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Abstract

By establishing a comparison theorem and applying the monotone iterative

technique combined with the method of lower and upper solutions, we investigate

the existence of extremal solutions of the initial value problem for fractional

q-difference equation involving Caputo derivative. An example is presented to

illustrate the main result.
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1 Introduction

The quantum calculus (calculus without limits or q-calculus) is not of recent appearance.

It appeared as a connection between mathematics and physics. The quantum difference

operator has a lot of applications in different mathematical areas, such as number theory,

combinatorics, special functions, basic hyper-geometric functions, the calculus of vari-

ations, control theory, mechanics, and the theory of relativity. For the basic concepts of

q-calculus, we refer the reader to []. Recently, the topic of quantum calculus has attracted

the attention of several researchers and a variety of new results can be found in [–] and

references cited therein.

The monotone iterative technique, combined with the method of lower and upper so-

lutions, is an interesting and effective technique for proving the existence of solutions for

initial and boundary value problems of nonlinear differential equations. The basic idea of

this method is that by using the upper and lower solutions as an initial iteration, one can

construct the monotone sequences for a corresponding linear equation and that converge

monotonically to the extremal solutions of the nonlinear equation. So many authors de-

veloped the upper and lower solutions methods to solve fractional differential equations;

for examples, see [–].

Motivated by the above-mentioned work, we investigate the existence of extremal solu-

tions for the following initial value problem of a nonlinear fractional quantum difference

equation:

⎧

⎨

⎩

C
aD

α

qu(t) = f (t,u(t)), t ∈ J ,

u(a) = u,
(.)
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where C
aD

α

q denotes the Caputo q-fractional derivative of order α,  < α ≤ , J = [a,b], the

function f ∈ C(J ×R,R), and the constant u ∈R.

The aim of this paper is to extend the method of upper and lower solutions coupled

with the monotone iterative technique to fractional q-difference equations. In order to

apply the method, we establish a comparison theorem involving the Caputo q-fractional

derivative, which plays a crucial role in this paper. To the best of our knowledge, it is the

first crack at applying the method to a fractional q-difference equations of Caputo type.

The rest of paper is organized as follows: In Section , we present some preliminary

notations, definitions and lemmas that we need in the sequel. In Section , we discuss the

main result, while an example is presented to illustrate the main result in Section .

2 Preliminaries

We give some notations, definitions, and preliminary facts which are used throughout the

paper.

To begin with, we give some properties of a q-shifting operator a�q(m) = qm + ( – q)a

that can be found in [].

Property . [] For any a,m,n ∈R, and for all positive integer k the following properties

hold:

(i) a�
k
q(m) = a�

k–
q (a�q(m)) and a�

k
q(m) = a�qk (m) with a�


q(m) =m.

(ii) a(n –m)
()
q = , a(n –m)

(k)
q =

∏k–
i= (n – a�

i
q(m)), k ∈N∪ {∞}.

(iii) a(n –m)
(γ )
q = n(γ )

∏∞
i=

– a
n

�i
q(m/n)

– a
n

�
γ+i
q (m/n)

for γ ∈R.

We recall some basic concepts of q-calculus [].

The q-derivative of a function f on the interval [a,b] is defined by

(aDqf )(t) =
f (t) – f (a�q(t))

( – q)(t – a)
, t �= a, (aDqf )(a) = lim

t→a
(aDqf )(t),

and the q-derivative of higher order is given by

(

aD

q f

)

(t) = f (t),
(

aD
k
qf

)

(t) = aD
k–
q (aDqf )(t), k ∈N.

The q-derivatives of a product and ratio of functions f and g on [a,b] are

aDq(fg)(t) = f (t)aDqg(t) + g
(

a�q(t)
)

aDqf (t)

= g(t)aDqf (t) + f
(

a�q(t)
)

aDqg(t)

and

aDq

(

f

g

)

(t) =
g(t)aDqf (t) – f (t)aDqg(t)

g(t)g(a�q(t))
, g(t)g

(

a�q(t)
)

�= .

