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Abstract

In this paper, existence and uniqueness of weak solutions for a linear parabolic problem with conformable
derivative are proved, the existence of weak periodic solutions for conformable fractional parabolic nonlinear
di�erential equation is proved by using a more generalized monotone iterative method combined with the
method of upper and lower solutions. We prove the convergence of monotone sequence to weak periodic
minimal and maximal solutions. Moreover, the conformable version of the Lions-Magness and Aubin�Lions
lemmas are also proved.
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1. Introduction

Let Ω ⊂ RN be a bounded domain with boundary ∂Ω, Q = (0, T )× Ω and Γ = [0, T ]× ∂Ω
In this paper, we consider the following fractional parabolic periodic boundary valued problem (PBVP

for short)
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Tαt (u)(t, x)−∆u(t, x) = f(t, x, u) in Q,
u(t, x) = 0, on Γ,
u(0, x) = u(T, x) in Ω,

(1.1)

where Tαt is the conformable fractional derivative of order α ∈ (0, 1] with respect to t and ∆ is Laplace
operator. The nonlinear right-hand side f : Q× R→ R is a Carathéodory function, that is f is measurable
in (t, x) ∈ Q for each u ∈ R and continuous in u for a.e. (t, x) ∈ Q.

The derivative of non-integer order has been an interesting research topic for several centuries. The idea
was motivated by the question, "What does it mean by dnf

dxn , if n = 1
2?", asked by L'Hopital in 1695 in his

letters to Leibniz. Since then, the mathematicians tried to answer this question for centuries in several points
of view. Various types of fractional derivatives were introduced: Riemann-Liouville, Caputo, Hadamard,
Grünwald-Letnikov, Marchaud, and the last de�nitions are Caputo-Fabrizio derivative, Atangana�Baleanu
derivative and Conformable fractional derivative [22]. It is well known that fractional order di�erential
equations provide an excellent setting for capturing, in a model framework, real-world problems in many
disciplines, such as chemistry, physics, engineering, biology and ecology [29, 41, 35, 50, 30, 24, 27, 25] . In
recent years, there has been a signi�cant development in ordinary and partial di�erential equations involving
fractional derivatives, see the monographs of Podlubny [41], Kilbas et al. [29], Zhou et al. [50], and the
recent papers [49, 30, 4, 27, 28, 23, 26, 8, 21, 38] and the references therein.

Since the last century, periodic parabolic problems have been the subject of extensive study, see for
example [19, 17, 6, 14, 7, 48, 18].

Recently, the authors in [36] and [37] have studied the positive mild solutions of (1.1) with Caputo
fractional derivative by using the characteristics of positive operators, semigroups and the monotone iterative
scheme. Binh et al. [12] have considered the initial inverse problem for a di�usion equation with a conformable
derivative in a general bounded domain. Tuan et al. [44] have studied a backward problem for a nonlinear
di�usion equation with a conformable derivative in the case of multidimensional and discrete data. Tuan
et al. [45] have considered an inverse problem of recovering the initial value for a generalization of time-
fractional di�usion equation, where the time derivative is replaced by a regularized hyper-Bessel operator.
The authors in [46] have investigated an inverse problem to determine an unknown source term for fractional
di�usion equation with Riemann�Liouville derivative. Au et al. [10] studied the ill-posed property in the
sense of Hadamard for an inverse nonlinear di�usion equation with conformable time derivative.

The method of upper and lower solutions coupled with monotone iterative technique o�ers an e�ective
and �exible mechanism for proving theoretical as well as existence and comparison results for a variety of
nonlinear di�erential problems, see [20, 39, 31].

In this paper we develop the generalized monotone iterative method combined with the method of upper
and lower solutions for the nonlinear fractional periodic parabolic di�erential problems. Here, we prove the
existence and uniqueness of the weak solution for a linear parabolic equation with conformable derivative. We
show that the monotone sequences, which are solutions of the linear fractional parabolic equation converge
to the minimal and maximal periodic solutions of the nonlinear equation, these comparison results are used
to establish the last result. In addition, the conformable version of the Lions-Magness and Aubin - Lions
lemmas are also proved and used to establish our results.

The paper is organized as follows. Section 2 provides the de�nitions and preliminary results to be used
in the article. In section 3, we prove some lemmas needed in the proof of our main theorems. In Section 4
main results are stated and proved: comparison results are obtained and existence of weak solution to linear
equation and the extremal periodic solutions for the nonlinear equations (1.1) are proved.

2. De�nitions and preliminaries

In the literature, there are many de�nitions of fractional derivative. To mention some:
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1. Riemann - Liouville de�nition. For α ∈ [n− 1, n), the α derivative of f is

RL
a Dα

t (f)(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

f(x)

(t− x)α−n+1
dx.

2. Caputo de�nition. For α ∈ [n− 1, n) , the α derivative of f is

C
aD

α
t (f)(t) =

1

Γ(n− α)

∫ t

a

f (n)(x)

(t− x)α−n+1
dx.

3. Caputo-Fabrizio de�nition [16]:

CF
a Dα

t f(t) =
M(α)

1− α

∫ t

a
f ′(x)e−

α(t−x)
1−α dx, 0 < α < 1, t > a.

4. Atangana-Baleanu-Caputo de�nition [9]:

ABC
b Dα

t (f(t)) =
B(α)

1− α

∫ t

b
f ′(x)Eα

(
−α(t− x)α

1− α

)
dx, 0 < α < 1, t > b.

However, the following are the setbacks of one de�nition or the other:

1. The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 , if α is not a natural number.

2. All fractional derivatives do not satisfy the known formula of the derivative of the product

Dα
a (fg) = fDα

a (g) + gDα
a (f).

3. All fractional derivatives do not satisfy the known formula of the derivative of the quotient of two
functions:

Dα
a (f/g) =

gDα
a (f)− fDα

a (g)

g2
.

4. All fractional derivatives do not satisfy the chain rule:

Dα
a (f ◦ g)(t) = f (α)(g(t))g(α)(t).

5. All fractional derivatives do not satisfy: DαDβf = Dα+βf, in general.

In [22], the authors gave a new de�nition of fractional derivative which is a natural extension to the usual
�rst derivative as follows:

De�nition 2.1 ([22]). Given a function f : [0,∞) −→ R . Then for all t > 0, α ∈ (0, 1], let

Tα(f)(t) = lim
ε→0

f
(
t+ εt1−α

)
− f(t)

ε
,

Tα is called the conformable fractional derivative of f of order α. If f is α-di�erentiable in some
(0, b), b > 0, and limt→0+ T

α(f)(t) exists, then let

Tα(f)(0) = lim
t→0+

Tα(f)(t).

