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Abstract. In this paper, we study the monotone meta-Lindelöf property. Relationships
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1. Preliminaries

Monotone topological properties play an important role in the research of general

topology (see [3]–[5], [7], [9] and [14]). In [3], the authors studied monotone Lindelöf

spaces.

A space X is monotonically Lindelöf if for each open cover U of X there exists a

countable open cover r(U ) of X refining U such that if U and V are open covers

and U refines V , then r(U ) refines r(V ). Monotone Lindelöf spaces are Lindelöf,

however a Lindelöf space may not be monotonically Lindelöf.

In this paper, we introduce the monotone meta-Lindelöf property which is weaker

than monotone Lindelöfness but stronger than meta-Lindelöfness. Properties of

monotone meta-Lindelöf spaces are investigated. Behaviors of monotone meta-

Lindelöf GO-spaces in their linearly ordered extensions are revealed.

Recall that a generalized ordered space (GO-space) is a Hausdorff space X

equipped with a linear order and having a base of convex sets (a set A is called

convex if x ∈ A for every x lying between two points of A). If the topology of X

coincides with the open interval topology of the given linear order, we say that

The project is supported by NSFC No. 10571081.
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X is a linearly ordered topological space (LOTS). Čech showed that the class of

GO-spaces is the same as the class of spaces that can be topologically embedded in

some LOTS (see [10]).

If X is a GO-space and Y is a LOTS containing X as a subspace, and the order

on X is inherited from the order on Y , then Y called a linearly ordered extension

of X . If the GO-space X is closed (respectively, dense) in the LOTS Y , then Y is

called the closed (respectively, dense) linearly ordered extension of X .

Throughout the paper, spaces are topological spaces and Hausdorff, mappings are

continuous and surjective. Let U and V be open covers of the space X . If U

refines V , we say that U is a refinement of V , denoted by U ≺ V . A space X is

meta-Lindelöf if every open cover U of X has a point-countable open refinement V .

R, Q, P and Z denote the set of all real numbers, the set of all rational numbers,

the set of all irrational numbers and the set of all integers respectively. The spaces

[0, ω1) and [0, ω1] are the usual ordinal spaces unless specifically stated and the space

[0, 1] is the subspace of the real line R. Other terms and symbols can be found in [6]

and [10].

2. The definition of monotone meta-Lindelöf spaces

Definition 1. A space X is monotonically meta-Lindelöf if each open cover U

of X has a point-countable open refinement r(U ) such that if U and V are open

covers and U ≺ V , then r(U ) ≺ r(V ). In this case, r is called a monotone meta-

Lindelöf operator for the space X .

Proposition 1. Spaces with a point-countable base are monotonically meta-

Lindelöf.

P r o o f. Let the space X have a point-countable base B. For any open cover U

of X , put r(U ) = {B ∈ B : ∃U ∈ U such that B ⊂ U}, then r is a monotone

meta-Lindelöf operator for X . �

Proposition 1 is not reversible (see Example 3).

Obviously,

(♦) monotone Lindelöf⇒ monotone meta-Lindelöf⇒ meta-Lindelöf.

Examples 1, 2 and Proposition 2 show that the implications in (♦) are not reversible.

In a LOTS, monotone meta-Lindelöfness does not imply monotone Lindelöfness:

Example 1. Let X = [0, 1] × (0, 1) be equipped with the open interval topol-

ogy of the lexicographical order. Then X is monotonically meta-Lindelöf, but not

monotonically Lindelöf.
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P r o o f. For each t ∈ [0, 1], {t}×(0, 1) has a countable baseBt, soX has a point-

countable base B = {B ∈ Bt : t ∈ [0, 1]}. By Proposition 1, X is monotonically

meta-Lindelöf. Since the open cover {{t} × (0, 1): t ∈ [0, 1]} of X has no countable

subcover X is not Lindelöf. So X is not monotonically Lindelöf. �

InGO-spaces, monotone meta-Lindelöfness does not imply monotone Lindelöfness:

Example 2. The Michael line M (a GO-space) is monotonically meta-Lindelöf,

but not monotonically Lindelöf.

