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Monotone Maps: a review

M.W. Hirsch∗ Hal Smith †

November 30, 2005

This paper is dedicated to Jim Cushing on the occasion of his 62th birth-
day.

Abstract

The aim of this paper is to provide a brief review of the main results in
the theory of discrete-time monotone dynamics.

Keywords: Monotone maps, strongly monotone maps, strongly order preserving
maps.

1 Introduction and Motivating Examples

A map T : X → X is monotone if (X,≤) is a partially ordered set and x, y ∈
X, x ≤ y =⇒ Tx ≤ Ty. Typically, X will be a subset of a Banach space Y with a
cone Y+ of positive elements and x ≤ y is equivalent to y − x ∈ Y+.

From a historical point of view, one of the principle motivations for the study
of monotone maps is their importance in the study of periodic solutions to periodic
quasimonotone systems of differential equations. The monograph of Krasnoselskii
[43] is a pioneering work in this direction.

To fix ideas, consider the celebrated periodic Lotka-Volterra competition equa-
tions studied by de Mottoni and Schiaffino [20]

x′ = x[r(t) − a(t)x − b(t)y]

y′ = y[s(t) − c(t)x − d(t)y] (1)

where r, s, a, b, c, d are periodic of period one and a, b, c, d ≥ 0. The period map
T : IR2

+ → IR2
+, defined by

(x(0), y(0)) → (x(1), y(1)).

∗Department of Mathematics, University of California, Berkeley, CA 94720-3840. Supported
by NSF Grant DMS 9700910

†Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804. Supported by
NSF Grant DMS 0107160

1



Its fixed points (periodic points) are in one-to-one correspondence with the periodic
(subharmonic) solutions of (1). If K denotes the closed fourth quadrant of IR2, then
K is a cone in IR2 generating the partial order ≤K : p ≤ q ⇐⇒ p1 ≤ q1, p2 ≥ q2.
It is well-known that T is a monotone map respecting this order. Moreover, T
has the important property, not shared with general monotone maps, that it is an
orientation-preserving homeomorphism.

The work of de Mottoni and Schiaffino [20] inspired a great many other authors.
See Hale and Somolinos [26], Smith [73, 74], Liang and Jiang [55], and Wang and
Jiang [92, 93, 94]. Cushing [12, 13] uses global bifurcation methods to study the bi-
furcation and stability of coexistence periodic orbits from single-population periodic
orbits.

In a similar way, periodic solutions for systems of second order parabolic partial
differential equations with time-periodic data can be analyzed by considering pe-
riod maps in appropriate function spaces. Here monotonicity comes from classical
maximum principles. Hess [28] remains an up-to-date survey. See also Alikakos
et al. [3], Zhao [100] and Poláčik [65]. The paper of Hess and Lazer [29] initiates
the development of an abstract theory of two-species competition, motivated by the
time-periodic reaction diffusion model:

ut = k14u + u[a − bu − cv], x ∈ Ω (2)

vt = k24v + v[d − eu − fv]

∂u

∂n
=

∂v

∂n
= 0, x ∈ ∂Ω

The coefficients a = a(x, t) = a(x, t + τ), · · · , f are periodic of common period τ .
System (2) gives rise to a period map T : Y+ × Y+ → Y+ × Y+, where Y+ is the cone
of nonnegative functions in some Banach space Y , given by

(u(·, 0), v(·, 0)) → (u(·, τ), v(·, τ)).

The work of Hess and Lazer has inspired a very large amount of work on competitive
dynamics. See Hale and Somolinos [26], Smith [73, 74], Hess and Lazer [29], Hutson
et. al. [35], Hsu et al. [36], Smith and Thieme [79], Takáč [87], Wang and Jiang
[93, 94, 92], Liang and Jiang [55], Zanolin [98].

Remarkable results are known for scalar periodic parabolic equations on a com-
pact interval with standard boundary conditions. Chen and Matano [9] show that
every forward (backward) bounded solution is asymptotic to a periodic solution;
Brunovsky et al. [8] extend the result to more general equations. Chen et al. [10]
give conditions for the period map to generate Morse-Smale dynamics and thus be
structurally stable. Although monotonicity of the period map is an important con-
sideration in these results, it is not the key tool. The fact that the number of zeros
on the spatial interval of a solution of the linearized equation is non-increasing in
time is far more important. See Hale [25] for a nice survey.

A different theme in order-preserving dynamics originates in the venerable sub-
ject of nonlinear elliptic and parabolic boundary value problems. The 1931 edition of
Courant and Hilbert’s famous book [11] refers to a paper of Bieberbach in Göttingen
Nachrichten, 1912 dealing with the elliptic boundary value problem ∆u = eu in Ω ,
u|∂Ω = f, in a planar region Ω. A solution is found by iterating a monotone map in
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a function space. Courant and Hilbert extended this method to a broad class of such
problems. Out of this technique grew the method of “upper and lower solutions”
(or “supersolutions and subsolutions”) for solving, both theoretically and numer-
ically, second order elliptic PDEs (see Amann [4], Keller and Cohen [39], Keller
[40, 41], Sattinger [69]). Krasnoselskii & Zabreiko [45] trace the use of positivity in
functional analysis— closely related to monotone dynamics— to a 1924 paper by
Uryson [91] on concave operators. The systematic use of positivity in PDEs was
pioneered Krasnoselskii & Ladyshenskaya [44] and Krasnoselskii [42] .

Amann [5] showed how a sequence {un} of approximate solutions to an elliptic
problem can be viewed as the trajectory {T nu0} of u0 under a certain monotone map
T in a suitable function space incorporating the boundary conditions, with fixed
points of T being solutions of the elliptic equation. The dynamics of T can therefore
be used to investigate the equation. Thus when T is globally asymptotically stable,
there is a unique solution; while if T has two asymptotically stable fixed points, in
many cases degree theory yields a third fixed point. As Amann [6] emphasized, a
few key properties of T— continuity, monotonicity and some form of compactness—
allow the theory to be efficiently formulated in terms of monotone maps in ordered
Banach spaces.

Many questions in differential equations are framed in terms of eigenvectors of
linear and nonlinear operators on Banach spaces. The usefulness of operators that
are positive in some sense stems from the theorem of Perron [63] and Frobenius [23],
now almost a century old, asserting that for a linear operator on IRn represented
by a matrix with positive entries, the spectral radius is a simple eigenvalue having
a positive eigenvector, and all other eigenvalues have smaller absolute value and
only nonpositive eigenvectors. In 1912 Jentzsch [37] proved the existence of a pos-
itive eigenfunction with a positive eigenvalue for a homogeneous Fredholm integral
equation with a continuous positive kernel.