The q-integral of a function f defined on the interval [a,b] is given by

(aIqf )(t) =

∫ t

a

f (s)a dqs = ( – q)(t – a)

∞
∑

i=

qif
(

a�
i
q(t)

)

, t ∈ [a,b],
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with

(

aI

q f

)

(t) = f (t),
(

aI
k
qf

)

(t) = aI
k–
q (aIqf )(t), k ∈N.

The fundamental theorem of calculus applies to the operator aDq and aIq, that is,

(aDqaIqf )(t) = f (t),

and if f is continuous at t = a, then

(aIqaDqf )(t) = f (t) – f (a).

The formula for q-integration by parts on the interval [a,b] is

∫ b

a

f (s)
(

aDqg(s)
)

a dqs = (fg)(t)|ba –

∫ b

a

g
(

a�q(s)
)(

aDqf (s)
)

a dqs.

Let us give the definitions of the Riemann-Liouville fractional q-derivative and the q-

integral on the interval [a,b] and their properties [].

Definition . [] The fractional q-derivative of Riemann-Liouville type of order α ≥ 

on the interval [a,b] is defined by (aD

q f )(t) = f (t) and

(

aD
α
q f

)

(t) =
(

aD
l
qaI

l–α
q f

)

(t), α > , (.)

where l is the smallest integer greater than or equal to α.

Definition. [] Let α ≥  and f be a function defined on [a,b]. The fractional q-integral

of Riemann-Liouville type is given by (aI

q f )(t) = f (t) and

(

aI
α
q f

)

(t) =


Ŵq(α)

∫ t

a
a

(

t – a�q(s)
)(α–)

q
f (s)a dqs, α > , t ∈ [a,b], (.)

where the q-gamma function is defined by

Ŵq(α) =
( – q)

(α–)
q

( – q)α–q

. (.)

Obviously, Ŵq(α + ) = [α]qŴq(α).

From [], we have the following formulas:

aD
α
q (s – a)β(t) =

Ŵq(β + )

Ŵq(β – α + )
(t – a)β–α , (.)

aI
α
q (s – a)β (t) =

Ŵq(β + )

Ŵq(β + α + )
(t – a)β+α . (.)
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Lemma . [] Let α,β ∈ R
+ and f be a continuous function on [a,b]. The Riemann-

Liouville fractional q-integral has the following semi-group property:

aI
β
q aI

α
q f (t) = aI

α
q aI

β
q f (t) = aI

α+β
q f (t). (.)

Lemma. [] Let f be a q-integrable function on [a,b].Then the following equality holds:

aD
α
q aI

α
q f (t) = f (t), α > , t ∈ [a,b]. (.)

Lemma . [] Let α >  and p be a positive integer. Then for t ∈ [a,b] the following equal-

ity holds:

aI
α
q aD

p
af (t) = aD

p
aaI

α
q f (t) –

p–
∑

k=

(t – a)α–p+k

Ŵq(α + k – p + )
aD

k
qf (a). (.)

Next, the definition of Caputo fractional q-derivative is as follows.

Definition . [, ] The fractional q-derivative of Caputo type of order α ≥  on the

interval [a,b] is defined by (CaD

q f )(t) = f (t) and

(

C
aD

α
q f

)

(t) =
(

aI
n–α
q aD

n
qf

)

(t), α > , (.)

where n is the smallest integer greater than or equal to α.

Lemma . [, ] Let α >  and n be the smallest integer greater than or equal to α.Then

for t ∈ [a,b] the following equality holds:

aI
α
q
C
aD

α
a f (t) = f (t) –

n–
∑

k=

(t – a)k

Ŵq(k + )
aD

k
qf (a). (.)

The relation between theCaputo fractional q-derivative and theRiemann-Liouville frac-

tional q-derivative is given by

C
aD

α

q f (t) = aD
α
q

[

f (t) –

n–
∑

k=

aD
k
qf (a)

Ŵq(k + )
(t – a)k

]

. (.)

Let C(J ,R) = {u : J →R : u(t) is continuous} with the norm ‖u‖C = supt∈J |u(t)|.

The following result will play a very important role in this paper.

Lemma . If p ∈ C(J ,R) and satisfies the following relations:

⎧

⎨

⎩

C
aD

α

qp(t) ≥ –λp(t), t ∈ [a,b],

p(a)≥ ,
(.)

where λ > –Ŵq(α + )/(b – a)q is a constant, then p(t) ≥  for all t ∈ J .
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Proof The proof is similar to the argument of Lemma . in []. Assume that p(t) ≥ ,

∀t ∈ (a,b] is not true. Then, by p(a) ≥ , there exist points t, t ∈ (a,b] such that p(t) = ,

p(t) < , p(t) ≥  for t ∈ (a, t] and p(t) <  for t ∈ (t, t]. Let t be the first minimal point

of p(t) on [t, t]. We shall show that λ >  and λ ≤ .

First of all, let λ > . From (.), it follows that, for t < t ≤ t,

C
aD

α

qp(t) ≥ .

Using (.), Definition ., and equation (.), we can compute

C
aD

α

qp(t) = aD
α
q

[

p(t) – p(a)
]

= aDqaI
–α
q

[

p(t) – p(a)
]

= aDq

[

aI
–α
q p(t) – p(a)aI

–α
q ()(t)

]

= aDq

[

aI
–α
q p(t) –

p(a)(t – a)–α

Ŵq( – α)

]

= aDqH(t),

where

H(t) = aI
–α
q p(t) –

p(a)(t – a)–α

Ŵq( – α)
.

The fundamental theorem of q-calculus applies to the operator t Iq, and tDq, we have

t Iq
C
t
D

α

q
p(t) = t IqtDqH(t) =H(t) –H(t) ≥ . (.)

Consequently, for t ∈ (t, t], it follows that

H(t) –H(t) =

[

aI
–α
q p(t) –

p(a)(t – a)–α

Ŵq( – α)

]

–

[

aI
–α
q p(t) –

p(a)(t – a)–α

Ŵq( – α)

]

=

[



Ŵq( – α)

∫ t

a
a

(

t – a�q(s)
)(–α)

q
p(s)a dqs –

p(a)(t – a)–α

Ŵq( – α)

]

–

[



Ŵq( – α)

∫ t

a
a

(

t – a�q(s)
)(–α)

q
p(s)a dqs –

p(a)(t – a)–α

Ŵq( – α)

]

=


Ŵq( – α)

∫ t

a
a

(

t – a�q(s)
)(–α)

q
p(s)a dqs

–


Ŵq( – α)

∫ t

a
a

(

t – a�q(s)
)(–α)

q
p(s)a dqs

–
p(a)

Ŵq( – α)

[

(t – a)–α – (t – a)–α
]

≤


Ŵq( – α)

∫ t

a
a

(

t – a�q(s)
)(–α)

q
p(s)a dqs

+


Ŵq( – α)

∫ t

t

a

(

t – a�q(s)
)(–α)

q
p(s)a dqs
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–


Ŵq( – α)

∫ t

a
a

(

t – a�q(s)
)(–α)

q
p(s)a dqs

=


Ŵq( – α)

∫ t

a

[

a

(

t – a�q(s)
)(–α)

q
– a

(

t – a�q(s)
)(–α)

q

]

p(s)a dqs

+


Ŵq( – α)

∫ t

t

a

(

t – a�q(s)
)(–α)

q
p(s)a dqs.

Since [a(t – a�q(s))
(–α)
q – a(t – a�q(s))

(–α)
q ] <  for  ≤ s ≤ t and p(t) < , for all t ∈ (t, t],

we have

∫ t

t

C
t
D

α

q
p(s)t dqs < ,

which contradicts (.). Hence, we obtain the result λ > .

Finally, we assume  ≥ λ > –Ŵq( + α)/(b – a)α . Since the Riemann-Liouville fractional

q-integral aI
α
q is a monotone operator, thus, applying the fractional q-integral order α on

both sides of problem (.), by using Lemmas . and ., we have

p(t) – p(a) + λaI
α
qp(t) ≥ ,

for t ∈ (a,b], from p(a) ≥ , it follows that

p(t) + λaI
α
qp(t) ≥ . (.)