Now we shall present some properties of this new derivative, more properties of this type of derivation
are given in [22, 1, 47, 11, 2, 3, 13].

Proposition 2.1 ([22]). 1. Tα(af + bg) = aTα(f) + bTα(g) for all real constant a, b.

2. Tα(fg) = fTα(g) + gTα(f).

3. Tα
(
f
g

)
= gTα(f)−fTα(g)

g2
.
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4. Tα(c) = 0 with c is a constant.

5. Tα(f ◦ g)(t) = f ′(g(t))Tαg(t), for f di�erentiable at g(t).

6. If, in addition, f is di�erentiable, then Tα(f) = t1−αf ′(t).

De�nition 2.2 (Fractional Integral[22]). Let a ≥ 0 and t ≥ a . Also, let f be a function de�ned on (a, t]
and α ∈ R. Then, the α−fractional integral of f is de�ned by,

Iαa (f)(t) :=

∫ t

a
f(x)dαx =

∫ t

a
xα−1f(x)dx,

if the Riemann improper integral exists. When a = 0 we write Iα0 (f)(t) = Iα(f)(t)
f : [a, b] ⊂ R→ R is α-integrable on [a, b] if and only if tα−1f is integrable on [a, b].

Lemma 2.1 ([1]). Assume that f : [a,∞)→ R is continuous and 0 < α ≤ 1. Then, for all t > a we have

TαIαa f(t) = f(t).

Lemma 2.2 ([1]). Let f : (a,∞)→ R be di�erentiable and 0 < α ≤ 1. Then, for all t > a we have

Iαa Tα(f)(t) = f(t)− f(a).

In the rest of this section, we assume a, b ∈ R, 0 < a < b.

Theorem 2.2 (fractional Gronwall inequality [1]). Let y be a continuous, nonnegative function on an interval

J = [a, b], δ and k be nonnegative constants such that

y(t) ≤ δ +

∫ t

a
ksα−1y(s)ds := δ +

∫ t

a
ky(s)dαs (t ∈ J).

Then for all t ∈ J

y(t) ≤ δek
tα

α .

Theorem 2.3 (Integration by parts [22]). Let f, g : [a, b]→ R be two functions such that fg is di�erentiable.
Then ∫ b

a
f(x)Tα(g)(x)dαx = f g|ba −

∫ b

a
g(x)Tα(f)(x)dαx.

De�nition 2.3 ([47]). Let p ∈ [1,+∞] and let f : [a, b] ⊂ R → R be a measurable function. Say that f
belongs to Lpα([a, b]) provided that either∫ b

a
|f(t)|pdαt < +∞ if 1 ≤ p < +∞,

or there exists a constant C ∈ R such that

|f | ≤ C a.e. on [a, b] if p = +∞.

Theorem 2.4 ([47]). Let p ∈ [1,+∞]. Then the set Lpα ([a, b]) is a Banach space endowed with the norm

de�ned for f ∈ Lpα ([a, b]) as

‖f‖Lpα([a,b]) =

{ (∫ b
a |f(t)|pdαt

)1/p
if 1 ≤ p < +∞,

inf {C ∈ R : |f | ≤ C a.e. on [a, b]} if p =∞.
Moreover, L2

α ([a, b]) is a Hilbert space with the inner product given for every (f, g) ∈ L2
α ([a, b])×L2

α ([a, b])
by

〈f, g〉L2
α([a,b]) =

∫
[a,b]

f(t)g(t)dαt.
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Before the statement of the properties, we denote

C0 ([a, b]) = {f : [a, b]→ R, f is continuous on [a, b] with compact support in[a, b]}

Theorem 2.5 ([47]). Let f ∈ L1
α ([a, b]) be such that the following equality is true:∫

[a,b]
f(t)u(t)dαt = 0, ∀u ∈ C0 ([a, b]) ,

then

f ≡ 0, a.e. on [a, b].

An interesting particular case of the Theorem 1 in [42] is the following

Corollary 2.6 ([42]). Let Ω ⊂ Rn be an open and connected set, assume (0, T ) ⊂ R+, and de�ne Q =
(0, T ) × Ω. Given a linear system of conformable fractional ordinary di�erential equations of order α,
0 < α ≤ 1, written in matrix form as :

Tαt y(t) = A(t)y(t) +B(t), (2.1)

where the matrices A(t) and B(t) are assumed to be continuous in an interval [0, T ], then ∀(t0, y0) ∈ Q there
exists an unique continuous solution y in [0, t1] ⊂ [0, T ] such that t0 ∈ [0, t1] and y(t0) = y0.

Remark 2.1. The above Theorem asserts that �nite time blow-up is equivalent to global nonexistence. More
precisely, if (t0, y0) ∈ Q there exists a solution y(t) of (2.1) with y (t0) = y0, de�ned on a maximal interval
of existence [0, tmax) , where t0 < tmax ≤ T, and if tmax < T then

lim
t→tmax

|y(t)| = +∞.

Lemma 2.3 (Aubin-Lions [33, 43]). Let X0, X, and X1 be three Banach spaces such that

X0 ⊂ X ⊂ X1,

the injection of X into X1 being continuous, and the injection of X0 into X is compact. Then for each η > 0,
there exists some constant cη depending on η (and on the spaces X0, X,X1) such that:

‖v‖X ≤ η‖v‖X0 + cη‖v‖X1 , ∀v ∈ X0

3. Some lemmas for time fractional PDEs

In this section, we prove some lemmas needed in the proof of our main theorems.
For p ∈ [1,+∞[ we set the space

Lpα ([a, b], E) =

{
u : [a, b]→ E :

∫
[a,b]
||f(t)||pEdαt < +∞

}
.

Let H1(Ω) denote the usual Sobolev space of square integrable functions and let
(
H1(Ω)

)′
denote its

dual space. Then by identifying L2(Ω) with its dual space, H1(Ω) ⊂ L2(Ω) ⊂
(
H1(Ω)

)′
forms an evolution

triple with all the embeddings being continuous, dense and compact.
We set V = L2

α

(
0, T ;H1(Ω)

)
, denote its dual space by V

′
= L2

α(0, T ; (H1(Ω))
′
), and de�ne a function

space W by

W =
{
w ∈ V |Tαt u ∈ V

′
}
,

where the conformable derivative Tαt is understood in the sense of distributions,
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Theorem 3.1. The spaces V and W endowed with norms

‖u‖V =

(∫
Q

(|u(t, x)|p + |∇u(t, x)|p) dxdαt
) 1
p

,

‖u‖W = ‖u‖V + ‖Tαt u‖V ′ ,

are a Banach spaces which are separable and re�exive

Proof. The proof is due to the separability and re�exivity of V and V
′
, respectively.