P r o o f. Note that the Michael lineM (the real line with the irrationals isolated

and the rationals having their usual neighborhoods) has a point-countable base B =

{(a, b) : a, b ∈ Q} ∪ {{p} : p ∈ P}. By Proposition 1 M is monotonically meta-

Lindelöf. However M is not monotonically Lindelöf since it is not Lindelöf ([13]).

�

Example 3. The space X = ([0, ω1) × Z) ∪ {〈ω1, 0〉} equipped with the

lexicographical-order topology is monotonically meta-Lindelöf, but without a point-

countable base.

P r o o f. For any open cover U of X , [3] noted that if

α = α(U ) = min{α′ ∈ [0, ω1) : (〈α′, 0〉, 〈ω1, 0〉] ⊂ U for some U ∈ U }

and

r(U ) = {(〈α, 0〉, 〈ω1, 0〉]} ∪ {{〈β, κ〉} : β < α and κ ∈ Z or β = α and κ 6 0},

then r is a monotone Lindelöf operator. So r is also a monotone meta-Lindelöf

operator. Since the point 〈ω1, 0〉 has no countable neighborhood base, X has no

point-countable base. �

In Example 2.3 of [3], it is shown that [0, ω1] is not monotonically Lindelöf. Note

that in its proof, if r is assumed to be a monotone meta-Lindelöf operator for [0, ω1],

then r(Uγ) is a point-countable open refinement of Uγ . Thus from the proof of

Example 2.3 of [3], we can see that the following stronger result is true.

Proposition 2. The compact LOTS [0, ω1] is not a monotone meta-Lindelöf

space.
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Corollary 1. A monotonically meta-Lindelöf compact LOTS X is first countable.

P r o o f. Let ≺ be the linear order on X . If the compact LOTS X is not first

countable, then it contains a closed subspace which is homomorphic to [0, ω1]: in

fact, let p ∈ X have no countable neighborhood base. Without loss of generality, we

may assume that p has no immediate predecessor and is not the minimal element

and any strict increasing sequence of {x ∈ X : x ≺ p} cannot be convergent to p.

Take x0 ∈ X such that x0 ≺ p. Start with x0, by transfinite induction, we

can obtain a closed subset F = {xα ≺ p : α ∈ [0, ω1]} of X where for each limit

ordinal γ ∈ [0, ω1], xγ = sup{xα : α < γ} (since X is a compact LOTS this can

be done) and xα ≺ xβ whenever α < β. Clearly F is homomorphic to [0, ω1]. By

Proposition 3 (1), F (homomorphic to [0, ω1]) is monotonically meta-Lindelöf. This

contradicts Proposition 2. �

The compact LOTS [0, ω1] in Proposition 2 is not connected. We will see that a

connected compact LOTS may not imply monotone meta-Lindelöfness.

Recall that the long line Z is the space Z = [0, ω1)× [0, 1) with the open interval

topology generated by the lexicographical order. Obviously, Z is countably compact

but not compact. By Theorem 9.2 of [1] Z is not meta-Lindelöf. The space Z∗ =

Z ∪ {ω1} is called the extended long line (that is, for any z ∈ Z, z < ω1 and

Z∗ is equipped with the open interval topology, equivalently, Z∗ is the one-point

compactification of Z) (see [13]).

Corollary 2. The connected compact LOTS Z∗ is not monotonically meta-

Lindelöf.

P r o o f. Note that Z∗ is not first countable since the point ω1 has no countable

neighborhood base. So by Corollary 1, Z∗ is not monotonically meta-Lindelöf. �

To be clear at a glance, we give the following diagram, the implications are not

reversible.

second countable

��

// point-countable base

��

monotonically Lindelöf

��

// monotonically meta-Lindelöf

��

Lindelöf // meta-Lindelöf

Diagram (∗).