In 1935 the topologists Alexandroff and Hopf [2] reproved the Perron-Frobenius
theorem by applying Brouwer’s fixed point theorem to the action of a positive n×n
matrix on the space of lines through the origin in IRn

+. This was perhaps the first
explicit use of the dynamics of operators on a cone to solve an eigenvalue problem.
In 1940 Rutman [68] continued in this vein by reproving Jentsch’s theorem by means
of Schauder’s fixed point theorem, also obtaining an infinite-dimensional analog of
Perron-Frobenius, known today as the Krein-Rutman theorem [48, 85]. In 1957
G. Birkhoff [7] initiated the dynamical use of Hilbert’s projective metric for such
questions.

Monotone linear operators such as the Koopman operator and Frobenius-Perron
operators arise naturally in the study of ergodicity and mixing properties of measure-
preserving transformations. See e.g. Lasota and Mackey [51].

The dynamics of cone-preserving operators continues to play an important role
in functional analysis; for a survey, see Nussbaum [60, 61]. One outgrowth of this
work has been a focus on purely dynamical questions about such operators; some
of these results are presented below. Polyhedral cones in Euclidean spaces have
lead to interesting quantitative results, including a priori bounds on the number of
periodic orbits. For recent work see Lemmens et al. [52], Nussbaum [62], Krause
and Nussbaum [47], and references therein.

Monotone maps frequently arise as mathematical models in population biology.
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The matrix demographic model of Leslie [53] are well-known. Nonlinear generaliza-
tions of these have also been introduced. See Cushing [14] for a review. Unfortu-
nately, these rarely give rise to monotone maps.

The Leslie-Gower model [54] of two-species competition, given by

xt+1 = b1
1

1 + c11xt + c12yt

xt (3)

yt+1 = b2
1

1 + c21xt + c22yt

yt,

has been analyzed by Cushing et. al. [15] who show that is has the same four
dynamical outcomes as the classical autonomous Lotka-Volterra ordinary differential
equations model of competition. Expressing (3) as (xt+1, yt+1) = T (xt, yt), it can be
shown that T is monotone with respect to the order induced by the fourth-quadrant
cone.

Planar monotone maps have received considerable attention in the literature be-
cause the results for planar maps are considerably stronger than for higher dimen-
sional monotone maps. See Smith [77]. Consequently, we will not devote special
attention to planar maps in this survey.

More elaborate two species competition models involving stage structured pop-
ulations have been studied by Cushing et. al. [15]. The resulting map is also
monotone on IR3

+ under certain restrictions.
Spatially explicit integro-difference equation models considered by Weinberger

[95], Liu [56], Weinberger et. al. [96], Allen et. al. [1], and Hart and Gardner [27]
give rise to monotone maps. An example is the model of two species competition
and dispersal given by:

pt+1(x) =

∫
IRn

b1
pt(x − y)

1 + c11pt(x − y) + c12qt(x − y)
dµ1(y) (4)

qt+1(x) =

∫
IRn

b2
qt(x − y)

1 + c21pt(x − y) + c22qt(x − y)
dµ2(y),

where µi, probability measures, are referred to as dispersal kernels. This system
gives rise to a monotone map T on the positive cone in the product space C(IRn)×
C(IRn) relative to the order induced by the cone C+(IRn) × (−C+(IRn)), where
C(IRn) is the Frechet space of continuous functions with the topology of uniform
convergence on compact sets. The variable x could also be discrete, taking values in
the integer lattice, if the measures are concentrated there. The map T seems to lack
compactness properties required by many results of the theory of monotone maps
reviewed here. Attention focuses on the existence of traveling waves of invasion
joining two equilibria.

For monotone maps as models for the spread of a gene or an epidemic through
a population see Thieme [90], Selgrade and Ziehe [70], and the references therein.

2 Definitions and Basic Results

An ordered Banach space is a Banach space Y with cone Y+, a closed subset of
Y with the properties: IR+ · Y+ ⊂ Y+, Y+ + Y+ ⊂ Y+, Y+ ∩ (−Y+) = {0}.
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We always assume Y+ 6= {0}. Y+ is viewed as the set of positive elements in Y :
y ∈ Y+ ⇐⇒ y ≥ 0. As usual, if x, y ∈ Y , we write x ≤ y (x < y) if y − x ∈ Y+

(y − x ∈ Y+ \ {0}). When IntY+ is nonempty we call Y a strongly ordered Banach
space. In this case x � y ⇔ y − x ∈ IntY+. Occasionally it is useful to make use
of the dual cone (Y+)∗ = {y∗ ∈ Y ∗ : y∗(Y+) ⊂ [0,∞)}, which may not be a cone
since (Y+)∗∩−(Y+)∗ = {0} may fail. Vector y belongs to Y+ if and only if y∗(y) ≥ 0
for all y∗ ∈ (Y+)∗; if Y is strongly ordered, then y ∈ IntY+ implies y∗(y) > 0 for
all nontrivial y∗ ∈ (Y+)∗ and y ∈ ∂Y+ implies that y∗(y) = 0 for some nontrivial
y∗ ∈ (Y+)∗. See [19].

If x < y, we write [x, y] = {z ∈ Y : x ≤ z ≤ y} for the order interval with
endpoints x and y; we write [[x, y]] = {z ∈ Y : x � z � y} for the open order
interval in strongly ordered spaces. Subset X of Y is order bounded if it is contained
in some order interval. A subset X ⊂ Y is p-convex if it contains the line segment
joining any two of its points x and y with x < y; it is order convex if it contains
[x, y] for any two of its points x and y with x < y. A subset A of Y is unordered
if it does not contain points x, y with x < y. A ≤ B for subsets A, B of Y means
a ≤ b for every pair a ∈ A, b ∈ B.

A continuous map T : X → X on the subset X ⊂ Y is

1. monotone if x ≤ y ⇒ Tx ≤ Ty

2. strictly monotone if x < y ⇒ Tx < Ty

3. strongly monotone if x < y ⇒ Tx � Ty

4. eventually strongly monotone if x < y, there exists n0 ≥ 1 such that T nx �
T ny, n ≥ n0.

5. strongly order-preserving (SOP) if T is monotone, and when x < y there exist
respective neighborhoods U, V of x, y and n0 ≥ 1 such that n ≥ n0 ⇒ T nU ≤
T nV .1

Obviously, strong monotonicity is restricted to strongly ordered Banach spaces but
SOP is not. It is easy to see that eventual strong monotonicity implies the strong
order preserving property. Slightly different terminology is used if the map T is
linear. A linear operator T ∈ L(Y ) is called positive if T (Y+) ⊂ Y+ and strongly
positive if T (Y+ \ {0}) ⊂ Int Y+).