The following Lemma is a generalization of Lions-Magness Lemma [34].

Lemma 3.1. Let V,H, and V ′ be Hilbert spaces such that V ⊂ H ≡ H ′ ⊂ V ′, where V ′ is the dual of V
and the injections are continuous. Suppose that u ∈ L2

α([0, T ];V ) and Tαt u ∈ L2
α ([0, T ];V ′) . Then u is equal

a.e. to a continuous function from [0, T ] into H, and the following equality holds in the distribution sense on

(0, T )

Tαt (|u|2H) = 2 〈Tαt u,u〉V ′,V . (3.1)

Moreover, the embedding W ⊂ C ([0, T ];H) is continuous.

Remark 3.1. As a consequence of the previous identi�cations, the scalar product in H of f ∈ H and v ∈ V
is the same as the scalar product of f and v in the duality between V

′
and V :

〈f, v〉V ′,V = (f, v)H , ∀f ∈ H,∀v ∈ V. (3.2)

Proof. Let η < 0 < T < β, and let

W (η, β) =
{
u ∈ L2

α([η, β];V ), with Tαu ∈ L2
α([η, β];V ′)

}
.

Let θ be a C∞ function equal to 1 on [0, T ] and zero in neighborhood of η and β, de�ne v on [η, β] by
v(t) = u(t) if t > 0 and v(t) = u(−t) if t < 0. We set ω = θv on [0, T ], then ω ∈W (η, β).

Now by regularization on t we approximate ω in W (η, β) by a sequence of Cα function ωm vanishing in
a neighborhood of η and β, we have (ωm(t), Tαωm(t)) ∈ V ×V ′ and by (3.2) one can write for any t ∈ (η, β)

|ωm(t)|2H =

∫ t

η
Tαs (ωm(s), ωm(s))Hdαs, (3.3)

= 2

∫ t

η
〈Tαs ωm(s), ωm(s)〉dαs, (3.4)

≤ 2

∫ t

η
‖Tαs ωm(s)‖V ′‖ωm(s)‖V dαs, (3.5)

≤
∫ t

η

(
‖Tαs ωm(s)‖2V ′ + ‖ωm(s)‖2V

)
dαs. (3.6)

Hence |ωm(t)|H ≤ ‖ωm‖W (η,β), thus the continuous ωm converge uniformly in H to a continuous function,
which means that ω ∈ C([η, β], H), after possible modi�cation on a negligible set, and hence u ∈ C([0, T ];H).

Now becuse of (3.4), the equality (3.1) for wm is obvious, therefore we are allowed to pass to the limit in
the distribution sense; in the limit we �nd precisely (3.1).
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Let X0, X,X1, be three Banach spaces such that

X0 ⊂ X ⊂ X1, (3.7)

where the injections are continuous and:

Xi is re�exive, i = 0, 1. (3.8)

The injection X0 → Xis compact. (3.9)

Let T > 0 be a �xed �nite number, and let p0, p1, be two �nite numbers such that pi > 1, i = 0, 1. We
consider the space

W = {v ∈ Lp0α (0, T ;X0) , Tαt v ∈ Lp1α (0, T ;X1)} . (3.10)

The space W is provided with the norm

‖v‖W = ‖v‖Lp0α (0,T ;X0) + ‖Tαt v‖Lp1α (0,T ;X1) ,

which makes it a Banach space.

Lemma 3.2. Let (3.7) to (3.10) be satis�ed. Then the injection of W into Lp0α (0, T : X) is compact.

Remark 3.2. � When α = 1, the result of Lemma 3.2 yield the result of Lions-Aubin which is [33,
Theorem 5.1].

� For Caputo's derivative the result of above Lemma is proved in [32], for Riemann-Liouville derivative
see [40].

Proof. By de�ntion of W we have W ⊂ Lp0α (0, T ;X) with a continuous injection, we shall prove that this
injection is compact.

Let um be some sequence which is bounded in W . We must prove that this sequence contains a sub-
sequence uµ strongly convergent in Lp0α (0, T ;X) since the spaces Xi are re�exive spaces and 1 < pi < +∞,
the spaces Lpiα (0, T : Xi) , i = 0, 1, are likewise re�exive and hence W is re�exive. Therefore, there exists
some u in W and some sub-sequence which for simplicity we still denote by um, with um → u in W weakly,
as m→∞
which means um → u in Lp0 (0, T ;X0) weakly and Tαum → Tαu in Lp1 (0, T ;X1) weakly. It su�ces to
prove that

vm = um − u→ 0 in Lp0α (0, T ;X) strongly. (3.11)

In fact, due to Lemma 2.3, we have

‖vm‖Lp0α (0,T ;X) ≤ η ‖vm‖Lp0α (0,T ;X0) + cη ‖vm‖Lp0α (0,T ;X1) ,

and since the sequence vm is bounded in Lp0α (0, T ;X0) :

‖vm‖Lp0α (0,T ;X) ≤ C1η + cη ‖vm‖Lp0α (0,T ;X1) . (3.12)

Since η is arbitrary, the theorem will be proved if we show that

vm → 0 in Lp0α (0, T ;X1) strongly. (3.13)

To prove (3.13) we observe that
W ⊂ C ([0, T ];X1) ,

with a continuous injection; the inclusion results from Lemma 2.3, and the continuity of the injection is very
easy to check. We infer from this, the majoration

‖vm(t)‖X1
≤ C2, ∀t ∈ [0, T ],∀m.
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According to Lebesgue's theorem, (3.13) is now proved if we show that, for almost every t in [0, T ]

vm(t)→ 0 in X1 strongly, as m→∞. (3.14)

We shall prove (3.14) for t = 0; the proof would be similar for any other t. We write

vm(0) = vm(t)−
∫ t

0
Tατ vm(τ)dατ,

and by integration between 0 and s

vm(0) =
α

sα

{∫ s

0
vm(t)dαt−

∫ s

0

∫ t

0
Tατ vm(τ)dατdαt

}
,

integration by part gives

vm(0) =
α

sα

{∫ s

0
vm(t)dαt−

∫ s

0
(
sα

α
− tα

α
)Tαt vm(t)dαt

}
.

