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1. Introduction. Since the discovery of hereditarily infinite-

dimensional (HID) spaces by D. W. Henderson [3], questions have

naturally arisen about the topological properties of such spaces. A

hereditarily infinite-dimensional space is an infinite-dimensional

compact metric space each of whose nondegenerate subcontinua is

infinite dimensional.

In a previous paper [7], we studied the structure of HID spaces.

In this paper, we consider the behavior of HID spaces under mono-

tone mappings. The principal result of this paper is that, given an

arbitrary compact metric space Y, there is an HID space X and a

monotone map/:X—>F. We also show that an arbitrary HID space

can be mapped monotonically onto a space of any preassigned

dimension, and that, given an HID space X and a positive integer n,

there is an M-dimensional space Fand a monotone map/: F—>X.

R. H. Bing showed in [2] that each nondegenerate monotone image

of a pseudo-arc is a pseudo-arc. The results of this paper show that

no similar monotone invariance property holds for spaces of dimen-

sion greater than 1.

In this paper, all spaces will be compact metric spaces (compacta).

We will be dealing with the Hubert cube, which we regard as being

the product of a countably infinite collection of straight line intervals

I" = IiXhXhX ■ ■ ■ ,    where /, = [-1/2', 1/2'].

By the dimension of a space we will mean the Menger-Urysohn, or

small inductive, definition of dimension, or any equivalent definition

(see [5 appendix]).

2. Finite-dimensional monotone images of HID spaces. Given an

arbitrary HID space X, what can we say about a monotone image

of X? A monotone image of X can have any preassigned finite di-

mension, as the following proposition shows. We include this propo-

sition for completeness.
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Proposition 1. Let Xbea compact metric space with dim X ^ w. Then

there is an n-dimensional compact metric space X„ awd a monotone map

/:X->X„.

Proof. Since dim X^«, there is an essential map g:X—>7"

[6, Theorem III. 5]. Let fif he the Whyburn factorization of g [A,

Theorem 3.40] and let X„=/(X). Since/z, is a uniformly zero-dimen-

sional mapping, fL does not lower dimension [6, Proposition III.

7(A)]; hence dim X„g«. On the other hand./z, is an essential map,

for otherwise g would not be essential; hence [6, Theorem III. 5],

dim X„^«. The proposition is proved.

It should, perhaps, be remarked that the character of the space

X„ is not at all clear. For example, there may well be points at

which Xn has dimension less than w.

3. An HID continuum which maps monotonically onto P. Let C

he the canonical Cantor set in I1, and let / be the Cantor function

on 71 [4, p. 131]. Let J\, J2, • • • he the closures of the components

of P-C in any convenient exhaustive order, and let pi-f(Ji). We

will construct an HID continuum which maps monotonically onto 71

by substituting an HID continuum X¿ for /<, the monotone map

being that map obtained by sending X< to pt.

We regard 71 as being embedded in 7" as the first factor.

Let X be an HID continuum in 7" from ( — 1/2, 0, 0, • • • ) to

(1/2, 0, 0, • • • ) (see [7]).

Define a homeomorphism hi of 7" into Ia by

hi(xh x2, x3, ■ ■ ■ ,) = ((bi— ai)xi+ (üi+bi)/2, (bi—ai)x2, (e¿—a,)x3, ■ ■ ■ )

where [a,, bi] = Jf. Then hi takes 71 linearly onto J, and shrinks all

other coordinates of 7" linearly and proportionately. Let X, = A,(X).

Then X¿ is an HID continuum joining the end points of Ji,

X.PiC = Jii\C = {at,bi},

andX¿nXy = 0 ili^j.
Let K= CVJUjIx Xi. K is the desired HID continuum, as we shall

prove in Lemma 1. Figure 1 gives an indication of what the projec-

tion of K on hXh might look like. We remark that K has dimension

1 at each inaccessible point of C.

Lemma 1. K is a compact HID continuum which can be mapped

monotonically onto I1.

Proof. Any infinite sequence of points in any one X< has a limit
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point in that X¿. Since the diameters of the X/s tend to zero as i—>oo,

and each X,- contains a point of C, any infinite sequence of points

in an infinite number of the Xt has a limit point in C. Thus K is

compact.

Since each X,- is a continuum containing the end points of Ji, K is

connected. Any nondegenerate subcontinuum of K must contain a

nondegenerate subcontinuum of some X,-, and must therefore be

infinite dimensional. This shows that K is HID. Finally, the mono-

tone map of K onto I1 is the map mentioned earlier in this section.

If X is chosen to be hereditarily indecomposable, then the X.'s

are the smallest possible preimages of points under a monotone map

of K onto I1, since the only hereditarily indecomposable subcon-

tinua of I1 are points.

