shown only that f(D') = D. Suppose there is an
element z e S\D' such that f(z) e D. Then either z < x2 or z > (s1, s2).
Assume that z <x2. Let z0 be a minimal element of /~1(I>). Then since
0 £ f~x(D), each neighborhood of z0 contains elements of the set {x\x < z0},
and it follows that f{z0) is a boundary point of T\D. But by [10], the
only boundary points of T\D are tx and t2. Hence f(z0) = tx. Now either 2
is minimal in /-1(.D), in which case f(z) = tx, or z0 < z <. x2. In the latter
case we would have tx = f(z0) f^f{z) < f(x2) = tx and again it would follow
that f(z) = tx. A similar argument will show that if the case z > (sx, s2)
holds, then /(z) = t2. Hence f{S\D') = T\D u { ,̂ <2}, and it follows that
f(D') = D.

More can be said about the homomorphic images of It x / if the standard
thread I is known to be one of Ix, Iz or 73. The following theorems will be
stated for completeness but proofs will not be given here.

THEOREM 4.2. If I is either I2 or I3 in the hypothesis of Theorem 4.1,
then T is the union of an arc A (possibly degenerate) and a two-cell B
(possibly degenerate). The arc A is an ideal of T and A n B consists of a
single point which is contained in the boundary of B.

THEOREM 4.3. Suppose I = Ix, and let T be any cyclic chain in the plane
from a to b such that each true cyclic element is a two-cell. Then there is a
topological semigroup structure on T and a homomorphism f :IxxIx-^-T
onto T such that /(0) = a and f(l) — b.

In [2], D. R. Brown proved that if S is a topological semilattice on a
two-cell satisfying:

i) 0 e Bd(S), and

ii) M(x) = {y\xy = a;} is connected for each x e M, then S is a homo-
morphic image of I1xl1. As a consequence of this result and Theorem 4.1,
we have the

COROLLARY 4.4. If S is a topological semilattice on a two-cell satisfying
i) and ii) above, then every homomorphic image of S is a cyclic chain from
f(0) to f(l) and each true cyclic element is a two-cell.

A. D. Wallace has shown in [8] that a topological lattice on a two-cell
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satisfies properties i) and ii) above. Hence the conclusion of Theorem 4.1
holds for homomorphic images of topological lattices on a two-cell. Wallace
has also shown, [9], that every compact connected lattice which can be
imbedded in the plane is a cyclic chain from 0 to 1 and each true cyclic
element is a two-cell and a convex sublattice. Such an object may be thought
of as a sequence of disjoint topological lattices on two-cells connected by
min threads. Using the fact that a homomorphic image of a min thread is
again a min thread or a point and applying Corollary 4.4 to the two-cell
sublattices we obtain

COROLLARY 4.5. If L is a compact connected topological lattice which is
imbeddable in the plane then every homomorphic image of L is a cyclic chain
from /(0) to /(I) where each true cyclic element is a two-cell and a sublattice
ofL.
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