Hence
vm(0) = am(α) + bm(α),

with

am(α) =
α

sα

∫ s

0
vm(t)dt, bm(α) = − 1

sα

∫ s

0
(sα − tα)Tαt vm(t)dαt,

hence given ε > 0, we can chose s ∈ (0, T ) such that

‖bm(α)‖X1
≤
∫ s

0
‖Tαt vm(t)‖X1

dαt ≤
ε

2
.

Then, for this �xed s, we observe that, as m→∞, am(α)→ 0 in X0 weakly and thus in X1 strongly; for m
su�ciently large

‖am(α)‖X1
≤ ε

2
,

and (3.14), for t = 0, follows.
Passing to the limit in (3.12) we see by (3.13) that

lim
m→∞

‖vm‖Lp0α (0,T ;X) ≤ cη,

since η > 0 is arbitrarily small in Lemma 2.3, this upper limit is 0 and thus (3.11) is proved. This completes
the proof.

4. Main results

Let H1
0 (Ω) be the subspace of H1(Ω) whose elements have generalized homogeneous boundary values,

and denote by H−1(Ω) its dual space. One can consult [15] and [5] for general properties of Sobolev spaces.
Then obviously H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) forms also an evolution triple, and all statements made above
remain true also in this situation when setting V0 = L2

α

(
0, T ;H1

0 (Ω)
)
V
′

0 = L2
α

(
0, T ;H−1(Ω)

)
and W0 ={

w ∈ V0|Tαt w ∈ V
′

0

}
.

Furthermore, by Lemma 3.1 the embedding W ⊂ C([0, T ];L2(Ω)) is continuous. Finally, because
H1(Ω) ⊂ L2(Ω) is compactly embedded, by Lemma 3.2 we have a compact embedding ofW ⊂ L2

α

(
0, T ;L2(Ω)

)
We denote the duality pairing between the elements of V

′
0 and V0 by 〈·, ·〉, and de�ne the bi-linear form

B associated with the operator (−∆) by
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〈−∆u, ϕ〉 = B[u, ϕ] ≡
N∑

i,j=1

∫
[0,T ]

∫
Ω

∂u

∂xi

∂ϕ

∂xj
dxdαt, ϕ ∈ V0.

We set Lα = L2
α[0, T ;L2(Ω)] the cone L+

α of all nonnegative elements of Lα. This induces a corresponding
partial ordering also in the subspace W of L2(Q), and if u, u ∈ W with u ≤ u then [u, u] := {u ∈ W |u ≤
u ≤ u} denotes the order interval formed by u and u. Let (·, ·) denote the inner product in Lα, de�ne by

(u, v)Lα×Lα :=

∫ T

0

∫
Ω
u(t, x)v(t, x)dxdαt =

∫
Ω

∫ T

0
u(t, x)v(t, x)dαtdx ∀u, v ∈ Lα,

and denote by F the Nemytskij operator related with the function f by Fu(t, x) = f(t, x, u(t, x))

De�nition 4.1. A function u ∈W0 is called a weak periodic solution of (1.1) if

1. u(0, x) = u(T, x) in Ω,

2. 〈Tαt (u), ϕ〉+B[u, ϕ] = (Fu, ϕ) for all ϕ ∈ V0,

where

〈Tαt (u), ϕ〉 =

∫ T

0

∫
Ω
Tαt (u)(t, x)ϕ(t, x)dxdαt,

(Fu, ϕ) =

∫ T

0

∫
Ω
F (u)(t, x)ϕ(t, x)dxdαt =

∫ T

0

∫
Ω
f(t, x, u)ϕ(t, x)dxdαt.

De�nition 4.2. A function u ∈W is said to be a weak lower solution of (1.1) if

1. u(t, x) ≤ 0 on Γ, u(0, x) ≤ u(T, x) in Ω,

2. 〈Tαt (u), ϕ〉+B[u, ϕ] ≤ (Fu, ϕ) for all ϕ ∈ V0 ∩ L+
α .

A weak upper solution of (1.1) is de�ned similarly by reversing the inequalities.

Let us make the following assumptions on the nonlinear right-hand side f .
(A1) f : Q × R → R is a Carathéodory function, that is f is measurable in (t, x) ∈ Q for each u ∈ R and
continuous in u for a.e. (t, x) ∈ Q.
(A2) f(t, x, r) : Q×R→ R is nondecreasing with respect to r for a.e. (t, x) ∈ Q .
(A3) that there is a nonnegative function L ∈ L∞(Q) such that

f (t, x, u1)− f (t, x, u2) ≤ L(t, x) (u1 − u2) , (4.1)

whenever u1 ≥ u2 and a.e. (t, x) ∈ Q.

4.1. Comparison results

We can now prove the following comparison result.

Theorem 4.1. Let (A3) be satis�ed and let u and u be lower and upper solutions of (1.1), respectively such

that

u(0, x) ≤ u(0, x) on Ω. (4.2)

Then we have u(t, .) ≤ u(t, .) a.e in Ω, for all t ∈ [0, T ] .

Proof. The de�nition of lower and upper weak solutions of (1.1) yields

u(t, x)− u(t, x) ≤ 0 on Γ and u(0, x)− u(0, x) ≤ u(T, x)− u(T, x) in Ω,

and
〈Tαt (u− u), ϕ〉+B[u− u, ϕ] ≤ (Fu− Fu, ϕ), (4.3)



A. Alla Hamou et al., Adv. Theory Nonlinear Anal. Appl. 3 (2020), 194�213. 203

for all ϕ ∈ V0 ∩ L+
α . Taking the test function

ϕ = (u− u)+ := max{(u− u), 0} ∈ V0 ∩ L+
α ,

then by (4.2) (u − u)(0, x) ≤ 0 it follows that (u − u)+(0, x) = 0 in Ω and by using Lemma 2.2 we get for
any τ ∈ (0, T ] the following equality∫

Ω

∫ τ

0
Tαt (u− u)(u− u)+dαt dx =

1

2

∫
Ω

∫ τ

0
Tαt
[
((u− u)+)2

]
dαt dx,

=
1

2

∥∥(u− u)+(τ, ·)
∥∥2

L2(Ω)
,

and by using (A3) we get from the weak formulation (4.3) for any τ ∈ (0, T ] the following inequality:

1

2

∥∥(u− u)+(·, τ)
∥∥2

L2(Ω)
+
∥∥∇(u− u)+

∥∥2

L2
α(0,τ,L2(Ω))

≤ ‖L‖L∞(Qτ )