4. An HID continuum which maps monotonically onto Ia. We will

now construct an HID continuum K„ which maps monotonically

onto I". In this construction, the basic building block will be the

HID continuum K of §3.

The plan is to obtain a countable collection of HID spaces, each

of which lies in I" and is the cartesian product of a Cantor set with

a homeomorphic copy of K. These spaces will be constructed so that

their union is an HID continuum which maps monotonically onto a

Hilbert cube.

We first single out a countable collection {Hi} of Hilbert cubes

each of which is properly embedded in I". Let p¡ denote the ith

prime number, and let Hi denote the Hilbert cube given by

Hi = IPi X JPi» X /,,« X • • • X /„* X
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LetH = HiXH2X • • • ; 77 is the product of a countable collection

of Hubert cubes and is itself a Hubert cube. We regard 77 as being a

subset of Ia where all factors of 77 which are not specified are assumed

to be {o}. (This convention will be used in the following discussion

without further comment.)

We will also need to single out the Hubert cube Ho = hXhXh

X • • • XlpkX ■ • • which is a subcube of 77.

Now let Ki be a copy of K constructed in the Hubert cube 77,-,

and let & be the canonical Cantor set in IPi. Let Mi = Cx X C2 X C3

X ■ • • XC,-iX7ljXC,+iX • • • ; Mi is just the cartesian product of

a Cantor set with Ki. Observe that Mi contains the Cantor set

Co = CiXC2XC3X ■ ■ •  since C<CX¿.
We define KK to be U," i Mi.

Theorem 1. Kx is a compact, hereditarily infinite-dimensional

continuum which can be mapped monotonically onto the Hilbert cube.

Proof. (1) Kx is compact: Ki is compact by Lemma 1, hence Mi

is compact, being the product of compact spaces. Any finite union

of the Mi is compact, since each Mi is. Let {xy} be a sequence of

points with each xy belonging to a different Mi. Since the diameter of

77,- is less than 22~Pi, it follows that the diameter of Mi is less than

22-pi Thus ¡f XjQMk, it follows that there is a point yy£Co such that

d(xj, yy)<22_p*. Since Co is compact, the sequence {y,} has a limit

point yo£Co; and it follows that some subsequence of the sequence

{xy j also converges to yo. But by construction, CoQKK; hence Kx is

compact.

(2) KK is connected: Let x, yQKx. We will construct a continuum

in Ka containing both x and y. We may assume without loss of

generality that both x and y belong to C0.

Letx = (xi, x2, • • ■ ), XiQdQHi, y = (yu y2, ■ ■ ■ ), y,£C,C77i. In
Mi, there is a continuum containing both (yit y2, • • • , y,_i, x¿,

xi+i, • • • ) and (yi, y2, • • • , y,_i, y¿, xi+i, ■ ■ • ) ; namely,

yi X y2 X • • • X y,-i X X, X xi+1 X • • • .

Call this Li. Let L = 1)^! L,-. Then L is a compact set which contains

both x and y; L will be shown to be connected when we show that

Lir\Li+i7é0 for all i. But by construction we have

Cyi»yt, • • ■,Vi-uyi,*<+i. • • ■) Ql{

and

(yi, yz, ' • •, y«+D-ii *«+i, x«+o+i> • • • ) £ L<+i-
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Connectedness of L implies connectedness of Kx.

(3) K„ is hereditarily infinite dimensional: Observe first that Co is

O-dimensional.

Let F be a nondegenerate subcontinuum of Kn, and let xE Y— Co-

Then xEM¡ for some integer/, and x¡, the/th coordinate of x, does

not belong to Cj. Then there is a neighborhood U of x such that for

any y EU, FyG C¡. Now if pEMit i^j, it follows from the construc-

tion that pjECj. Thus x is not a limit point of U^y Mi.

This implies that x belongs to a nondegenerate subcontinuum Y'

of Mi, and Y' must lie in a copy of Kit since Mi is a Cantor set of

copies of K{. Then Lemma 1 implies that Y' is infinite dimensional;

hence Y is also infinite dimensional.

(4) There is a monotone map of Ka onto Ho: Let <pn be the Cantor

map on 7„. Define f:KK-^>Ho by

f(x) = /fe, *,», z,», • ■ • , xt, x¿, z33, • • • , Xi, x62, xt; •••,•••)

= (<b(x2), 0, 0, • • • , <b(x3), 0, 0, • • • , *(*,), 0, 0, ....... ).

/ is onto, since CoEKx and /:C0—>770 is onto. In fact, for yEH0,

/_1(y) is the intersection of Ka with the Hilbert cube

*_1(y0 X/,'X/,.X'-'X 0-1(y») X 78* X • • •

X <trl(ys) X 752 X • • • .