A fundamental result for compact, strongly positive linear operators is the Krein-
Rutman Theorem.

Theorem 2.1 (Krein-Rutman) Let A be a compact, strongly positive linear operator
on the Banach space Y and set r = ρ(A). Then Y decomposes into a direct sum of

1Our use of “strongly order-preserving” conflicts with Dancer & Hess [17], who use these words
to mean what we have defined as “strongly monotone”. Our usage is consistent with that of several
authors. Takáč [80, 81] uses “strongly increasing” for our SOP.
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two closed invariant subspaces Y1 and Y2 such that Y1 = N(A − rI) is spanned by
z � 0 and Y2∩Y+ = {0}. Moreover, the spectrum of A|Y2 is contained in the closed
ball of radius ν < r in the complex plane.

See Krein and Rutman [48], Takáč [85] or Zeidler [99] for proofs.
The orbit of x is O(x) := {T nx}n≥0, and the omega limit set of x is ω(x) :=⋂

k≥0 O(T kx). If O(x) has compact closure, ω(x) is nonempty, compact, invariant
(that is, Tω(x) = ω(x)) and invariantly connected. The latter means that ω(x) is
not the disjoint union of two closed invariant sets [50].

If T (x) = x then x is a fixed point or equilibrium. E denotes the set of fixed
points. More generally, if T kx = x for some k ≥ 1 we call x periodic, or k-periodic.
The minimal such k is called the period of x (and O(x)).

The following result is useful for proving smooth maps monotone or strongly
monotone:

Lemma 2.2 Let X ⊂ Y be a p-convex open set, f : X → Y a C1 map with f ′(x)
positive for all x ∈ X. Then f is monotone. If, in addition, for each x, y ∈ X with
x < y, there exists z on the line segment joining x and y such that f ′(z) is strongly
positive, then f is strongly monotone.

Proof By p-convexity, if x, y ∈ X and x < y then the line segment joining them
belongs to X so

f(y) − f(x) =

∫ 1

0

f ′(ty + (1 − t)x)(y − x)dt ≥ 0

because f ′(z) is positive for z ∈ X. If it is also strongly positive at some ty+(1−t)x,
then for nontrivial y∗ ∈ (Y+)∗ we have y∗(f ′(ty + (1 − t)x)(y − x)) > 0 so it follows
that the right side is positive. As y∗ ∈ (Y+)∗ \ {0} is arbitrary, it follows that
f(y) − f(x) � 0.

In the special case that Y = IRn and Y+ is an orthant Km := {x ∈ IRn :
(−1)mixi ≥ 0}, where m = (m1, m2, . . . , mn), mi ∈ {0, 1}, there is a simple test for
a map f : X → X, where X ⊂ IRn is p-convex, to be monotone with respect to Km

for some m, in terms of the Jacobian Df(x). The following must hold:

(a) Sign stability: ∀i, j, ∂fi

∂xj
(x) does not change sign in X.

(b) Sign symmetry: ∀i, j, ∀x, y ∈ X ∂fi

∂xj
(x)

∂fj

∂xi
(y) ≥ 0.

(c) Sign consistency: the signed incidence graph associated with the Jacobian
matrix Df(x), the graph with undirected edge joining vertices i and j if
∂fi

∂xj
(x)+

∂fj

∂xi
(y) 6= 0 for some x, y, the edge being given the sign of this sum, has

the property that every loop has an even number of negative signs (negative
feedbacks).

Note in particular that by taking i = j in (c) with loop i → i, the diagonal
entries of Df(x) must be nonnegative: ∂fi

∂xi
(x) ≥ 0. See [75] for further elaboration

in case of differential equations.
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We begin with the basic results of the theory. In order to state the following result
succinctly, let N0 := N∪{0}. For a, b ∈ N0, a < b we set [a, b] = {j ∈ N0 : a ≤ j ≤ b}
(there will be no confusion with real intervals). Let J ⊂ N0 be an interval and
f : J → X be a map. A subinterval [a, b] ⊂ J, a < b is rising if f(a) < f(b), and
falling if f(b) < f(a).

It is well known that a monotone map T : IR → IR (or on any totally ordered set)
has the property that every trajectory n 7→ T nx is either increasing or decreasing.
In particular, a trajectory cannot have both a rising and a falling interval. The
following result says this holds for all monotone maps; note that topology plays no
role.

Theorem 2.3 (No Orbit Rises and Falls) A trajectory of a monotone map
T : X → X cannot have both a rising interval and a falling interval.

Proof: Fix a trajectory f : N0 → X, f(n) := T nx. Call an interval [m, n] weakly
falling if f(n) ≤ f(m). Right translates of weakly falling intervals are weakly falling
by monotonicity.

We proceed by contradiction. Let [a, a+j] be a falling interval of minimal length
and [b, b + k] a rising interval of minimal length. We assume a ≤ b, the case b ≤ a
being similar.

The interval [b, b + j], a right translate of [a, a + j], is weakly falling. Therefore
j 6= k, since otherwise [b, b+k] would be both rising and weakly falling. If j < k, we
get the contradiction that [b+j, b+k] is a rising interval of length k−j < k, because
f(b + j) ≤ f(b) < f(b + k). But if j > k we get the contradiction that [b + k, b + j]
is a falling interval of length j − k < j, because f(b + k) > f(b) ≥ f(b + j).

Theorem 2.3 appears first in Hirsch [31] for solutions of odes, its proof credited
to L. Ito. A revised proof appears in [75] and one valid for both semiflows and
mappings is presented in [34].

Proposition 2.4 (Nonordering of Periodic Orbits) A periodic orbit of a mon-
otone map is unordered.

Proof: If not, there exists x in the orbit such that T k(x) > x = T k+lx for some
k, l > 0, contradicting Theorem 2.3.

The next result uses the simple fact that a monotone sequence in a compact set
converges.

Lemma 2.5 (Monotone Convergence Criterion) Assume T is monotone and
O(z) has compact closure. If m ≥ 1 is such that T mz < z or T mz > z then ω(z) is
an m-periodic orbit.

Proof: Consider first the case m = 1. Compactness of O(z) implies the decreasing
sequence {T kz} converges to a point p = ω(z). Now suppose m > 1. Applying
the case just proved to the map T m, we conclude that {T kmz} converges to a point
p = T m(p). It follows that ω(z) = {p, Tp, T 2p, · · · , T m−1p}.
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An immediate corollary is that a precompact orbit containing two ordered points
is asymptotic to (or equal to) a periodic orbit:

Corollary 2.6 Assume T is monotone and O(z) has compact closure. If T mz ≤
T nz for some m, n, m 6= n, then ω(z) is a periodic orbit.