∫
Qτ

t1−α
(
(u− u)+

)2
dxdt, (4.4)

where Qτ := (0, τ)× Ω ⊂ Q, and ‖∇(u− u)+‖2L2
α(0,τ,L2(Ω)) ≥ 0

Thus, by setting
y(τ) =

∥∥(u− u)+(·, τ)
∥∥2

L2(Ω)
,

from (4.4) we obtain the inequality

y(τ) ≤ 2‖L‖L∞(Q)

∫ τ

0
t1−αy(t)dt for all τ ∈ [0, T ],

since due to Lemma 3.1 (u − u) ∈ C
(
[0, T ];L2(Ω)

)
and y(τ) ≥ 0, by applying conformable Gronwall's

Lemma y(τ) = 0 for any τ ∈ [0, T ], which implies
(u−u)+(t, x) = 0 for a.e. x ∈ Ω, for all t ∈ [0, T ]. i.e., u(t, x) ≤ u(t, x) for a.e. x ∈ Ω and for all t ∈ [0, T ],

proving the claim.

The following Lemma is useful in our discussion.

Lemma 4.1. For any p ∈W satisfying p(t, x) ≤ 0 on Γ p(0, x) ≤ 0 in Ω and

〈Tαt (p), ϕ〉+B[p, ϕ] ≤ 0 for all ϕ ∈ V0 ∩ L+
α ,

we have p(t, .) ≤ 0 a.e. in Ω, for all t ∈ [0, T ].

Proof. Let ϕ(t, x) = p+(t, x) = sup{p(t, x), 0} then ϕ ∈ V0 ∩ L2
+(Ω). Hence we have p+(0, x) = 0 in Ω and(

Tαt (p), p+
)

+B[p, p+] ≤ 0,

we have B[p, p+] ≥ 0, we get for any τ ∈ (0, T ]

0 ≥
〈
Tαt (p), p+

〉
=

∫
Ω

∫ τ

0
Tαt (p)p+dt dx,

=
1

2

∥∥p+(τ, ·)
∥∥2

L2(Ω)
− 1

2

∥∥p+(0, ·)
∥∥2

L2(Ω)
,

=
1

2

∥∥p+(τ, ·)
∥∥2

L2(Ω)
≥ 0,

which implies p+(t, x) = 0 a.e. x ∈ Q, for all t ∈ [0, T ]. i.e. p(t, .) ≤ 0 a.e. in Ω, for all t ∈ [0, T ].
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4.2. Existence and uniqueness theorem for linear equations

The following theorem proves uniqueness of solution of the linear fractional initial boundary value problem
(IBVP).

Theorem 4.2. Given h ∈ Lα and g ∈ L2(Ω), then, the following linear parabolic conformable fractional

IBVP has one and only one weak solution u ∈W0,
Tαt (u(t, x))−∆u(t, x) = h(t, x), in Q
u(t, x) = 0, on Γ
u(0, x) = g(x), in Ω

(4.5)

Moreover, the energy estimate

‖u(t, .)‖2L2(Ω) + ‖u‖2L2
α(0,t,H1

0 (Ω)) ≤ ‖g‖
2
L2(Ω) + C2‖h‖2L2

α(0,t,L2(Ω)),

holds for each t ∈ [0, T ]

4.2.1. Proof of existence

The weak formulation of (4.5) for the homogeneous Dirichlet boundary condition reads as follows, given
h ∈ Lα and g ∈ L2(Ω), �nd u ∈W0 such that{

Tαt (u(t), v) + (∇u(t),∇) = (h(t), v) ∀v ∈ H1
0 (Ω), a.e t ∈ (0, T )

u(0) = g
(4.6)

where (·, ·) denotes the scalar product in L2(Ω), u(t) = u(t, .) and h(t) = h(t, .).

Remark 4.1. Equation (4.6) may be interpreted in the sense of distributions. To see this, observe that, for
every v ∈ V , the real function

w(t) = 〈Tαt u(t), v〉,

is a distribution in D′(0, T ) and

〈Tαt u(t), v〉 = Tαt (u(t), v) ∈ D′(0, T ),

This means that, for every ψ ∈ D(0, T ), we have∫ T

0
〈Tαt u(t), v〉ψ(t)dαt = −

∫ T

0
(u(t), v)Tαt ψ(t)dαt. (4.7)

We divide the proof into three steps.
Step 1: Solution of the approximate problem

We employ the so-called Faedo-Galerkin method, and construct an approximate sequence solving suitable
�nite dimensional problems. Since H1

0 (Ω) is a closed subspace of H1(Ω), it is a separable Hilbert space. Let
{φj}j≥1 be a complete orthonormal basis in H1

0 (Ω) and de�ne V n := span {φ1, . . . , φn} (cf. Brézis [15]).
Consider the approximate problem: for each t ∈ [0, T ] �nd un(t) ∈ V n such that:

Tαt (un(t), φj) + (∇un(t),∇φj) = (h(t), φj) ,∀j = 1, . . . , n, t ∈ (0, T ),

un(0) = gn := Pn (g) =

N∑
s=1

ρsφs,
(4.8)

where Pn is the orthogonal projection in L2(Ω) on V n, hence the vector ρ is the solution of the linear system
(Mρ)j = (u0, φj), M being the mass matrix Mjs := (φj , φs). Properties of projection operators imply

‖g(n)‖L2(Ω) ≤ ‖g‖L2(Ω), (4.9)
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since H1
0 (Ω) is dense in L2(Ω) and {φi} is a basis for H1

0 (Ω), we easily deduce that

g(n) → g in L2(Ω) as n→∞,

since {φj} , j = 1, . . . , n, is a basis for V n, the equation in (4.8) is indeed satis�ed for each vn ∈ V n.
Writing

un(t) =

n∑
s=1

cns (t)φs.

The system (4.8) can be rewritten as{
M(Tαt c

n(t)) +Acn(t) = h̃(t),
Mcn(0) = c0,

(4.10)

where for i, j = 1, . . . , n

Mij := (φi, φj) , Aij := (∇φi,∇φj) , h̃i(t) := (h(t), φi) , c0,i := (g, φi) ,

sinceM is positive de�nite, then by Corollary 2.6 the linear di�erential system (4.10) has a maximal solution
de�ned on some interval [0, tn] . If tn < T, then |cn(t)| must tend to +∞ as t→ tn; the priori estimates we
shall prove later show that this does not happen and therefore tn = T .