For t = t, we can calculate

aI
α
qp(t) =



Ŵq(α)

∫ t

a
a

(

t – a�q(s)
)(α–)

q
p(s)a dqs

=


Ŵq(α)

∫ t

a
a

(

t – a�q(s)
)(α–)

q
p(s)a dqs

+


Ŵq(α)

∫ t

t

a

(

t – a�q(s)
)(α–)

q
p(s)a dqs

≥


Ŵq(α)

∫ t

t

a

(

t – a�q(s)
)(α–)

q
p(s)a dqs

≥


Ŵq(α)

∫ t

t

a

(

t – a�q(s)
)(α–)

q
p(t)a dqs

=
(t – t)

α

Ŵq(α + )
p(t)

≥
(b – a)α

Ŵq(α + )
p(t),

which implies that

λaI
α
qp(t) ≤

λ(b – a)α

Ŵq(α + )
p(t). (.)
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Hence, using (.) and (.), we obtain

(

 +
λ(b – a)α

Ŵq(α + )

)

p(t) ≥ ,

since  + λ(b – a)α/Ŵq(α + ) > , thus, this contradicts the negative property of p(t). The

proof is completed. �

3 Main results

Consider the linear initial value problem

⎧

⎨

⎩

C
aD

α

qu(t) + λu(t) = h(t),  < α < ,

u(a) = u, u ∈R, t ∈ J ,
(.)

where λ is a given constant and h ∈ C(J ,R).

Lemma . Let v, w : J →R be continuous functions. Assume that v, w are lower and

upper solutions of (.), respectively, and v ≤ w, for all t ∈ J . If

λ(b – a)α

Ŵq(α + )
< , (.)

then the linear initial value problem (.) has a unique solution u ∈ [v,w] on J .

Proof The proof consist of two steps.

Step I. We shall show that if u is a solution of (.), then v ≤ u≤ w.

Let p = u – v, we get

⎧

⎨

⎩

C
aD

α

qp(t) ≥ –λp(t),

p(a)≥ .

By Lemma ., p(t) ≥ , for t ∈ J , that is, u≥ v. In the same way, if we set r = w –u, then

we can show that u≤ w. Thus, v ≤ u≤ w.

Step II. To prove that problem (.) has a unique solution.

Problem (.) is equivalent to the following integral equation:

u(t) = u – λaI
α
qu(t) + aI

α
qh(t), ∀t ∈ J .

Let the operator

Au(t) = u – λaI
α
qu(t) + aI

α
qh(t), ∀t ∈ J .

For any u, v ∈ C(J ,R), using (.), we obtain

∥

∥Au(t) –Av(t)
∥

∥ ≤ λaI
α
q ()(b)‖u – v‖C =

λ(b – a)α

Ŵq(α + )
‖u – v‖C .
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By using (.),

‖Au –Av‖C < ‖u – v‖C .

Hence the operator A is a contraction in view of the condition (.). Consequently, by

Banach’s fixed point theorem, the operator A has a unique fixed point. That is, problem

(.) has a unique solution. This completes the proof. �

Next, we give the definitions of lower and upper solutions of problem (.).

Definition . A function v ∈ C([a,b],R) is called a lower solution of problem (.), if it

satisfies

⎧

⎨

⎩

C
aD

α

qv(t) ≤ f (t, v), t ∈ (a,b],

v(a)≤ u.
(.)

Definition . A function w ∈ C([a,b],R) is called an upper solution of problem (.), if

it satisfies

⎧

⎨

⎩

C
aD

α

qw(t)≥ f (t,w), t ∈ (a,b],

w(a)≥ u.
(.)

In this paper, we will apply the monotone iterative method to present a result on the

existence and uniqueness of the solution of problem (.).

Theorem . Let the function v, w ∈ C(J ,R). In addition assume that:

(H) v and w are lower and upper solutions of problem (.), respectively.

(H) The function f ∈ C(J ,R) satisfies

f (t, v) – f (t,u) ≥ –λ(v – u) for v ≤ u≤ v ≤ w,

where λ > Ŵq(α + )/(b – a)α is a constant.

Then there exist monotone iterative sequences {vn} and {wn}, which converge uniformly on

the interval J to the extremal solutions of (.) in [v,w].