The next result is fundamental to the theory of monotone maps:

Theorem 2.7 (Nonordering Principle) Let ω(z) be an omega limit set for a
monotone map T .

(i) No points of ω(z) are related by �.

(ii) If ω(z) is a periodic orbit or T is SOP, no points of ω(z) are related by <.

Proof: (i) Follows from Theorem2.3; first part of (ii) is a consequence of Proposition2.4.
If T is SOP, a, b ∈ ω(z), a < b, then there are neighborhoods U, V of a, b, respec-
tively, and n0 such that T n0(U) ≤ T n0(V ). As T n(z) must repeatedly meet U and V ,
it follows that either it must have both a rising and falling interval or it is eventually
periodic. Either alternative gives a contradiction

Generic convergence fails for strongly monotone maps. We now point out
a significant difference between strongly monotone maps and semiflows: The Limit
Set Dichotomy fails for strongly monotone maps. Recall that for an SOP semiflow
with compact orbit closures, the Limit Set Dichotomy (LSD) states:

If a < b, either ω(a) < ω(b) or ω(a) = ω(b) ⊂ E.

This result was first proved in [33] for strongly monotone semiflows, later stated by
Matano [58] and proved in Smith and Thieme for SOP semiflows [78]. See [34] for a
simple proof. Most all of the important results in the theory of monotone semiflows
follow from this deceptively simple result, perhaps with additional assumptions. In
particular, it implies that the generic orbit converges to the set of equilibria and
that there cannot be an attracting periodic orbit. See [33, 78, 75, 34].

Takac [83], Theorem 3.10, gives conditions on strongly monotone maps under
which a < b implies that either ω(a) ∩ ω(b) = ∅ or ω(a) = ω(b). He also gives a
counterexample showing that ω(a)∩ω(b) = ∅ does not imply ω(a) < ω(b), nor does
ω(a) = ω(b) imply that these limit sets consist of fixed points (they are period-
two orbits in his example). However, the mapping in his example is defined on a
disconnected space.

LSD must fail for any map T in a Banach space, having an asymptotically stable
periodic point p of period > 1: take a point q > p so near to p that O(p) = ω(p) =
ω(q). Clearly ω(p), being a nontrivial periodic orbit, contains no fixed points. Thus
the second assertion of LSD fails in this case.

Dancer and Hess [17] gave a simple example in IRk for prime k of a strongly
monotone map with an asymptotically stable periodic point of period k which we
describe below. Therefore the second alternative of LSD can be no stronger than
that ω(a) = ω(b) is a periodic orbit.
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LSD fails for strictly monotone maps in IR2. To see this, define T0 : IR2 → IR2

by
T0(x, y) := (f(y), f(x)), f(x) = 2 arctan(x).

Let a > 0 be the unique positive fixed point of f and note that 0 < f ′(a) < 1. Then
the set of fixed points of T0 is E = {(−a,−a), (0, 0), (a, a)} since f has no points of
period 2. The fixed points of T 2

0 are the nine points obtained by taking all pairings
of −a, 0, a. An easy calculation shows that {(−a, a), (a,−a)} is an asymptotically
stable period-two orbit of T0 because the Jacobian matrix of T 2

0 is f ′(a)2 times the
identity matrix. Thus, LSD fails. However, T0 is strictly monotone but not strongly
monotone. Now consider the perturbations

Tε(x, y) := T0(x, y) + ε(x, y).

It is easy to see that Tε is strongly monotone for ε > 0. By the implicit function
theorem, for small ε > 0, Tε has an asymptotically stable period-two orbit O(pε)
with pε near (−a, a). As noted in [17], this example can be generalized to IRk for
prime k.

Takáč [84] shows that linearly stable periodic points can arise for the period map
associated with monotone systems of ordinary and partial differential equations.
Other counterexamples for low dimensional monotone maps can be found in Smith
[77, 76]. For example, the dynamics of any one-dimensional recursion xn+1 = h(xn),
where h(x) = f(x)− g(x), f, g strictly increasing functions on IR, can be embedded
on the negative diagonal y = −x for the strongly monotone map T : IR2 → IR2

defined by T (x, y) = (f(x) − g(−y), g(x) − f(−y)). Consequently, there are planar
strongly monotone maps having arbitrarily complicated one-dimensional dynamics
on y = −x. One can show that for any positive integer q, there is such a planar
map T which has an asymptotically stable periodic orbit of period q [76].

3 Attractors contain attracting periodic orbits

As we have shown, asymptotically stable periodic orbits that are not singletons
can exist for monotone, even strongly monotone maps. Later we will show that
the generic orbit of a smooth, dissipative, strongly monotone map converges to a
periodic orbit. Here, we show that every attractor contains a periodic orbit that
attracts an open set.

A set K attracts a point y if O(y) is compact and ω(y) ⊂ K; K attracts a set
U if it attracts each point of U . Recall that a point p is wandering if there exists a
neighborhood U of p and a positive integer n0 such that T n(U) ∩ U = ∅ for n > n0.
The nonwandering set Ω, consisting of all points q that are not wandering, contains
all limit sets. The following result is due to Hirsch, Theorem 4.1 [32].

Theorem 3.1 Let X be an open subset of the strongly ordered Banach space Y and
T : X → X be monotone with compact orbit closures. If K is a compact invariant
set that attracts some neighborhood of itself, then K contains a periodic orbit that
attracts an open set.
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Proof: K ∩ Ω is nonempty and compact so we may choose a maximal element
p of it. Suppose K attracts the open neighborhood U of K and fix y � p, y ∈ U .
Since p is nonwandering there exists a convergent sequence xi → p and a sequence
ni → ∞ such that T nixi → p. For all large i, xi ≤ y. Passing to a subsequence, we
assume that T niy → q. By monotonicity and xi ≤ y for large i, we have q ≥ p. But
q ∈ K ∩ Ω and the maximality of p requires q = p. Since p � y and T niy → p it
follows that T my � y for some m. Lemma 2.5 implies that ω(y) is an m-periodic
orbit containing p. As this holds for every y � p, the result follows.

If T is strongly monotone, Hirsch, Theorem 6.3 [32] proves the existence of a
periodic orbit in K that is stable relative to the topology generated by open order
intervals [[a, b]]. If, in addition, K is a uniform attractor of some neighborhood of
itself, then it must contain a stable periodic orbit, Hirsch and Smith [34]. A result
of Jiang and Yu, Theorem 2, [38] then shows that if T is analytic, order compact
with strongly positive derivative, K must contain an asymptotically stable periodic
orbit.

The following result constrains the size of the domain of attraction of a nontrivial
periodic orbit.

Proposition 3.2 Let A be an invariant set for an SOP map T that attracts an
upper bound x. Then a := sup A exists, belongs to A, and ω(x) = a so Ta = a. An
analogous statement holds if A attracts a lower bound. A non-trivial periodic orbit
cannot attract an upper or lower bound.

Proof: A ≤ x implies A ≤ ω(x) by invariance of A. As ω(x) ⊂ A, we have
ω(x) ≤ ω(x) implying that ω(x) is a singleton by the Nonordering Principle and
SOP. So ω(x) = a ∈ A and A ≤ a implying that a = sup A.

If a nontrivial periodic orbit O attracts an upper bound, then sup O exists and
is a fixed point, a contradiction.

4 Dynamics of Smooth strongly monotone maps

The generic orbit of a smooth strongly order preserving semiflow converges to fixed
point but such a result fails to hold for discrete semigroups, i.e., for strongly order
preserving mappings. Indeed, such mappings can have attracting periodic orbits of
period exceeding one as we have just seen. However, Tereščák [88], improving earlier
joint work with Poláčik [66, 67], and [30], has obtained the strongest result possible
for strongly monotone, smooth, dissipative mappings. Recall that map T is point
dissipative (see Hale [24]) provided there is a bounded set B with the property that
for every x ∈ X, there is a positive integer n0 = n0(x) such that T nx ∈ B for all
n ≥ n0.

Theorem 4.1 (Tereščák, 1994) Let T : Y → Y be a completely continuous, C1,
point dissipative map whose derivative is strongly positive at every point of the or-
dered Banach space Y having cone Y+ with nonempty interior. Then there is a
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positive integer m and an open dense set U ⊂ Y such that the omega limit set of
every point of U is a periodic orbit with period at most m.

We note that the hypothesis that T ′(x) is strongly positive implies that T is
strongly monotone by Lemma 2.2. It is unfortunate that Tereščák’s Theorem has
not yet been published.

Smoothness together with compactness allows one to settle questions of stability
of fixed points and periodic points by examining the spectrum of the linearization
of the mapping. Let T : X → X where X is an open subset of the ordered Banach
space Y with cone Y+ having nonempty interior in Y . Assume that T is a completely
continuous, C1 mapping with a strongly positive derivative at each point. Then T
is strongly monotone by Lemma 2.2 and T ′(x) is a Krein-Rutman operator so the
Krein-Rutman Theorem 2.1 holds for T ′(p), p ∈ E. Let ρ be the spectral radius of
T ′(p), which the reader will recall is a simple eigenvalue which dominates all others
in modulus and for which the generalized eigenspace is spanned by an eigenvector
v � 0. Let V1 be the span of v in Y . There is a complementing closed subspace V2

such that Y = V1

⊕
V2 satisfying T ′(p)V2 ⊂ V2 and V2 ∩ Y+ = {0}. Let P denote

the projection of Y onto V2 along v. Finally, let τ denote the spectral radius of
T ′(p)|V2 : V2 → V2, which obviously satisfies τ < ρ. Mierczyński [59] exploits this
structure of the linearized mapping to obtain very detailed behavior of the orbits of
points near p. In order to describe his results, define K := {x ∈ X : T nx → p} to be
the basin of attraction of p. Let M− := {x ∈ X : T n+1x � T nx, n ≥ n0, some n0}
be the set of eventually decreasing orbits, M+ := {x ∈ X : T nx � T n+1x, n ≥
n0, some n0} be the set of eventually increasing orbits, and M := M− ∪M+ be the
set of eventually monotone (in the strong sense) orbits.

The following result is standard but nonetheless important.

Theorem 4.2 (Principle of Linearized Stability) If ρ < 1, there is a neigh-
borhood U of p such that T (U) ⊂ U and constants c > 0, κ ∈ (ρ, 1) such that for
each x ∈ U and all n

‖T nx − p‖ ≤ cκn‖x − p‖.

In the more delicate case that ρ ≤ 1, Mierczyński [59] obtains a smooth hy-
persurface C, which is an analog for T of the codimension-one linear subspace V2

invariant under the linearized mapping T ′(p):

Theorem 4.3 If ρ ≤ 1 there exists a codimension-one embedded invariant manifold
C ⊂ X of class C1 having the following properties:

(i) C = {p + Pw + R(w)v : w ∈ O} where R : O → IR is a C1 map defined on
the relatively open subset O of V2 containing 0, satisfying R(0) = R′(0) = 0.
In particular, C is tangent to V2 at p.

(ii) C is unordered.

(iii) C = {x ∈ X : ‖T nx − p‖/κn → 0} = {x ∈ X : ‖T nx − p‖/κn is bounded}, for
any κ, τ < κ < ρ. In particular, C ⊂ K.

(iv) K\C = {x ∈ K : ‖T nx−p‖/κn → ∞} = {x ∈ K : ‖T nx−p‖/κn is unbounded},
for any κ, τ < κ < ρ.

11



(v) K \ C = K ∩ M .

Conclusion (v) implies most orbits converging to p do so monotonically, but more
can be said. Indeed, K ∩M+ = {x ∈ K : (T nx−p)/‖T nx−p‖ → −v} and a similar
result for K ∩ M− with v replacing −v holds. The manifold C is a local version of
the unordered invariant hypersurfaces obtained by Takáč in [81].

Corresponding to the space V1 spanned by v � 0 for T ′(p), a locally forward
invariant, one dimensional complement to the codimension one manifold C is given
in the following result.

Theorem 4.4 There is ε > 0 and a one-dimensional locally forward invariant C 1

manifold W ⊂ B(p; ε), tangent to v at p. If ρ > 1, then W is locally unique, and
for each x ∈ W there is a sequence {x−n} ⊂ W with Tx−n = x−n+1, x0 = x, and
κn‖x−n − p‖ → 0 for any κ, 1 < κ < ρ.

Here B(p; ε) is the open ε-ball centered at p. Local forward invariance of W
means that x ∈ W and Tx ∈ B(x; ε) implies Tx ∈ W . Related results are obtained
by Smith [72]. In summary, the above results assert that the dynamical behavior of
the nonlinear map T behaves near p like that of its linearization T ′(p). Obviously,
the above results can be applied at a periodic point p of period k by considering the
map T k which has all the required properties.

Mierczyński [59] uses the results above to classify the convergent orbits of T .
Similar results are obtained by Takáč in [82].

It is instructive to consider the sort of stable bifurcations that can occur from a
linearly stable fixed point, or a linearly stable periodic point, for a one parameter
family of mappings satisfying the hypotheses of the previous results, as the param-
eter passes through a critical value at which ρ = 1. The fact that there is a simple
positive dominant eigenvalue of (T k)′(p) ensures that period-doubling bifurcations
from a stable fixed point or from a stable periodic point, as a consequence of a real
eigenvalue passing through −1, cannot occur. In a similar way, a Neimark-Sacker
[49] bifurcation to an invariant closed curve cannot occur from a stable fixed or
periodic point. These sorts of bifurcations can occur from unstable fixed or periodic
points but then they will “ be born unstable”.

5 The Order Interval Trichotomy

In this subsection we assume that X is a subset of an ordered Banach space Y with
positive cone Y+, with the induced order and topology. Much of the early work on
monotone maps on ordered Banach spaces focused on the existence of fixed points
for self maps of order intervals [a, b] such that a, b ∈ E; see especially Amann [6].
The following result of Dancer and Hess [17], quoted without proof, is crucial for
analyzing such maps.

Let u, v be fixed points of T . A doubly-infinite sequence {xn}n∈Z (Z is the set of
all integers) in Y is called an entire orbit from u to v if

xn+1 = T (xn), lim
n→−∞

= u, lim
n→∞

xn = v
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If xn ≤ xn+1 (respectively, xn < xn+1), the entire orbit is increasing (respectively,
strictly increasing). If xn ≥ xn+1 (respectively, xn > xn+1), the entire orbit is
decreasing (respectively, strictly decreasing). If the entire orbit {xn} is increasing
but not strictly increasing, then xn = v for all sufficiently large n; and similarly for
decreasing.

Consider the following hypothesis:

(G) X = [a, b] where a, b ∈ Y, a < b. The map T : X → X is monotone, T (X) has
compact closure in X, and Ta = a, T b = b

Theorem 5.1 (The Order Interval Trichotomy) Under hypothesis (G), at
least one of the following holds:

(a) there is a fixed point c such that a < c < b

(b) there exists an entire orbit from a to b that is increasing, and strictly increasing
if T is strictly monotone

(c) there exists an entire orbit from b to a that is decreasing, and strictly decreasing
if T is strictly monotone

An extension of Theorem 5.1 to allow additional fixed points on the boundary of [a, b]
is carried out in Hsu et al. [36]. Wu et al. [97] weaken the compactness condition. See
Hsu et al. [36], Smith [77], and Smith and Thieme [79] for applications to generalized
two-species competition dynamics. For related results see Hess [28], Matano [57],
Poláčik [64], Smith [72, 75].

A fixed point q of T is stable if every neighborhood of q contains a positively in-
variant neighborhood of q. An immediate corollary of the Order Interval Trichotomy
is:

Corollary 5.2 Assume hypothesis (G), and let a and b be stable fixed points. Then
there is a third fixed point in [a, b].

Corollary 5.4 establishes a third fixed point under different assumptions.
In general, more than one of the alternatives (a), (b), (c) may hold (see [36]).

The following complement to the Order Interval Trichotomy gives conditions for
exactly one to hold; (iii) is taken from Proposition 2.2 of [36].

Consider the following three conditions:

(a′) there is a fixed point c such that a < c < b

(b′) there exists an entire orbit from a to b.

(c′) there exists an entire orbit from b to a

Proposition 5.3 Assume hypothesis (G).

(i) If T is strongly order-preserving, exactly one of (a′), (b′), (c′) can hold. More
precisely: Assume a < y < b and y has compact orbit closure. Then ω(y) = {b}
if there is an entire orbit from a to b, while ω(y) = {a} if there is an entire
orbit from b to a .

13



(ii) If a � b, at most one of (b′), (c′) can hold.

(iii) Suppose a � b, and E ∩ [a, b] \ {a, b} 6= ∅ implies E ∩ [[a, b]] \ {a, b} 6= ∅. Then
at most one of (a′), (b′), (c′) can hold.

Proof: For (i), consider an entire orbit {xn} from a to b. There is a neighborhood
U of a such that T kU ≤ T ky for sufficiently large k. Choose xj ∈ U . Then
T kxj ≤ T ky ≤ b for all large k. As limk→∞ T kxj = b and the order relation is closed,
b is the limit of every convergent subsequence of {T ky}. The case of an entire orbit
from b to a is similar.

In (ii), choose neighborhoods U, V of a, b respectively such that U � V . Fix j
so that xj ∈ U . If y ∈ V then an argument similar to the proof of (i) shows that
ω(y) = {b}. Hence there cannot be an entire orbit from b to a, since it would contain
a point of V .

Assume the hypothesis of (iii), and note that (ii) makes (b′) and (c′) incompati-
ble. If (a′), there is a fixed point c ∈ [[a, b]], and arguments similar to the proof of
(ii) show that neither (b′) nor (c′) holds.

Corollary 5.4 In addition to hypothesis (G), assume T is strongly order preserving.
If some trajectory does not converge, there is a third fixed point.

Proof Follows from the Order Interval Trichotomy Theorem 5.1 and Proposition 5.3(i).

A number of authors have considered the question of whether a priori knowledge
that every fixed point is stable implies the convergence of every trajectory. See
Alikakos et al. [3], Dancer and Hess [17], Matano [57] and Takáč [81] for such results.
The following theorem, adapted from [17], is proved in Hirsch and Smith [34].

A set A ⊂ X is a uniform global attractor for the map T : X → X if T (A) = A
and dist(T nx, A) → 0 uniformly in x ∈ X.

Theorem 5.5 Let a, b ∈ Y with a < b. Assume T : [a, b] → [a, b] is strongly order
preserving with precompact image, and every fixed point is stable. Then E is a totally
ordered arc J that is a uniform global attractor, and every trajectory converges.

If the map T in Theorem 5.5 is C1 and strongly monotone, then E is a smooth
totally ordered arc by a result of Takáč [83].

Existence of fixed points

Dancer [18] obtained remarkable results concerning the dynamics of monotone maps
with some compactness properties: Limit sets can always be bracketed between two
fixed points, and with additional hypotheses these fixed points can be chosen to be
stable. These results do not require smoothness nor strong monotonicity. The next
two theorems are adapted from [18].

A map T : Y → Y is order compact if it takes each order interval, and hence
each order bounded set, into a precompact set.
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Theorem 5.6 Let X ⊂ Y and T : X → X be monotone such that every orbit has
compact closure in X. If either

(a) X is order convex, T is order compact, and every limit set order bounded, or

(b) every limit set has an infimum and supremum in X

then for all z ∈ X there are fixed points f, g such that f ≤ ω(z) ≤ g.

Proof: (a): There exists u ∈ X such that u ≥ ω(z) because omega limit sets
order bounded. Since T (ω(z)) = ω(z), it follows that ω(z) ≤ T iu for all i, hence
ω(z) ≤ ω(u). Similarly, there exists s ∈ X such that ω(u) ≤ ω(s). The set F :=
{x ∈ Y : ω(z) ≤ x ≤ ω(s)} is the intersection of closed order intervals, hence closed
and convex, non-empty because it contains ω(u), and obviously order bounded.
Moreover F ⊂ X because X is order convex. Therefore T (F ) is defined and is
precompact. Monotonicity of T and invariance of ω(z) and ω(s) imply T (F ) ⊂ F .
It follows from the Schauder fixed point theorem that there is a fixed point g ∈ F ,
and g ≥ ω(z) as required. The existence of f is proved similarly.

(b): If a = inf ω(z), then a ≤ ω(z) and monotonicity and invariance of ω(z)
imply Ta ≤ ω(z). The definition of a implies Ta ≤ a and consequently ω(a) = {f}
with f ≤ ω(z). The existence of g is proved similarly.

The cone Y+ is reproducing if Y = Y+ − Y+. This holds for many function
spaces whose norms do not involve derivatives. If Y+ has nonempty interior, it is
reproducing: any x ∈ Y can be expressed as x = λe−λ(e−λ−1x) ∈ Y+−Y+, where
e � 0 is arbitrary and λ > 0 is a sufficiently large real number.

Theorem 5.7 Let X ⊂ Y be order convex. Assume T : X → X is monotone,
completely continuous, and order compact. Suppose orbits are bounded and omega
limits sets are order bounded.

(i) For all z ∈ X there are fixed points f, g such that f ≤ ω(z) ≤ g.

(ii) Assume Y+ is reproducing, X = Y or Y+, and E is bounded. Then there
are fixed points eM = sup E and em = inf E, and all omega limit sets lie
in [em, eM ]. Moreover, if x ≤ em then ω(x) = {em}, while if x ≥ eM then
ω(x) = {eM}.

(iii) Assume Y+ is reproducing, X = Y or Y+, E is bounded, and T is strongly
order preserving. Suppose z0 ∈ Y is not convergent. Then there are three fixed
points f < p < g such that f < ω(z0) < g. If T is strongly monotone, f and
g can be chosen to be stable.

Proof: We prove all assertions except for the stability in (iii). Complete continuity
implies that every positively invariant bounded set is precompact. Therefore orbit
closures are compact and omega limit sets are compact and nonempty, so (i) follows
from Theorem 5.6.
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To prove (ii), note that E is compact because it is bounded invariant and closed.
Compact sets have maximal (minimal) elements; choose a maximal element eM ∈ E.
We must show that eM ≥ e for every e ∈ E. Since the order cone is reproducing,
eM − e = v − w with v, w ≥ 0. Set u := e + v + w. Then u ∈ X, u ≥ e, and
u ≥ eM . Monotonicity implies eM = T ieM ≤ T iu for all i ≥ 0, hence eM ≤ ω(u).
By Theorem 5.6 there exists g ∈ E such that ω(u) ≤ g. Hence eM ≤ g, whence
eM = g by maximality. We now have eM ≤ ω(u) ≤ g = eM , so ω(u) = {eM}.
Monotonicity implies (as above) e ≤ ω(u), therefore e ≤ eM as required. This
proves eM = sup E, and the dual argument proves em = inf E. If x ≤ em then
ω(x) ≤ em by monotonicity; but ω(x) ≥ em by (i), so ω(x) = {em}. Similarly for
the case x ≥ eM .

To prove the first assertion of (iii), note that em < ω(z) < eM by (i) and
the Nonordering Principle 2.7(ii). Monotonicity and order compactness of T imply
[em, eM ] is positively invariant with precompact image. As T is SOP, there is a third
fixed point in [em, eM ] by Corollary 5.4.

Remark 5.8 Under the hypotheses of Theorem 5.7(iii), if E does not contain three
ordered fixed points, every orbit converges to a fixed point. Takáč, Theorem 0.2 [83]
shows that if there are not three ordered periodic points of T , then every limit set is
a periodic orbit.

6 Sublinearity and the Cone Limit Set Trichotomy

Motivated by the problem of establishing the existence of periodic solutions of quasi-
monotone, periodic differential equations defined on the positive cone in Rn, Kras-
noselskii pioneered the dynamics of sublinear monotone self-mappings of the cone
[43]. We will prove Theorem 6.3 below, adapted from the original finite-dimensional
version of Krause and Ranft [46].

Let Y denote an ordered Banach space with positive cone Y+. Denote the interior
(possibly empty) of Y+ by P . A map T : Y+ → Y+ is sublinear (or “subhomoge-
neous”) if

0 < λ < 1 ⇒ λT (x) ≤ T (λx),

and strongly sublinear if

0 < λ < 1, x � 0 ⇒ λT (x) � T (λx)

Strong sublinearity is the strong concavity assumption of Krasnoselskii [43]. It
can be verified by using the following result from that monograph:

Lemma 6.1 Let P 6= ∅. T : P → Y is strongly sublinear provided T is differentiable
and Tx � T ′(x)x for all x � 0.

Proof: Let F (s) = s−1T (sx) for s > 0 and some fixed x � 0. Then F ′(s) =
−s−2T (sx) + s−1T ′(sx)x � 0 by our hypothesis. So for 0 < λ < 1, we have

φ(Tx − λ−1T (λx)) = φ(F (1)) − φ(F (λ)) < 0
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for every nontrivial φ ∈ Y ∗
+, the dual cone in Y ∗, because d

ds
φ(F (s)) < 0. It follows

that Tx − λ−1T (λx) � 0.

Corollary 6.2 Assume Y is strongly ordered. A continuous map T : Y+ → Y+ is
sublinear provided T is differentiable in P and Tx ≥ T ′(x)x for all x � 0.

Proof: By continuity it suffices to prove T |P is sublinear. Fix e � 0. For each δ > 0
the map P → Y, x 7→ Tx + δe is strongly sublinear by Lemma 6.1. Sending δ to
zero implies T is sublinear.

Krause and Ranft [46] have results establishing sublinearity of some iterate of T ,
which is an assumption used in Theorem 6.3 below.

The following theorem demonstrates global convergence properties for order com-
pact maps that are monotone and sublinear in a suitably strong sense.

Theorem 6.3 (Cone Limit Set Trichotomy) Assume T : Y+ → Y+ is contin-
uous and monotone and has the following properties for some r ≥ 1:

(a) T r is strongly sublinear

(b) T rx � 0 for all x > 0

(c) T r is order compact

Then precisely one of the following holds:

(i) each nonzero orbit is order unbounded

(ii) each orbit converges to 0, the unique fixed point of T .

(iii) each nonzero orbit converges to q � 0, the unique nonzero fixed point of T .

A key tool in the proofs of such results is Hilbert’s projective metric and the
related part metric due to Thompson [89]. We define the part metric p(x, y) here in
a very limited way, as a metric on P (which is the “part”). For x, y � 0, define

p(x, y) := inf{ρ > 0 : e−ρx � y � eρy}

The family of open order intervals in P forms a base for the topology of the part
metric. It is easy to see that the identity map of P is continuous from the original
topology on P to that defined by the part metric.

When Y = IRn with vector ordering, with P = Int(IRn
+), the part metric is

isometric to the max metric on IRn, defined by dmax(x, y) = maxi |xi − yi|, via the
homeomorphism Int(IRn

+) ≈ IRn, x 7→ (log x1, . . . , log xn). Restricted to compact
sets in Int(IRn

+), the part metric and the max metric are equivalent in the sense that
there exist α, β > 0 such that αp(x, y) ≤ dmax(x, y) ≤ βp(x, y).

The usefulness of the part metric in dynamics stems from the following result.
Recall map T between metric spaces is a contraction if it has a Lipschitz constant
< 1, and it is nonexpansive if it has Lipschitz constant 1. We say T is strictly
nonexpansive if p(Tx, Ty) < p(x, y) whenever x 6= y.
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Proposition 6.4 Let T : P → P be a continuous, monotone, sublinear map.

(i) T is nonexpansive for the part metric.

(ii) If T is strongly sublinear, T is strictly nonexpansive for the part metric.

(iii) If T is strongly monotone, A ⊂ P , and no two points of A are linearly depen-
dent, then T |A is strictly nonexpansive for the part metric.

(iv) Assume T is strongly sublinear or strongly monotone and let A be as in (iii).
If L ⊂ A is compact (in the norm topology) and T (L) ⊂ L, then the set
L∞ =

⋂
n>0 T n(L) is a singleton.

Proof: Fix distinct points x, y ∈ P and set ep(x,y) = λ > 1, so that λ−1x ≤ y ≤ λx
and λ is the smallest number with this property. By sublinearity and monotonicity,

λ−1Tx ≤ T (λ−1x) ≤ Ty ≤ T (λx) ≤ λTx (5)

which implies p(Tx, Ty) ≤ p(x, y).
If T is strongly sublinear, the first and last inequalities in (5) can be replaced by

�, which implies p(Tx, Ty) < p(x, y).
When x and y are linearly independent, λ−1x < y < λx. If also T is strongly

monotone, (5) is strengthened to

λ−1Tx ≤ T (λ−1x) � Ty � T (λx) ≤ λTx

which also implies p(Tx, Ty) < p(x, y).
To prove (iv), observe first that if L is compact in the norm metric, it is also

compact in the part metric. In both (ii) and (iii) T reduces the diameter in the part
metric of every compact subset of L. Since T maps L∞ onto itself but reduces its
part metric diameter, (iv) follows.

Proof of the Cone Limit Set Trichotomy 6.3. We first work under the assumption
that r = 1. In this case Proposition 6.4 shows that every compact invariant set in
P reduces to a fixed point, and there is at most one fixed point in P . It suffices to
consider the orbits of points x ∈ P , by (b).

Suppose there is a fixed point q � 0. There exist numbers 0 < λ < 1 < µ such
that x ∈ [λq, µq] ⊂ P . For all n we have

0 � λq = λT nq ≤ T n(λq) ≤ T nx ≤ T n(µq) ≤ µT nq = µq

Hence O(x) ⊂ [λq, µq], so O(Tx) lies in T ([λp, µq]), which is precompact by (c).
Therefore ω(x) is a compact unordered invariant set in P . Proposition 6.4(iii) implies
that ω(x) = {q}. This verifies (iii).

Case I: If some orbit O(y) is order unbounded, we prove (i). We may assume
y � 0. There exists 0 < γ < 1 such that γy � x. Then γT ny ≤ T n(γy) ≤ T nx,
implying O(x) is unbounded.

Case II: If 0 ∈ ω(y) for some y, we prove (ii). We may assume y � 0. Fix µ > 1
with x � µy. Then 0 ≤ T nx ≤ T n(µy) ≤ µT ny → 0. Therefore O(x) is compact
and T nx → 0.
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Case III: If the orbit closure O(x) ⊂ [a, b] ⊂ P , then (iii) holds. For O(x)
is compact by (c), so ω(x) is a nonempty compact invariant set. Because ω(x) ⊂
O(x) ⊂ P , Case I implies (iii).

Cases I, II and III cover all possibilities, so the proof for r = 1 is complete. Now
assume r > 1. One of the statements (i), (ii) (iii) is valid for T r in place of T . If
(i) holds for T r, it obviously holds for T . Assume (ii) holds for T r. If x > 0 then
ω(x) = {0, T (0), . . . , T r−1(0)}. As this set is compact and T r invariant, it reduces
to {0}, verifying (ii) for T . A similar argument shows that if (iii) holds for T r, it
also holds for T .

The conclusion of the Cone Limit Trichotomy can fail for strongly monotone
sublinear maps— simple linear examples in the plane have a line of fixed points.
But the following holds:

Theorem 6.5 Assume:

(a) T : Y+ → Y+ is continuous, sublinear, strongly monotone, and order compact.

(b) for each x > 0 there exists r ∈ N such that T rx � 0

Then:

(i) either O(x) is not order bounded for all x > 0, or O(x) converges to a fixed point
for all x ≥ 0;

(ii) the set of fixed points > 0 has the form {λe : a ≤ λ ≤ b} where e � 0 and
0 ≤ a ≤ b ≤ ∞.

Proof: Let y > 0 be arbitrary. If O(y) is not order bounded, or 0 ∈ ω(y), the
proof of (i) follows Cases I and II in the proof of the Cone Limit Set Trichotomy
6.3. If O(y) ⊂ [a, b] ⊂ P , then ω(y) is a compact invariant set in P , as in case
III of Theorem 6.3. As ω(y) is unordered, every pair of its elements are linearly
independent. Therefore Proposition 6.4(iv) implies ω(y) reduces to a fixed point,
proving (i). The same reference shows that all fixed points lie on a ray R ⊂ Y+

through the origin, which must pass through some e � 0 by (b). Suppose p, q
are distinct fixed points and 0 � p � x <� q. There exist unique numbers
0 < µ < 1 < ν such that x = µp = µq. Then

Tx ≥ µTp = µp = x, Tx ≤ νTq = νq = x

proving Tx = x. This implies (ii).

Papers related to sublinear dynamics and the part metric include Dafermos and
Slemrod [16], Krause and Ranft [46], Krause and Nussbaum [47], Nussbaum [60, 61],
Smith [71], and Takáč [80, 86]. For interesting applications of sublinear dynamics
to higher order elliptic equations, see Fleckinger and Takáč [21, 22].
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