As h̃ ∈ L2
α(0, T ), it follows cn ∈ L2

α(0, T ), and Tαt cn ∈ L2
α(0, T ) i.e. un ∈W0.

Step 2: a priori estimates for un and Tαun.
We will obtain a priori estimates independent of n for the functions un , Tαun and then pass to the limit.

The proofs are given later.

Lemma 4.2 (Estimate of un). For every t ∈ (0, T ], the following estimate holds:

‖un(t)‖2L2(Ω) + ‖un‖2L2
α(0,t,H1

0 (Ω)) ≤ ‖g‖
2
L2(Ω) + C2‖h‖2L2

α(0,t,L2(Ω)). (4.11)

Lemma 4.3 (Estimate of Tαun). For every t ∈ [0, T ], the following estimate holds:

‖Tατ un‖2L2
α(0,t,H−1(Ω)) ≤ 2‖g‖2L2(Ω) + 4C2‖h‖2L2

α(0,t,L2(Ω)). (4.12)

Step 3: Passage to limits
Lemmas 4.2 and 4.3 show that the sequence of Galerkin's approximations un is bounded in L

∞(0, T ;H1
0 (Ω)),

hence in V0 while Tαt un is bounded in V
′

0 . We now use the known weak compactness theorem and deduce
that there exists a sub-sequence, which for simplicity we still denote by un, such that, as n→∞

un ⇀ u weakly in V0,

Tαt un ⇀ Tαt u weakly in V
′

0 .

This means that there exists u ∈ V0 such that∫ T

0
(∇un(t),∇v(t)) dαt→

∫ T

0
(∇u(t),∇v(t))dαt,

and ∫ T

0
〈Tαt un(t), v(t)〉dαt→

∫ T

0
〈Tαt u(t), v(t)〉dαt,

for all v ∈ L2(0, T ;Vn)
We want to use these properties to pass to the limit as n→ +∞ in problem (4.8) , keeping in mind that

the test functions v(t) have to be chosen in Vn. Fix v ∈ V0; we may write
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v(t) =

∞∑
k=1

vk(t)φk which is convergent in H1
0 (Ω), for a.e. t ∈ [0, T ].

Let

vj(t) =

j∑
k=1

vk(t)φk,

and keep j �xed, for the time being. If n ≥ j, then vj ∈ L2 (0, T ;Vn) . Multiplying equation (4.8) by vk(t)
and summing for k = 1, . . . , j, we get

〈Tαt un(t), vj(t)〉+ (∇un(t),∇vj(t)) = (h(t), vj(t)) .

An integration over (0, T ) yields∫ T

0
(Tαt un(t), vj(t)) dαt+

∫ T

0
(∇un(t),∇vj(t)) dαt =

∫ T

0
(h(t), vj(t)) dαt. (4.13)

Thanks to the weak convergence of un and Tαt un in their respective spaces, we can let n→ +∞, since∫ T

0
〈Tαt un(t), vj(t)〉 dαt→

∫ T

0
〈Tαt u(t), vj(t)〉 dαt.

We obtain ∫ T

0
[〈Tαt u(t), vj(t)〉+ (∇u(t),∇vj(t))] dαt =

∫ T

0
(h(t), vj(t)) dαt.

Now, let j → +∞ observing that vj → v in V and in particular weakly in this space as well. We obtain∫ T

0
[〈Tαt u, v〉+ (∇u,∇v)] dαt =

∫ T

0
(h, v)dαt, (4.14)

for all v ∈ L2
α(0, T ;V ). This entails

〈Tαt u(t), v〉+ (∇u(t),∇v) = (h(t), v),

for all v ∈ V0 and a.e. t ∈ [0, T ].
From Lemma 3.1, we know that u ∈ C([0, T ];L2(Ω)). It remains to check that u(t) satis�es the initial

condition u(0) = g. Let v be any continuously α-di�erentiable function on [0, T ] with v(T ) = 0. Integrating
by parts , we obtain ∫ T

0
〈Tαt un, vj〉dαt = (gn, vj(0))−

∫ T

0
(un, T

α
t vj) dαt,

so that, from (4.13) we �nd

−
∫ T

0
[(un, T

α
t vj) + (∇un,∇vj)] dαt = − (gn, vj(0)) +

∫ T

0
(h, vj) dαt.

Let �rst n→ +∞ and then j → +∞ we get

−
∫ T

0
[(u, Tαt v) + (∇u,∇v)] dαt = −(g, v(0)) +

∫ T

0
(h, v)dαt. (4.15)

On the other hand, integrating by parts in formula (4.14) we �nd∫ T

0
[(u, Tαt v)0 + (∇u,∇v)] dαt = −(u(0), v(0)) +

∫ T

0
(h, v)dαt. (4.16)

Subtracting (4.16) from (4.15), we deduce

(u(0)− g, v(0)) = 0,

and the arbitrariness of v(0) forces u(0) = g. Therefore u satis�es (4.6).
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4.2.2. Proof of uniqueness

Let u1 and u2 be weak solutions of the same problem. Then, w = u1 − u2 is a weak solution of

〈Tαt w(t), v〉+ (∇w(t),∇v) = 0,

for all v ∈ V and a.e. t ∈ [0, T ], with initial data w(0) = 0. Choosing v = w(t) we have

〈Tαt w(t), w(t)〉+ (∇w(t),∇w(t)) = 0,

then by Lemma 4.1 we have w(t) = 0 for all t ∈ [0, T ] . This gives uniqueness of the weak solution.

4.2.3. Proof of Lemma 4.2

Choosing un(t) in (4.8) as a test function, we have

(Tαt u
n(t), un(t)) + (∇un(t),∇un(t)) = (h(t), un(t)) , (4.17)

for a.e. t ∈ [0, T ]. Now, note that

(Tαt un(t), un(t)) =
1

2
Tαt (‖un(t)‖2L2(Ω)), a.e t ∈ (0, T ),

and (un(t), un(t)) = ‖∇un(t)‖2L2(Ω) = ‖un(t)‖2H1
0 (Ω) .

From Schwarz and Poincaré inequalities and the elementary inequality

(h(t), un(t)) ≤ ‖h(t)‖L2(Ω) ‖un(t)‖L2(Ω) ≤ C‖h(t)‖L2(Ω) ‖un(t)‖H1
0 (Ω) ,

≤ C2

2
‖h(t)‖2L2(Ω) +

1

2
‖un(t)‖2H1

0 (Ω) .

Thus, from (4.17) we obtain

Tαt

(
‖un(t)‖2L2(Ω)

)
+

1

2
‖un(t)‖2H1

0 (Ω) ≤
C2

2
‖h(t)‖2L2(Ω). (4.18)

Integrating over (0, t), t ∈ (0, T ], since un(0) = gn and by (4.9) we obtain

2

∫ t

0
Tατ

(
‖un(τ)‖2L2(Ω)

)
dατ +

∫ t

0
‖un(τ)‖2H1

0 (Ω) dατ ≤ C
2

∫ t

0
‖h(τ)‖2L2(Ω)dατ,

‖un(t)‖2L2(Ω) − ‖un(0)‖2 +

∫ t

0
‖un(τ)‖2H1

0 (Ω) dατ ≤ C
2

∫ t

0
‖h(τ)‖2L2(Ω)dατ,

we may write

‖un(t)‖2L2(Ω) +

∫ t

0
‖un(τ)‖2H1

0 (Ω) dατ ≤ ‖Gn‖
2
L2(Ω) + C2

∫ t

0
‖h(τ)‖2L2(Ω)dατ,

‖un(t)‖2L2(Ω) + ‖un‖2L2
α(0,t,V ) ≤ ‖g‖

2
L2(Ω) + C2‖h‖2L2

α(0,t,L2(Ω)).
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4.2.4. Proof of Lemma 4.3

We recall that
‖Tαt un(t)‖H−1(Ω) = sup{|〈Tαt un(t), φ〉| / ‖φ‖H1

0 (Ω) = 1}.

By (4.8) we have
|〈Tαt un(t), φ〉| ≤ |(∇un(t),∇φ)|+ |(h(t), φ)|,

using the Schwartz and Poincaré inequalities we obtain,

|〈Tαt un(t), φ〉| ≤ ‖∇un(t)‖L2(Ω)‖∇φ‖L2(Ω) + ‖h(t)‖L2(Ω)‖φ‖L2(Ω),

≤
(
‖∇un(t)‖L2(Ω) + C‖h(t)‖L2(Ω)

)
‖∇φ‖L2(Ω),

≤
(
‖un(t)‖H−1(Ω) + C‖h(t)‖L2(Ω)

)
‖φ‖H−1(Ω).

By de�nition of the norm in H−1(Ω) := (H1
0 (Ω))′, we may write

‖Tαt un(t)‖H−1(Ω) ≤ ‖n(t)‖H1
0 (Ω) + C‖h(t)‖L2(Ω),

squaring both sides and integrating over (0, t) we get∫ t

0
‖Tατ un(τ)‖2H−1(Ω)dατ ≤ 2

∫ t

0
‖un(τ)‖2H1

0 (Ω)dατ + 2C2

∫ t

0
‖h(τ)‖2L2(Ω)dατ.

using (4.11) we get

‖Tατ un‖2L2
α(0,t,H−1(Ω)) ≤ 2‖g‖2L2(Ω) + 4C2‖h‖2L2

α(0,t,L2(Ω)).

4.3. Existence theorem for nonlinear equation

The existence of a weak extremal solutions to (1.1) is given by the result below.

Theorem 4.3. Let (A1)-(A3) be satis�ed. Assume in addition that

(A4) u0, u0 ∈W0 are respectively lower and upper solutions of (1.1) with u0(0, x) ≤ u0(0, x) in Ω
(A5) For any �xed function η ∈ [u0, u0], the function Fη ∈ Lα.

Then there exist monotone sequences {un} and {un} which converge weakly in W0 to u∗ and u∗ and

strongly in Lα respectively. Moreover u∗ and u
∗ are extremal solutions of (1.1) in the sense that they are

solutions of (1.1) themselves and that if u is any solution of (1.1) satisfying u(0, .) ≤ u(0, .) ≤ u(0, .) a.e. in

Ω, then u∗ ≤ u ≤ u∗.

Proof. We prove our result in several steps.
(a) Iterative schemes.

For each n ≥ 0 consider the following linear IBVPs
Tαt un+1(t, x)−∆un+1(t, x) = f(t, x, un(t, x)) in Q
un+1(t, x) = 0, on Γ
un+1(0, x) = un(T, x), in Ω

(4.19)


Tαt un+1(t, x)−∆un+1(t, x) = f(t, x, un(t, x)) in Q
un+1(t, x) = 0, on Γ
un+1(0, x) = un(T, x), in Ω

(4.20)

Our claim is to prove for any t ∈ [0, T ] the following inequality

u0(t) ≤ u1(t) ≤ . . . ≤ un(t) ≤ un(t) ≤ . . . ≤ u1(t) ≤ u0(t) a.e. in Ω. (4.21)

We will prove it by induction.
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For each n ≥ 0, if we have u0 ≤ un ≤ un ≤ u0, then by assumptions (A4), Fun, Fun ∈ Lα, then by
Theorem 4.2, the linear parabolic IBVPs (4.19) and (4.20) have one and only one weak solution un+1 and
un+1 respectively in W0.

For n = 0, we have u1, u1 ∈W0 as the unique solutions of (4.19) and (4.20) respectively.
Set p = u0 − u1 so that p ≤ 0 on Γ and p(0, x) ≤ 0 a.e. in Ω

〈Tαt (p), ϕ〉+B[p, ϕ] ≤ (Fu0, ϕ)− (Fu0, ϕ) = 0 for all ϕ ∈ V0 ∩ L+
α .

Thus we get by Lemma 4.1 that u0 ≤ u1 in Q and a similar argument shows u1 ≤ u0 in Q.
In fact, by Theorem 4.1 we have u0 ≤ u0.
We next prove that u1 ≤ u1 in Q.
Consider p = u1 − u1 so that p ≤ 0 on Γ, p(0, x) ≤ 0 in Ω and

〈Tαt (p), ϕ〉+B[p, ϕ] = (Fu0, ϕ)− (Fu0, ϕ) for all ϕ ∈ V0 ∩ L+
α ,

using (A2) we have f (t, x, u0) ≤ f (t, x, u0) then

〈Tαt (p), ϕ〉+B[p, ϕ] ≤ 0.

Thus we get by Lemma 4.1, that u1 ≤ u1 in Q. As a result, it follows that

u0 ≤ u1 ≤ u0 ≤ u1 in Q.

Assume that for some n ≥ 1,
un−1 ≤ un ≤ un ≤ un−1 in Q. (4.22)

Then we wish to show that
un ≤ un+1 ≤ un+1 ≤ un in Q. (4.23)

To do this, let pn = un − un+1 so that pn ≤ 0 on Γ, pn(0, x) ≤ 0 in Ω and

〈Tαt (pn), ϕ〉+B[pn, ϕ] = (Fun−1, ϕ)− (Fun, ϕ) for all ϕ ∈ V0 ∩ L+
α ,

by (4.22) and (A2) that 〈Tαt (pn), ϕ〉 + B[pn, ϕ] ≤ 0 and by Lemma 4.1 that un ≤ un+1 and a similar
argument shows un+1 ≤ un.

We next prove that un+1 ≤ un+1 in Q.
Consider qn = un+1 − un+1 so that qn ≤ 0 on Γ, qn(0, x) ≤ 0 in Ω and

〈Tαt (qn), ϕ〉+B[qn, ϕ] = (Fun, ϕ)− (Fun, ϕ) ≤ 0 for all ϕ ∈ V0 ∩ L+
α ,

in view of (4.22) and (A2), thus we get by Lemma 4.1 un+1 ≤ un+1 in Q. Hence by induction (4.21) holds
for all n ≥ 0

(b) Convergence of (un) , (un) to the solution in Lα.
By the monotonicity of the iterates (un) and (un) according to (3.9) there exist for all t ∈ [0, T ] the

pointwise limits
u∗(t, x) = lim

n→∞
un(t, x), u∗(t, x) = lim

n→∞
un(t, x) for a.e. x ∈ Ω .

Moreover, since un, un ∈ [u0, u0] , then

|un| ≤ γ = |u0|+ |u0| and |un| ≤ γ a.e. in Q,

since γ ∈ L2
α(0, T, L2(Ω)) it follows by Lebesgue's dominated convergence theorem that

un → u∗ and un → u∗ in Lα.

(c) Convergence of (un) , (un) to the solution in W0.
The proof will only be given for the convergence of un since the convergence of un can be proved quite

similarly by dual reason.



A. Alla Hamou et al., Adv. Theory Nonlinear Anal. Appl. 3 (2020), 194�213. 210

The �rst step, un is bounded in V0.

By de�nitions of the iteration scheme, ūn, ūn−1 ∈W0 and satisfy

〈Tαt (un), ϕ〉+B[un, ϕ] = (Fun−1, ϕ) for all ϕ ∈ V0, un(0, x) = un−1(T, x), (4.24)

taking the test function ϕ = un using integration by parts and assumption (A5), we have

1

2

(
||un(T, .)||2L2(Ω) − ||un(0, .)||2L2(Ω)

)
+ ||un||V0 =

∫ T

0

∫
Ω
f(t, x, un−1)undxdαt,

we obtain the estimate

||un||V0 ≤
1

2
||un(0, .)||2L2(Ω) + ||Fun−1||Lα ||un||Lα ,

then by (A5) and (4.21) un is bounded in V0.

The second step, un is bounded in W0.

We recall that ‖u‖W0 = ‖u‖V0 + ‖Tαt u‖V0 , then we need to estimate
∥∥Tαt un∥∥V0

By (4.24) and (A4) we have

|〈Tαt un, ϕ〉| ≤ |(∇un,∇ϕ)|+ ||Fun−1||Lα ||ϕ||Lα ≤ ||un||V0 + C||ϕ||V0 ,

hence
||Tαt un||W0 = sup {|〈Tαt un, ϕ〉| ; ‖ϕ‖V0 = 1} ≤ C,

where C > 0 is a constant. Now because W0 is re�exive and by Lemma 3.2 the embedding W0 ⊂ Lα
is compact , hence by the known weak compactness theorem, that there exists a sub-sequence, which for
simplicity we still denote by un, such that, as n→∞ ,

un ⇀ u∗ weakly in W0 and un → u∗ strongly in Lα,

a similar argument shows

un ⇀ u∗ weakly in W0 and un → u∗ strongly in Lα,

since B and f are continuous, allow to pass to the limit in the weak formulation of (4.19) and (4.20) as
n→∞ which yield

〈Tαt (u∗), ϕ〉+B[u∗, ϕ] = (Fu∗, ϕ) for all ϕ ∈ V0 and u∗(0, x) = u∗(T, x) in Ω.
〈Tαt (u∗), ϕ〉+B[u∗, ϕ] = (Fu∗, ϕ) for all ϕ ∈ V0 and u∗(0, x) = u∗(T, x) in Ω.

(d) u∗ and u
∗ are extremal solutions of (1.1)

Let us suppose that u is any solution of (1.1) with u(0, .) ≤ u(0, .) ≤ u(0, .) a.e. in Ω, then by Lemma
4.1 we have u0 ≤ u ≤ u0 on Q . Assume that for some n ≥ 0 , we have

un ≤ u ≤ un on Q .

Set p = un+1 − u so that p = 0 on Γ, and

p(0, x) = un+1(0, x)− u(0, x) = un(T, x)− u(T, x) ≤ 0 on Ω,

and

〈Tαt (p), ϕ〉+B[p, ϕ] = (Fun+1, ϕ)− (Fu, ϕ) for all ϕ ∈ V0 ∩ L+
α ,
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by (A3) that 〈Tαt (p), ϕ〉 + B[p, ϕ] ≤ 0 and by Lemma 4.1 that un+1 ≤ u and a similar argument shows
un+1 ≥ u, so we have un+1 ≤ u ≤ un+1 on Q. It then follows by induction that un ≤ u ≤ un on Q for all n ≥
0. and this implies that u0 ≤ u∗ ≤ u ≤ u∗ ≤ u0 on Q. proving that u∗ and u

∗ are extremal solutions of (1.1)
.

Remark 4.2. The periodic solutions given by Theorem 4.3 are, in general, not unique. However, if u(0, .) =
u(0, .) a.e. in Ω or un(0, .) = un(0, .) a.e. in Ω for some n ≥ 1, then we have u = u∗ = u∗ is the unique
periodic solution of (1.1) in [u, u]. However, this uniqueness result is ensured only with respect to the given
upper and lower solutions, and it does not rule out the possibility of other solutions outside the sector [u, u].

5. Conclusion

In this paper, a nonlinear conformable fractional parabolic di�erential equation has been investigated, the
existence of solutions is established using a generalized monotone iterative method combined with the method
of upper and lower solutions. The existence of extremal solutions is proved. It is clear that the method
of upper and lower solutions is a very e�ective method for studying the nonlinear fractional di�erential
equations. However, all the results derived in this paper are more or less direct extensions of well-known
results of the theory of �rst-order di�erential equations, since the conformal fractional derivative is the
generalization of the �rst-order derivative.
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