Recall that a space X is said to have calibre ω1 if a point-countable family of

non-empty open subsets is countable [11].
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Remark 1. If X has calibre ω1 and each x ∈ X has an open neighborhood Ux

with a point-countable base, then the properties in Diagram (∗) are equivalent.

In fact, let X be meta-Lindelöf and W be a point-countable open refinement

of U = {Ux : x ∈ X}. For each W ∈ W , take a U ∈ U such that W ⊂ U .

Put BW = {W ∩ B : B ∈ BU}, where BU is a point-countable base of U . Then

B =
⋃
{BW : W ∈ W } is a point-countable base for X . Since X has calibre ω1,

B is a countable base for X .

Recall that a mapping f : X → Y is an s-mapping if for every y ∈ Y , f−1(y) is

separable.

Proposition 3.

(1) Monotone meta-Lindelöfness is hereditary for closed subspaces;

(2) monotone meta-Lindelöfness is preserved by open s-mappings.

P r o o f. (1) Let the space X be monotonically meta-Lindelöf and r be a

monotone meta-Lindelöf operator for X . Suppose that F ⊂ X is closed. For

any open cover UF of F , there exists a family U of open subsets of X such that

UF = {U ∩ F : U ∈ U }. Put U ′ = {U ∪ (X − F ) : U ∈ U } and rF (UF ) =

{W ∩ F : W ∈ r(U ′)}, then rF is a monotone meta-Lindelöf operator for F .

(2) Let f : X → Y be an open s-mapping, X be monotonically meta-Lindelöf and

rX be a monotone meta-Lindelöf operator for X . For any open cover U of Y , put

rY (U ) = {f(W ) : W ∈ rX(f−1(U ))}. For any y ∈ Y , since f−1(y) is separable and

rX(f−1(U )) is point-countable, {G ∈ rX(f−1(U )) : G ∩ f−1(y) 6= ∅} is countable.

So rY (U ) is a point-countable open refinement of U . Clearly rY is a monotone

meta-Lindelöf operator for the space Y . �

Remark 2.

(1) Monotone meta-Lindelöfness is not hereditary for open subspaces : the space X

in Example 3 has an open subspace [0, ω1) × {0} homomorphic to the space

[0, ω1) which is countably compact but not compact. By Theorem 9.2 of [1],

[0, ω1)× {0} is not meta-Lindelöf and thus not monotonically meta-Lindelöf.

(2) Monotone meta-Lindelöfness is not preserved by open mappings : the first count-

able T0-space [0, ω1) is an image of a metric space X under an open mapping

(see 4.2.D of [6]). Since the metric space X has a point-countable base, X is

monotonically meta-Lindelöf, but [0, ω1) is not.

(3) Separable (hence countable) monotone meta-Lindelöf spaces are monotone Lin-

delöf : this follows the fact that in separable spaces, point-countable family of

open sets is countable.

(4) Monotone meta-Lindelöfness is not productive: the Sorgenfrey line S (the real

line with half-open intervals of the form [a, b) as a basis for the topology) is a
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separable GO-space. By Proposition 3.1 of [3], S is monotonically Lindelöf (so

monotonically meta-Lindelöf). However, S × S is not Lindelöf since it has a

closed non-Lindelöf subspace {〈x,−x〉 : x ∈ S}. Since S × S is separable it is

not meta-Lindelöf and thus not monotonically meta-Lindelöf.

Example 4. The preimage of a monotone meta-Lindelöf space under a perfect

mapping need not to be monotonically meta-Lindelöf.

P r o o f. Let X = [0, ω1] × [0, 1] and p : X → [0, 1] be the projection onto the

second coordinate. Clearly f is perfect. By Proposition 1, [0, 1] is monotonically

meta-Lindelöf. Since X has a closed subspace [0, ω1] × {0} homomorphic to [0, ω1]

which is not monotonically meta-Lindelöf (see Proposition 2), X is not monotonically

meta-Lindelöf. �

By Proposition 2, the compact LOTS [0, ω1] is not monotonically meta-Lindelöf.