To show that/ is monotone, we must exhibit in/_1(y) a continuum

containing any two preassigned points of f~l(y). This proof is entirely

analogous to the proof that Kx is connected (part (2) of this theorem)

and we therefore omit it. Since 770 is homeomorphic with I", the proof

is complete.

Corollary. For each n, there is a monotone map of Kx onto an

n-cell.

Proof. Follow/ by the projection of 7" onto its first n factors. We

remark that this corollary is an immediate consequence of Theorem

2 ; however the proof we give here is somewhat neater in this special

case.

5. HID compacta as monotone preimages of arbitrary compacta.

We saw in the previous section that there is an HID space which

maps monotonically onto 7". The question naturally arises whether,

given any compact metric space, there is an HID space which maps

monotonically onto it. That the answer is yes is a corollary of Theo-

rem 1, but Theorem 2 gives us a stronger result. We first need the

following lemma, which is an extension of Theorem 1 :
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Lemma 2. There is an HID space L and a monotone map g'.L—>7"

such that for each pQI", g-1(p) is HID.

Proof. Let Km he the HID space of Theorem 1, and regard Ka

as being embedded in I". Let CoQKK he the Cantor set described in

the previous section. Let I"' he another Hubert cube, and let X be

a hereditarily indecomposable HID continuum in Ia' which contains

the point (0, 0, 0, • • ■ )• Then L is the subset of IaXIa' given by

L = (KaX(0, 0, 0, • • -))U(CoXX). Intuitively, L is obtained by

tacking a copy of X onto Kx at each point of C0. If ir is the projection

map of 7"X7W' onto Ia, and if/ is the monotone map of Km onto

I", then the map g=/oir| t isa monotone map of L onto 7", and it

is clear that for each pQI", g-1(p) is HID. This completes the proof

of the lemma.

Theorem 2. Let X be a compact metric space. Then there is an HID

compactum Y and a monotone map f: F—>X such that for each pQX,

f~1(p) is HID. Moreover, the components of Y are in 1-1 correspondence

with the components of X under the correspondence c(y)*-*c(f(y)).

Proof. Let X be embedded in 7", and let g he the monotone map

given in Lemma 2. Let Y=g~1(X). Since L is compact and g is a

monotone map, the preimage of each component of X is a component

of Y. F is HID since it is an infinite dimensional subspace of an

HID space. This completes the proof of the theorem.

Corollary. If X is a separable metric space, all conclusions of

Theorem 2 hold except perhaps compactness of Y.

Proof. X can be embedded in a compactum X of the same dimen-

sion [6, Theorem V. 6]. Apply Theorem 2 to X.

6. HID compacta as monotone images of finite dimensional com-

pacta. In §2, we saw that any HID space has a monotone image of

any prescribed dimension.

We now observe that any HID space is the monotone image of

some space of any prescribed dimension. This is an almost immediate

corollary of a result announced by R. D. Anderson in [l], which

states that any compact locally connected metric continuum is a

monotone-open image of the universal curve under a map / and,

moreover, / can be chosen so that each point preimage is homeo-

morphic to the universal curve. In particular, this is true of the

Hubert cube 7"; and if X is any compact metric space, which we

regard as being embedded in 7", then f\r\x) is a monotone-open

map of a subset of the universal curve onto X. If we let F=/-1(X),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i969] MONOTONE MAPPING PROPERTIES 645

then FX7n_1 is an «-dimensional space and fX {projection onto

origin} is a monotone map of FX7n_1—>X. Moreover, it follows that

the preimage of every point under this map has dimension n. For

emphasis, we summarize this discussion as follows:

Proposition 2. Let X be a compact metric space, and let n be any

positive integer. Then there is a compact metric space Y of dimension

n, and a monotone map f: Y—>X. Moreover, f~l(x) has dimension n

for each xEX.

In the case where X is HID, the space Y fails to be locally con-

nected since local connectedness is preserved by monotone mappings

and local connectedness together with our other hypotheses would

imply arcwise connectedness of X. It would be of interest to have a

definitive description of Y in this case; such a description might help

in understanding the structure of HID spaces.

It might be remarked that Proposition 2 can also be obtained by

modifying the constructions in §§3, 4, and 5 to use M-cells instead of

HID continua; however, there is little point in doing that since the

proof given here is neater and more intuitively appealing.

7. Questions.

(a) Is every hereditarily indecomposable continuum the monotone

image of a hereditarily indecomposable HID continuum?

(b) Is there an HID continuum K'K and a monotone map/: A'«,—>7M

such that each point preimage is a hereditarily indecomposable HID

continuum?
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