Proof For any z ∈ [v,w], we consider the following linear IVP problem:

⎧

⎨

⎩

C
aD

α

qu(t) = hz(t) – λu(t), t ∈ (a,b],

u(a) = u,
(.)

where hz(t) = f (t, z(t)) + λz(t) and λ is a given constant. Since v and w are lower and

upper solutions of problem (.), by (H), we can get

C
aD

α

qv(t) ≤ f
(

t, v(t)
)

≤ f
(

t, z(t)
)

+ λz(t) – λv(t) = hz(t) – λv(t),

v(a) ≤ u,
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and

C
aD

α

qw(t) ≥ f
(

t,w(t)
)

≥ f
(

t, z(t)
)

+ λz(t) – λw(t) = hz(t) – λw(t),

w(a)≥ u.

Hence v and w are lower and upper solutions of problem (.). By Lemma ., we know

that problem (.) has a unique solution u ∈ [v,w]. Define an operator A : [v,w] →

[v,w] by u = Az.

Next, we shall show that the operator A is nondecreasing. Let z, z ∈ [v,w], such that

z ≤ z. Set η = v – v, v = Az, and v = Az. By (H), we obtain

C
aD

α

qη(t) =
C
aD

α

qv(t) –
C
aD

α

qv(t)

= f
(

t, z(t)
)

+ λz(t) – f
(

t, z(t)
)

– λz(t) – λ
(

v(t) – v(t)
)

≥ –λ
(

z(t) – z(t)
)

+ λ
(

z(t) – z(t)
)

– λ
(

v(t) – v(t)
)

= –λη(t),

η(a)≥ .

By Lemma ., η(t)≥ , for t ∈ J . That is, the operator A is nondecreasing.

Now let vn = Avn– and wn = Awn– for n = , , . . . , then we have

v ≤ v ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w. (.)

It is easy to show that the sequences {vn(t)} and {wn(t)} are uniformly bounded and

equicontinuous on J . Hence, by Arzela-Ascoli’s theorem, we have

lim
n→∞

vn(t) = v∗(t) and lim
n→∞

wn(t) = w∗(t),

uniformly on t ∈ J and the limit functions v∗,w∗ satisfy problem (.). Furthermore, v∗ and

w∗ satisfy the relation

v ≤ v ≤ · · · ≤ vn ≤ v∗ ≤ w∗ ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w.

Finally, we prove that v∗ and w∗ are extremal solutions of problem (.) in [v,w].

Let u ∈ [v,w] be any solution of (.). Then Au = u. Since v ≤ u≤ w and considering

the properties of A, i.e., A is nondecreasing, we obtain

vn ≤ u≤ wn, n = , , . . . . (.)

Taking the limit in (.) as n→ ∞, we have v∗ ≤ u ≤ w∗. Therefore v∗, w∗ are the extremal

solutions of (.) in [v,w]. This completes the proof. �
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Figure 1 A plot of the lower and upper solutions of Problem (4.1).

4 Examples

Example . Consider the following initial value problem:

⎧

⎨

⎩

C
D

α

qu(t) =
t–α

Ŵq(–α)
+

Ŵq(α+)


(t – u(t)), t ∈ (, ],

u() = ,
(.)

where α = /, q = /, a = , and b = . Taking v(t) =  and w(t) =  + t, it is easy to

verify that v, w are lower and upper solutions of (.), respectively, and v ≤ w. Then

the assumption (H) of Theorem . holds.

The function f is given by

f (t,u) =
t–α

Ŵq( – α)
+

Ŵq(α + )



(

t – u(t)
)
,

which satisfies

f (t, v) – f (t,u) ≥ –
Ŵq(α + )


(v – u),

where v ≤ u ≤ v≤ w. Then we get λ = Ŵq(α + )/, which implies

λ(b – a)α

Ŵq(α + )
=



< ,

thus, the assumption (H) of Theorem . holds. Therefore, problem (.) satisfies all as-

sumptions of Theorem .. By Theorem ., there existmonotone iterative sequences {vn}

and {wn}, which converge uniformly on interval [, ] to the extremal solutions of (.) in

[v,w]. The graphs of {vn} and {wn}, for some values of n, are shown in Figure .
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