We will show that there exists a compact space Y which is neither monotonically

meta-Lindelöf nor a GO-space (so not a LOTS).

Proposition 4. Let Y = X ∪ {p} (p /∈ X) be the one-point compactification of

the discrete space X of cardinality of ω1. Then

(1) Y is not monotonically meta-Lindelöf;

(2) Y is not a GO-space.

P r o o f. (1) Assume that Y is monotonically meta-Lindelöf and r is a monotone

meta-Lindelöf operator. Then the open cover U0 = {Y \ {x} : x ∈ X} of Y has its

point-countable refinement r(U0).

Put U ′

0 = {U ∈ U0 : ∃V ∈ r(U0) such that p ∈ V ⊂ U}, then U ′

0 is countable

since Y \ V is finite with p ∈ V ∈ r(U0). Obviously U1 = U0 \U ′

0 is still an open

cover of Y .

Put U ′

1 = {U ∈ U1 : ∃V ∈ r(U1) such that p ∈ V ⊂ U}, then U ′

1 is countable

and U2 = U1 \U ′

1 is an open cover of Y .

Suppose that for each i < ω we have obtained an open coverUi of Y and countable

U ′

i ⊂ Ui with Ui+1 ≺ Ui and U ′

i ∩U ′

j = ∅ for i 6= j. Put Uω = U0 \
⋃
{U ′

i : i < ω},

then for each i < ω the open cover Uω of Y refines Ui. Thus r(Uω) ≺ r(Ui).

So for each i < ω, we can take V ∈ r(Uω), Vi ∈ r(Ui) and Ui ∈ U ′

i such that

p ∈ V ⊂ Vi ⊂ Ui. This contradicts the finiteness of Y \ V .

(2) Assume that Y is aGO-space. Then it is easy to see the compactGO-space Y is

a LOTS. Let ≺ be the linear order on Y . Note that p has no countable neighborhood

base.

Similar to Corollary 1, we can take a closed subspace F = {yα ≺ p : α ∈ [0, ω1]}

of Y , where for each limit ordinal γ ∈ [0, ω1], yγ = sup{yα : α < γ}, and yα ≺ yβ
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whenever α < β, such that F is homomorphic to [0, ω1]. Obviously yω1
� p. If

yω1
≺ p, then U = {y ∈ Y : yω1

≺ y} ∋ p is open and Y \U is infinite, a contradiction.

If yω1
= p, take a limit ordinal α with 0 < α < ω1. Then U = {y ∈ Y : yα ≺ y} ∋ p

is open and Y \ U is infinite, a contradiction. �

3. Linearly ordered extensions of monotone

meta-Lindelöf GO-spaces

Lemma 1. For a GO-space X , the following are equivalent:

(1) X is monotonically meta-Lindelöf;

(2) each open cover U of X by convex sets has a point-countable open refine-

ment r(U ) such that if U and V are open covers of X by convex sets and

U ≺ V , then r(U ) ≺ r(V );

(3) same as (2), but each member of r(U ) is a convex set.

P r o o f. Note that any non-empty subset G of the GO-space X can be uniquely

represented as G =
⋃
{Si : i ∈ I}, where each Si is a convex component of G and

if the set G is open, then each Si is open. Moreover, if G ⊂ G′, where G′ =
⋃
{S′

i : i ∈ I ′} and {S′

i : i ∈ I ′} is the set of all convex components of G′, then

{Si : i ∈ I} ≺ {S′

i : i ∈ I ′}. Then the proof is obvious. �

LetX be aGO-space with the topology τ and λ be the usual open interval topology

on X . Put

(†) R = {x ∈ X : [x,→) ∈ τ \ λ} and L = {x ∈ X : (←, x] ∈ τ \ λ}.

Define X∗ ