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Abstract. This paper considers the initial boundary value problem for the time-space fractional
delayed diffusion equation with fractional Laplacian. By using the semigroup theory of operators
and the monotone iterative technique, the existence and uniqueness of mild solutions for the abstract
time-space evolution equation with delay under some quasimonotone conditions are obtained.
Finally, the abstract results are applied to the time-space fractional delayed diffusion equation with
fractional Laplacian operator, which improve and generalize the recent results of this issue.
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1 Introduction

In recent years, the research on the time-space fractional diffusion equation with fractional
Laplacian has attracted wide attention of scholars. The time-space fractional diffusion
equation, which is generalizations of classical diffusion equation of integer order, is one
of the most commonly used models to describe several anomalous physical aspects and
procedures in natural conditions, such as mechanics of materials, fluid mechanics, image
processing, finance, biology, signal processing and control (see [5, 10, 21, 22, 26–28]).
The initial value problems for the time-space fractional diffusion equation have been
extensively studied, and many properties of their solutions have been studied because
of the importance in applications (see [3, 11, 18–20] and references therein).
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Recently, the initial boundary value problems of the time-space fractional diffusion
equations with fractional Laplacian have been considered by several authors (see [9,
12, 24, 29]). In [9], Chen et al. studied a homogeneous time-space diffusion equation.
Combining the Mittag–Leffler function to the time fractional problem with an eigen-
function expansion of the fractional Laplacian on bounded domains, the existence of
strong solutions was obtained by separation of variables. In [12], Jia and Li focused on
an inhomogeneous time-space fractional diffusion equation. By utilizing properties of
time fractional derivative operator and fractional Laplace operator, maximum principles
for classical solution and weak solution were obtained. In [29], Toniazzi focused on an
inhomogeneous time-space fractional linear diffusion equation involving time nonlocal
initial condition and proved the existence and uniqueness of classical solutions along with
the stochastic representation for the solution. In all these works, the existence theory of
solutions for the semilinear equations is not involved.

Specially, Padgett in [24] investigated the initial boundary value problem for the time-
space fractional semilinear diffusion equation with fractional Laplacian

cDα
t u(x, t) = −(−∆)βu(x, t) + f

(
u(x, t)

)
, (x, t) ∈ Ω × (0, a),

u|∂Ω = 0, u(x, 0) = u0(x), x ∈ Ω,
(1)

where Ω is a bounded open domain in Rd with sooth boundary ∂Ω, cDα
t denotes the Ca-

puto time-fractional derivative of order α ∈ (0, 1), and (−∆)β is the fractional Laplacian
with β ∈ (0, 1). Under the assumption that the nonlinear reaction term f satisfies a local
Lipschitz condition, the author has obtained the existence and uniqueness of (1) by means
of Banach fixed point theorem. In fact, in the complex reaction-diffusion processes, the
nonlinear function f represents the source of material or population, which depends on
time in diversified manners in many contexts. Thus, we hope that the nonlinear function f
satisfies more general growth conditions than Lipschitz type conditions.

On the other hand, the monotone iteration technique for upper and lower solutions
is an effective and widely used mathematical method. By using this method not only the
existence theory of solutions can be obtained, but also the approximate iteration sequence
of solutions can be obtained, which provides a reasonable and effective theoretical basis
for using the computer to obtain the approximate solution. However, as far as we know,
there are few results for the diffusion equations with delay by means of the method for the
lower and upper solutions coupled with the monotone iterative technique (see [15, 16]).

Motivated by the papers mentioned above, we study the following initial boundary
value problem for the fractional delayed semilinear diffusion equation with fractional
Laplacian:

cDα
t u(x, t) + (−∆)βu(x, t) = f

(
x, t, u(x, t), u(x, t+ τ)

)
, (x, t) ∈ Ω × [0, a],

u|∂Ω = 0, u(x, τ) = ϕ(x, τ), τ ∈ [−r, 0], x ∈ Ω,
(2)

where Ω ∈ Rd is a bounded domain with C2-boundary ∂Ω for d ∈ N, 0 < α, β 6 1,
cDα

t denotes the Caputo fractional derivation of order α ∈ (0, 1), (−∆)β is a realization
of the fractional Laplace operator acting in space. f : Ω× [0, a]×R2 → R is continuous
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functions, ϕ ∈ C(R × [−r, 0]), r > 0, is a constant. In this paper, our main purpose is
to establish a general principle of lower and upper solutions coupled with the monotone
iterative technique to the initial boundary value problem (2) and study the existence of
maximal and minimal mild solutions, which will greatly enrich and expand the results
mentioned above.

As we all know, there are many different definitions of Laplacian operator and frac-
tional Laplacian operator on a bounded domain Ω. For the properties of differential
definitions and their relations, we can refer to [14, 17, 21] and references therein. Once
the Laplace operator ∆ is defined, according to Balakrishnan’s definition, a common
definition of fractional Laplacian is provided by fractional power of the nonnegative
operator −∆ (see [4, 32])

(−∆)βu =
sinαπ

π

∞∫
0

µβ−1(µI −∆)−1(−∆)udµ, 0 < β < 1,

for u ∈ D(−∆)—the domain of the consider Laplace operator. Throughout this paper,
we introduce the definition of function calculus of fractional Laplacian through Dirichlet
Laplacian, which means that −∆ : L2(Ω) → L2(Ω) is the classical Laplacian with
domain D(−∆) = {u ∈ H1

0 (Ω) | ∆u ∈ L2(Ω)}. As we all know, the operator is
unbounded, closed, positive define self-adjoint and has a compact inverse.

Hence, if λi (i = 1, 2 . . . ) are the eigenvalues of −∆ with homogeneous Dirichlet
boundary conditions considered in L2(Ω) and ei as its corresponding eigenfunction, then

(−∆)βei = λβi ei, x ∈ Ω, e|∂Ω = 0.

Thus, we can define the fractional Laplacian to be

D
(
(−∆)β

)
:=

{
u ∈ L2(Ω): u|∂Ω = 0,

∥∥(−∆)βu
∥∥2
L2(Ω)

=

∞∑
i=1

(
λβ〈u, ei〉

)2
<∞

}
,

(−∆)βu :=

∞∑
i=1

λβi 〈u, ei〉ei.

From [6, 7] it follows that the Balakrishnan definition is equivalent to the spectral defini-
tion in L2(Ω).

The structure of this paper is as follows. In Section 2, we collect some known concepts
and results about the operator semigroup and provide preliminary results, which can be
used in the theorems stated and proved in this paper. In Section 3, we present our abstract
results and apply the operator semigroup theory and monotone iterative method of the
lower and upper solution to prove them. In the last section, applying our abstract results
to the initial boundary value problem for the time-space fractional delayed semilinear
diffusion equation with fractional Laplacian, we get the existence and uniqueness of
positive solutions.
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2 Preliminaries

Throughout this paper, we assume that (E, ‖·‖) is an ordered Banach space with the
partial-order “6” induced by the positive cone K = {u ∈ E | u > θ} and K is normal,
θ is the zero element of E.

Denote J := [−r, a], and letC(J,E) be the Banach space composed of all continuous
functions from J to E equipped with the norm ‖u‖C = maxt∈J ‖u(t)‖. Evidently,
C(J,E) is also ordered Banach space, the positive coneKC = {u ∈ C(J,E) | u(t) ∈ K,
t ∈ J} is also normal. Similarly, B is ordered Banach space with norm ‖φ‖B =
maxs∈[−r,0] ‖φ(s)‖, and the positive cone KB = {φ ∈ B mod φ(s) ∈ K, s ∈ [−r, 0]}.

For v, w ∈ C(J,E) with v 6 w, we denote the order interval {u | v 6 u 6 w} by
[v, w]. Moreover, we denote {u(t) | v(t) 6 u(t) 6 w(t), t ∈ J} in E and {ut | vt 6
ut 6 wt, t ∈ [0, a]} in B by [v(t), w(t)] and [vt, wt], respectively.

Next, we recall some essential properties of operator semigroup.
Let A : D(A) ⊂ E → E be a closed linear operator and −A generate a uniformly

bounded C0-semigroup T (t) (t > 0) on E. Thus, there is M > 1 such that

sup
t∈[0,+∞)

∥∥T (t)
∥∥ 6M < +∞.

From [25, 32] it follows that A is a nonnegative operator and∥∥(λI +A)−1
∥∥ < M

λ
<∞, λ > 0.

Therefore, for any 0 < β < 1, according to the Balakrishnan definition [4, 32], we can
define the fractional power Aβ of the nonnegative operator A by

Aβu :=
sinβπ

π

∞∫
0

λβ−1(λI +A)−1Audλ, u ∈ D(A).

Then, from [32] we find that −Aβ is a closed densely defined operator and generates an
analytic semigroup Tβ(t) (t > 0), which can be expressed as

Tβ(t) =

∞∫
0

fβ,t(s)T (s) ds, t > 0, (3)

where fβ,t(·) is defined by

fβ,t(s) =
1

2πi

σ+i∞∫
σ−i∞

ezs−tz
β

dz, σ > 0, (4)

and the brach of zβ is so taken that Re(zβ) > 0 for Re(z) > 0. The convergence of
integral (4) is apparent in virtue of the convergence factor e−tz

β

. Moreover, fβ,t(s) > 0
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for all s > 0, and
∫∞
0
fβ,t(s) ds = 1. For more properties of the function fβ,t(s), one

can refer to [32].
By the definition of the semigroup Tβ(t) and the properties of fβ,t(s) one can find that

Tβ(t) is continuous by operator norm and ‖Tβ(t)‖ 6 M for any t > 0 and β ∈ (0, 1).
Moreover, in ordered Banach space E, if the C0-semigroup T (t) (t > 0) generated by
−A is positive, then the semigroup Tβ(t) (t > 0) generated by −Aβ is positive for any
β ∈ (0, 1). Furthermore, we can obtain the following lemma.

Lemma 1. If the uniformly bounded C0-semigroup T (t) (t > 0) generated by −A is
compact, then the semigroup Tβ(t) (t > 0) generated by −Aβ is compact.

Proof. Let ε > 0 be arbitrary, and let

Tβ,ε(t) :=

∞∫
ε

fβ,t(s)T (s) ds = T (ε)

∞∫
ε

fβ,t(s)T (s− ε) ds.

One can easily obtain that
∫∞
ε
fβ,t(s)T (s − ε) ds is a linear bounded operator for every

t > 0. Hence, by the compactness of the semigroup T (t) (t > 0), Tβ,ε(t) is compact for
every t > 0. On the other hand, note that

∥∥Tβ,ε(t)− Tβ(t)
∥∥ 6

∥∥∥∥∥
ε∫

0

fβ,t(s)T (s) ds

∥∥∥∥∥ 6M

ε∫
0

fβ,t(s) ds.

Hence, by the boundedness of fβ,t(s) in s and the compactness of Tβ,ε(t) for t > 0 one
can obtain that Tβ(t) (t > 0) is compact.

For more details of the definitions and properties of C0-semigroups or positive C0-
semigroups, see [23, 25, 32].

As for the definition of Caputo fractional derivation, we can refer to many references
(see [8,13,30] and so on), which will not be repeated here. In the following, we only give
some operators needed in this paper and their related properties.

For a given C0-semigroup T (t) (t > 0), we define the family of operators Uα(t)
(t > 0) and Vα(t) (t > 0) in E as follows:

Uα(t) =

∞∫
0

ξα(s)T
(
tαs
)

ds, Vα(t) = α

∞∫
0

sξα(s)T
(
tαs
)

ds,

where

ξα(s) =
1

πα

∞∑
n=1

(−s)n−1 Γ(nα+ 1)

n!
sin(nπα), s ∈ (0,∞), (5)

is a probability density function defined on (0,∞), which satisfies

ξα(s) > 0, s ∈ (0,∞),

∞∫
0

ξα(s) ds = 1,

∞∫
0

sξα(s) ds =
1

Γ(1 + α)
.
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The following lemma may be find in [8, 30].

Lemma 2. The operators Uα(t) (t > 0) and Vα(t) (t > 0) have the following properties:

(i) Uα(t) (t > 0) and Vα(t) (t > 0) are strongly continuous operators, i.e., for any
x ∈ E and 0 6 t1 6 t2,∥∥Uα(t2)x− Uα(t1)x

∥∥→ 0,
∥∥Vα(t2)x− Vα(t1)x

∥∥→ 0 as t2 − t1 → 0.

(ii) If C0-semigroup T (t) (t > 0) is uniformly bounded, then Uα(t) and Vα(t) are
linear bounded operators for any fixed t ∈ R+, i.e.,∥∥Uα(t)x

∥∥ 6M‖x‖,
∥∥Vα(t)x

∥∥ 6
M

Γ(α)
‖x‖ ∀x ∈ E.

(iii) If C0-semigroup T (t) (t > 0) is compact, then Uα(t) and Vα(t) are compact
operators for every t > 0.

(iv) If C0-semigroup T (t) (t > 0) is continuous by operator norm for every t > 0,
then Uα(t) and Vα(t) are uniformly continuous for t > 0.

(v) If C0-semigroup T (t) (t > 0) is positive, then Uα(t) and Vα(t) are positive
operators.

In the proof, we also need the following inequality.

Lemma 3. (See [31].) Assume that f(t) is a locally integrable, nonnegative function
on 0 6 t < κ (some κ 6 ∞), g(t) is a nonnegative, nondecreasing, continuous
bounded function on 0 6 t < κ, and α > 0. Suppose that h(t) is locally integrable
and nonnegative on 0 6 t < Λ with

h(t) 6 f(t) + g(t)

t∫
0

(t− s)α−1h(s) ds.

Then

h(t) 6 f(t) +

t∫
0

( ∞∑
n=1

(g(t)Γ(α))n

Γ(nα)
(t− s)nα−1f(s)

)
ds.

3 Abstract results

In this section, we discuss the existence of the minimum and maximum mild solutions for
the abstract time-space fractional evolution equation with delay

cDα
t u(t) +Aβu(t) = F

(
t, u(t), ut

)
, t ∈ [0, a],

u(t) = ϕ(t), t ∈ [−r, 0],
(6)

where 0 < α, β 6 1, cDα
t is the Caputo fractional derivation of order α ∈ (0, 1); A :

D(A) ⊂ E → E is a closed linear operator, and −A generates a positive compact
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semigroup T (t) (t>0) in E, which is uniformly bounded with supt>0 ‖T (t)‖=M<∞,
Aβ denotes the βth fractional power operator of A according to the Blakrishman def-
inition; F : [0, a] × E × B → E is a continuous function, which will be specified
later; B := C([−r, 0], E) denotes the space of continuous functions from [−r, 0] into
E provided with the uniform norm topology, r > 0 is a constant; ϕ ∈ B is given. For
t > 0, ut ∈ B denotes the history function defined by ut(s) = u(t + s) for s ∈ [−r, 0],
where u is a continuous function from [−r, a] into E.

In order to introduce the definitions of the lower or upper solution and the mild
solution for the time-space fractional delayed evolution equation (6), we set

Cα([0, a], E) =
{
u ∈ C

(
[0, a], E)

∣∣ cDα
t u exists, and cDα

t u ∈ C([0, a], E)
}
,

and denote by E1 the Banach space D(A) with the graph norm ‖·‖1 = ‖·‖+ ‖A · ‖.

Definition 1. A function w ∈ C([−r, a], E) is said to be an upper solution of Eq. (6) if
w|[0,a] ∈ Cα([0, a], E) ∩ C([0, a], E1) and

cDα
t w(t) +Aβw(t) > F

(
t, w(t), wt

)
, t ∈ [0, a],

w(t) > ϕ(t), t ∈ [−r, 0].
(7)

If the inequality of (7) is inverse, it is said to be a lower solution.

Definition 2. A function u ∈ C([−r, a], E) is said to be a mild solution of Eq. (6) if it
satisfies

u(t) =

{
Uα,β(t)ϕ(0) +

∫ t
0
(t− s)α−1Vα,β(t− s)F (s, u(s), us) ds, t ∈ [0, a],

ϕ(t), t ∈ [−r, 0].

Next, we present and demonstrate our main results.

Theorem 1. Assume that Eq. (6) has upper and lower solutions w(0), v(0) satisfying
v(0) 6 w(0). If F : [0, a]× E × B → E is a continuous function satisfying

(H1) for any t ∈ [0, a], x1, x2 ∈ E and φ1, φ2 ∈ B with v(0)(t) 6 x1 6 x2 6

w(0)(t) and v(0)t 6 φ1 6 φ2 6 w
(0)
t , there is a constant C > 0 such that

F (t, x2, φ2)− f(t, x1, φ1) > −C(x2 − x1),

then Eq. (1) has maximal and minimal mild solutions u, u ∈ [v(0), w(0)].

Proof. Obviously, Eq. (6) can be rewritten in the following form:

cDα
t u(t) +Aβu(t) + Cu(t) = F

(
t, u(t), ut

)
+ Cu(t), t > 0,

u(t) = ϕ(t), t ∈ [−r, 0],
(8)

where constant C is decided by condition (H1).
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According to the discussion in the preparatory part, one can obtain that for any
β ∈ (0, 1), −Aβ generated a uniformly bounded, positive and compact semigroup Tβ(t)
(t > 0) satisfying ‖Tβ(t)‖ 6M for every t > 0.

We denote by Sβ(t)=e−CtTβ(t) (t>0) the C0-semigroup generated by−(CI+Aβ).
Obviously, ∥∥Sβ(t)

∥∥ =
∥∥e−CtTβ(t)

∥∥ 6Me−Ct 6M, t > 0.

Moreover, by the positivity and compactness of the semigroup Tβ(t) (t > 0) one can see
that Sβ(t) (t > 0) is a positive compact semigroup. Define two operators Uα,β(t) (t > 0)
and Vα,β(t) (t > 0) by

Uα,β(t)x =

∞∫
0

ξα(s)Sβ(tαs)x ds, Vα,β(t)x = α

∞∫
0

sξα(s)Sβ(tαs)xds,

where x ∈ E, and ξα(s) is the function defined by (5). Thus, the operators Uα,β(t)
(t > 0) and Vα,β(t) (t > 0) have properties (i)–(v) in Lemma 2, and for each t > 0,

∥∥Uα,β(t)x
∥∥ 6M‖x‖,

∥∥Vα,β(t)
∥∥ 6

M

Γ(α)
‖x‖ ∀x ∈ E. (9)

For each u ∈ [v(0), w(0)] and t ∈ [0, a], we have ut ∈ [v
(0)
t , w

(0)
t ] ⊂ B. Now, we

define operator Q on [v(0), w(0)] by

Qu(t) =


Uα,β(t)ϕ(0) +

∫ t
0
(t− s)q−1Vα,β(t− s)
× (F (s, u(s), us) + Cu(s)) ds, t ∈ [0, a],

ϕ(t), t ∈ [−r, 0].

(10)

From the normality of the coneK, condition (H1) and the continuity of F one can deduce
that for any u ∈ [v(0), w(0)], there is a constant M0 > 0 such that

max
t∈[0,a]

{∥∥F (t, u(t), ut
)∥∥+ C

∥∥u(t)
∥∥} 6M0. (11)

Hence, it is easy to show that Q : [v(0), w(0)] → C([−r, a], E) is well defined. By
Definition 2 and (8) it can be asserted that u ∈ [v(0), w(0)] is a mild solution of Eq. (6) if
u is a fixed point of Q.

Next, we prove it in four steps.

Step 1. Q : [v(0), w(0)]→ [v(0), w(0)] is monotone increasing.
On the one hand, let

cDα
t v

(0)(t) +Aβv(0)(t) + Cv(0)(t) := h(t), t > 0.
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By the positivity of operators Uα,β(t) and Vα,β(t), for t > 0, one can obtain that

v(0)(t) = Uα,β(t)v(0)(0) +

t∫
0

(t− s)α−1Vα,β(t− s)h(s) ds

6 Uα,β(t)ϕ(0) +

t∫
0

(t− s)α−1Vα,β(t− s)
(
F
(
s, v(0)(s), v(0)s

)
+ Cv(0)(s)

)
ds

= Qv(0)(t),

and v(0)(t) 6 ϕ(t) for t ∈ [−r, 0]. Thus, v(0) 6 Qv(0). Similarly, Qw(0) 6 w(0) can be
obtained.

On the other hand, for any u(1), u(2) ∈ [v(0), w(0)] with u(1) 6 u(2) and t > 0, we
can see v(0)(t) 6 u(1)(t) 6 u(2)(t) 6 w(0)(t), v(0)t 6 u

(1)
t 6 u

(2)
t 6 w

(0)
t . Thus, by

condition (H1), F (t, u(2)(t), u
(2)
t ) + Cu(2)(t) > F (t, u(1)(t), u

(1)
t ) + Cu(1)(t). Hence,

by the positivity of Vα,β(t) (t > 0) one can see

t∫
0

(t− s)α−1Vα,β(t− s)
(
F
(
s, u(2)(s), u(2)s

)
+ Cu(2)(s)

)
ds

>

t∫
0

(t− s)α−1Vα,β(t− s)
(
F
(
s, u(1)(s), u(1)s

)
+ Cu(1)(s)

)
ds. (12)

Combining with (10), (12) and the positivity of Uα,β(t) (t > 0), it is easy to see
Qu(1) 6 Qu(2). Therefore, Q : [v(0), w(0)]→ [v(0), w(0)] is monotone increasing.

Next, let
v(i) = Qv(i−1), w(i) = Qw(i−1), i = 1, 2, . . . , (13)

then we can obtain two sequences {v(i)} and {w(i)} in [v(0), w(0)]. By the monotonicity
of the operator Q one can see

v(0) 6 v(1) 6 v(2) 6 · · · 6 v(i) 6 · · · 6 w(i) 6 · · · 6 w(2) 6 w(1) 6 w(0).

Step 2. {v(i)} and {w(i)} are equicontinuous in [−r, a].
In fact, for each u ∈ [v(0), w(0)], by (10) we only consider it on [0, a]. Without loss of

generality, let 0 6 t1 < t2 6 a. By (10) one can see∥∥Qu(t2)−Qu(t1)
∥∥

=

∥∥∥∥∥Uα,β(t2)u(0) +

t2∫
0

(t2 − s)α−1Vα,β(t2 − s)
(
F
(
s, u(s), us

)
+ Cu(s)

)
ds

− Uα,β(t1)u(0)−
t1∫
0

(t1 − s)α−1Vα,β(t1 − s)
(
F
(
s, u(s), us

)
+ Cu(s)

)
ds

∥∥∥∥∥
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6
∥∥Uα,β(t2)u(0)− Uα,β(t1)u(0)

∥∥
+

t1∫
0

(
(t2 − s)α−1 − (t1 − s)α−1

)∥∥Vα,β(t2 − s)
∥∥∥∥F (s, u(s), us

)
+ Cu(s)

∥∥ds

+

t1∫
0

(t1 − s)α−1
∥∥Vα,β(t2 − s)− Vα,β(t1 − s)

∥∥∥∥F (s, u(s), us
)

+ Cu(s)
∥∥ ds

+

t2∫
t1

(t2 − s)α−1
∥∥Vα,β(t2 − s)

∥∥∥∥F (s, u(s), us) + Cu(s)
∥∥ ds

:= J1 + J2 + J3 + J4.

Next, we check if ‖Ji‖ tend to 0 as t2 − t1 → 0 (i = 1, 2, 3, 4), which are not dependent
on u ∈ [v(0), w(0)]. It is easy to see that J1 → 0 as t2 − t1 → 0 by Lemma 2(i). By (9)
and (11) we can obtain

J2 =

t1∫
0

(
(t2 − s)α−1 − (t1 − s)α−1

)∥∥Vα,β(t2 − s)
∥∥∥∥F (s, u(s), us

)
+ Cu(s)

∥∥ds

6
MM0

Γ(α)

t1∫
0

(t1 − s)α−1 − (t2 − s)α−1 ds 6
MM0

Γ(α)

(
tα1 − tα2 + (t2 − t1)α

)
6

2MM0

Γ(α)
(t2 − t1)α → 0 as t2 − t1 → 0.

If t1 = 0 and 0 < t2 6 a, then it easy to see that J3 = 0. For t1 > 0 and ε > 0 small
enough, by (9), (11) and Lemma 2(iv) we get that

J3 =

t1∫
0

(t1 − s)α−1
∥∥Vα,β(t2 − s)− Vα,β(t1 − s)

∥∥∥∥F (s, u(s), us
)

+ Cu(s)
∥∥ds

6M0

t1−ε∫
0

(t1 − s)α−1
∥∥Vα,β(t2 − s)− Vα,β(t1 − s)

∥∥ ds

+M0

t1∫
t1−ε

(t1 − s)α−1
∥∥Vα,β(t2 − s)− Vα,β(t1 − s)

∥∥ds

6 sup
s∈[0,t1−ε]

∥∥Vα,β(t2 − s)− Vα,β(t1 − s)
∥∥M0

t1−ε∫
0

(t1 − s)α−1 ds

+
2MM0

Γ(α)

t1∫
t1−ε

(t1 − s)α−1 ds
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6 sup
s∈[0,t1−ε]

∥∥Vα,β(t2 − s)− Vα,β(t1 − s)
∥∥M0(tα1 − εα)

α
+

2MM0ε
α

Γ(α)

→ 0 as t2 − t1 → 0.

Finally, by (9) and (11) we have

J4 6
MM0

Γ(α)

t2∫
t1

(t2 − s)α−1 ds =
M0

Γ(α)
(t2 − t1)α → 0 as t2 − t1 → 0.

Therefore, ‖Qu(t2)−Qu(t1)‖ tends to 0 independently of u ∈ [v(0), w(0)] as t2−t1 → 0,
which implies that Q : [v(0), w(0)]→ [v(0), w(0)] is equicontinuous.

Step 3. {v(i)(t)} and {w(i)(t)} are relatively compact on E for each t ∈ J .
Let Λ = {v(i)}, Π = {w(i)} and Λ0 = Λ ∪ {v(0)}, Π0 = Π ∪ {w(0)}. Obviously,

Λ(t) = (QΛ0)(t) and Π(t) = (QΠ0)(t) for t ∈ J . In view of the fact that v(i)(t) =
w(i)(t) = ϕ(t) for t ∈ [−r, 0], {v(i)(t)} and {w(i)(t)} are relatively compact on E for
t ∈ [−r, 0].

Let 0 < t 6 a be fixed. For any ε ∈ (0, t) and δ > 0, define a set Qε,δΛ0(t) by

Qε,δΛ0(t) :=
{
Qε,δv(i)(t)

∣∣ v(i) ∈ Λ0

}
,

Qε,δv(i)(t) = Uα,β(t)v(i−1)(0)

+ α

t−ε∫
0

∞∫
δ

τ(t− s)α−1ξα(τ)Sβ((t− s)ατ)

×
(
F
(
s, v(i−1)(s), v(i−1)s

)
+ Cv(i−1)(s)

)
dτ ds

= Uα,β(t)v(i−1)(0)

+ αSβ(εαδ)

t−ε∫
0

∞∫
δ

τ(t− s)α−1ξα(τ)Sβ
(
(t− s)ατ − εαδ

)
×
(
F
(
s, v(i−1)(s), v(i−1)s

)
+ Cv(i−1)(s)

)
dτ ds.

Hence, from the compactness of Uα,β(t) and Sα(εαδ) it follows that Qε,δΛ0(t) is rela-
tively compact in E for each δ > 0 and ε ∈ (0, t). Moreover, for every v(i) ∈ Λ0 and
0 < t 6 a, one can find∥∥Qv(i)(t)−Qε,δv(i)(t)∥∥

6

∥∥∥∥∥α
t∫

0

δ∫
0

τ(t− s)α−1ξα(τ)Sβ
(
(t− s)ατ

)
×
(
F
(
s, v(i−1)(s), v(i−1)s

)
+ Cv(i−1)(s)

)
dτ ds

∥∥∥∥∥
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+

∥∥∥∥∥α
t∫

t−ε

∞∫
δ

τ(t− s)α−1ξα(τ)Sβ
(
(t− s)ατ

)
×
(
F
(
s, v(i−1)(s), v(i−1)s

)
+ Cv(i−1)(s)

)
dτ ds

∥∥∥∥∥
6 αMM0

t∫
0

(t− s)α−1 ds

δ∫
0

τξα(τ) dτ

+ αMM0

t∫
t−ε

(t− s)α−1 ds

∞∫
δ

τξα(τ) dτ

6MM0a
α

δ∫
0

τξα(τ) dτ +
MM0

Γ(1 + α)
εα → 0 as ε→ 0, δ → 0.

Thus, the set (QΛ0)(t) is relatively compact, which implies that {v(i)(t)} is relatively
compact on E for 0 < t 6 a. Thus, {v(i)(t)} is relatively compact on E for t ∈ J .
Similarly, one can obtain that {w(i)(t)} is relatively compact on E for t ∈ J .

As we all know, the above argument and the Arzela–Ascoli theorem guarantee that
{v(i)} and {w(i)} are relatively compact in C(J,E). Hence, there are convergent subse-
quences in {v(i)} and {w(i)}, respectively. Combining the normality of the cone KC and
the monotonicity, we obtain that {v(i)} and {w(i)} themselves are convergent, namely,
there exist u, u ∈ C(J,E) such that limi→∞ v(i) = u and limi→∞ w(i) = u.

Hence, taking i→∞ in (13), we have

u = Qu, u = Qu.

Therefore, u, u ∈ Ω are fixed points of Q, which are mild solutions of Eq. (6).
Step 4. Maximal and minimal properties of u, u.
Let ũ ∈ [v0, w0] be a fixed point of Q, then v(0)(t) 6 ũ(t) 6 w(0)(t) for each t ∈ J ,

and
v(1)(t) = (Qv(0))(t) 6 (Qũ)(t) = ũ(t) 6 (Qw(0))(t) = w(1)(t),

namely, v(1) 6 ũ 6 w(1). In general,

v(i) 6 ũ 6 w(i), i = 1, 2, . . . . (14)

Taking i → ∞ in (14), we can obtain u 6 ũ 6 u, which implies that u, u are maximal
and minimal mild solutions of Eq. (6).

In the above works, the key assumption (H1) (the monotone on the history function
of the nonlinear function) is employed. However, we hope that the nonlinear function is
quasimonotonicity. In this case, the results have more extensive application background.

In fact, we find that if Eq. (6) has the upper and lower solutions w(0), v(0) with
v(0) 6 w(0) and
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(H2) for any u(1), u(2) ∈ [v(0), w(0)] with u(2) > u(1), there exists a sufficiently
small constant C0 > 0 such that

u(2)(t)− u(1)(t) > C0

(
u
(2)
t (·)− u(1)t (·)

)
, t ∈ [0, a],

then condition (H1) can be replaced by

(H3) there are nonnegative constants C1, C2 such that

F (t, x2, φ2)− f(t, x1, φ1) > −C1(x2 − x1)− C2

(
φ2(·)− φ1(·)

)
for any t ∈ [0, a], x1, x2 ∈ E and φ1, φ2 ∈ B with v(0)(t) 6 x1 6 x2 6

w(0)(t) and v(0)t 6 φ1 6 φ2 6 w
(0)
t .

In fact, for every t ∈ [0, a] and u(1), u(2) ∈ [v(0), w(0)] satisfying u(1) 6 u(2), one
can obtain that v(0)(t) 6 u(1)(t) 6 u(2)(t) 6 w(0)(t), v(0)t 6 u

(1)
t 6 u

(2)
t 6 w

(0)
t . From

conditions (H2) and (H3) it follows that

F
(
t, u(2)(t), u

(2)
t

)
− F

(
t, u(1)(t), u

(2)
t

)
> −C1

(
u(2)(t)− u(1)(t)

)
− C2

(
u
(2)
t (·)− u(1)t (·)

)
> −C1

(
u(2)(t)− u(1)(t)

)
− C2

C0

(
u(2)(t)− u(1)(t)

)
= −

(
C1 +

C2

C0

)(
u(2)(t)− u(1)(t)

)
:= −C

(
u(2)(t)− u(1)(t)

)
.

Hence, we can obtain the following result from Theorem 1.

Theorem 2. Assume that Eq. (6) has upper and lower solutionsw(0), v(0) with v(0)6w(0).
If F : [0, a] × E × B → E is continuous and satisfies (H2) and (H3), then Eq. (6) has
maximal and minimal mild solutions u, u ∈ [v(0), w(0)].

Remark. Obviously, condition (H2) is easy to satisfy, and condition (H3) weakens con-
dition (H1). Thus, Theorem 2 partially improve Theorem 1.

In the end of this section, we study the uniqueness of the mild solution for Eq. (6).

Theorem 3. Assume that Eq. (6) has upper and lower solutionsw(0), v(0) with v(0)6w(0).
If F : [0, a]× E × B → E is continuous and satisfies (H2), (H3) and

(H4) there exist positive constantsL1, L2 such that, for any x1, x2∈E and φ1, φ2∈B
with v(0)(t) 6 x1 6 x2 6 w(0)(t), v(0)t 6 φ1 6 φ2 6 w

(0)
t ,

F (t, x2, φ2)− F (t, x1, φ1) 6 L1(x2 − x1) + L2

(
φ2(·)− φ1(·)

)
, t ∈ [0, a],

then Eq. (6) has a unique mild solution in [v(0), w(0)].
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Proof. From Theorem 2 we can assert that Eq. (6) has maximal and minimal mild solu-
tions u, u ∈ [v(0), w(0)], which are fixed points of Q defined by (10).

By (10) one can find that u− u ≡ θ for t ∈ [−r, 0]. On the other hand, for t ∈ [0, a],

θ 6 u(t)− u(t) = Qu(t)−Qu(t)

=

t∫
0

(t− s)α−1Vα,β(t− s)
(
F
(
s, u(s), us

)
+ Cu(s)

)
ds

−
t∫

0

(t− s)α−1Vα,β(t− s)
(
F
(
s, u(s), us

)
+ Cu(s)

)
ds

6

t∫
0

(t− s)α−1Vα,β(t− s)
(
(L1 + C)

(
u(s)− u(s)

)
+ L2

(
us(·)− us(·)

))
ds

6

(
L1 + C +

L2

C0

) t∫
0

(t− s)α−1Vα,β(t− s)
(
u(s)− u(s)

)
ds,

where C = C1 +C2/C0. Hence, from the normality of the cone K it follows that for any
t ∈ [0, a],

∥∥u(t)− u(t)
∥∥ 6

NM

Γ(α)

(
C1 + L+

C2

L0

) t∫
0

(t− s)α−1
∥∥u(s)− u(s)

∥∥ds.

From Lemma 3 it follows that u(t) = u(t) for t ∈ [0, a]. Therefore, u = u is the unique
mild solution of Eq. (6) in [v(0), w(0)].

4 Results for the time-space fractional diffusion equation

In the following, we will apply our abstract results to prove the existence and unique-
ness of the mild solutions for the time-space fractional delayed diffusion equation with
fractional Laplacian (2).

Theorem 4. Let f(x, t, 0, 0) > 0 for any (x, t) ∈ Ω × [0, a], and let w = w(x, t) ∈
C(Ω × [−r, a]) ∩ C2,α(Ω × [0, a]) be a nonnegative function satisfying

cDα
t w(x, t) + (−∆)βw(x, t) > f(x, t, w(x, t), w(x, t+ τ)), (x, t) ∈ Ω × [0, a],

w|∂Ω = 0, w(x, τ) > ϕ(τ)(x), x ∈ Ω, τ ∈ [−r, 0].

If for any x ∈ Ω, t ∈ [0, a], τ ∈ [−r, 0], and 0 6 u1(x, t) 6 u2(x, t) 6 w(x, t),

(A1) there is a constant c0 > 0 such that

u2(x, t)− u1(x, t) > c0
(
u2(x, t+ τ)− u1(x, t+ τ)

)
;
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(A2) there are constant c1, c2 > 0 such that

f
(
x, t, u2(x, t), u2(x, t+ τ)

)
− f

(
x, t, u1(x, t), u1(x, t+ τ)

)
> −c1

(
u2(x, t)− u1(x, t)

)
− c2

(
u2(x, t+ τ)− u1(x, t+ τ)

)
,

then semilinear time-space fractional diffusion equation boundary value problem with
delay (2) has maximal and minimal mild solutions u, u ∈ C([−r, a], L2(Ω)) between 0
and w.

Proof. Let E = L2(Ω) with the L2-norm ‖·‖, K = {u ∈ E | u(x) > 0, a.e. x ∈ Ω},
which defines a partial ordering “6” on E. Thus, E is an ordered Banach space, and the
positive cone K is a normal regeneration cone.

Define operator A : D(A) ⊂ E → E as follows:

D(A) = W 2,2(Ω) ∩W 1,2
0 (Ω), Au = −∆u.

From [2] it follows that−A is a selfadjoint operator, which generates a uniformly bounded
analytic semigroup T (t) (t > 0) in E. Specially, T (t) (t > 0) is contractive in E, hence,
‖T (t)‖ 6 1 for every t > 0. Furthermore, we assume that λ1 is the first eigenvalue of
operator A, then λ1 > 0 from [1, Thm. 1.16]. On the other hand, λI + A has a positive
bounded inverse operator (λI +A)−1 for λ > 0, it follows that T (t) (t > 0) is a positive
C0-semigroup. Since the operator A has compact resolvent in L2(Ω), thus T (t) (t > 0)
is a compact semigroup (see [25]).

Obviously, the fractional power Aβ of the nonnegative operator A is well defined
by (3). Therefore, based on the argument in Section 2 and the properties of T (t) (t > 0)
generated by −A, one can deduce that −Aβ generates a positive, compact, uniformly
bounded and analytic semigroup Tβ(t) (t > 0) on E, and ‖Tβ(t)‖ 6 1 for all t > 0.

Set u(t)(ξ) = u(ξ, t), u(t+ τ)(ξ) = u(ξ, t+ τ), and

F
(
t, u(t), u(t+ τ)

)
(ξ) = f

(
ξ, t, u(ξ, t), u(ξ, t+ τ)

)
, (15)

thus, the boundary value problem (2) can be rewritten as follows:

cDq
tu(t) +Aβu(t) = F

(
t, u(t), u(t+ τ)

)
, t ∈ [0, a],

u(τ) = ϕ(τ), τ ∈ [−r, 0].
(16)

From the assumptions of the function f we can deduce that the function F : [0, a] ×
E × E → E defined by (15) is continuous and satisfies condition (H1). And from the
assumptions one can find that v0 ≡ 0, and w0 = w(ξ, t) > 0 are lower and upper
solutions of problem (16), respectively. By conditions (A1) and (A2) we can deduce that
conditions (H2) and (H3) hold. Therefore, by Theorem 2 one can find that Eq. (16) has
minimal and maximal mild solutions u, u ∈ C([−r, a], E).

According to the proof of the above theorem, it is not difficult to obtain the following
uniqueness results.
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Theorem 5. Under the assumptions of Theorem 4, if the following condition holds:

(A3) there are positive constants c1, c2 such that

f
(
ξ, t, u2(ξ, t), u2(ξ, t+ τ)

)
− f

(
ξ, t, u1(ξ, t), u1(ξ, t+ τ)

)
6 c1

(
u2(ξ, t)− u1(ξ, t)

)
+ c2

(
u2(ξ, t+ τ)− u1(ξ, t+ τ)

)
,

then the semilinear time-space fractional diffusion equation boundary value problem with
delay (2) has a unique mild solution u∗ ∈ C([−r, a], E) between 0 and w.
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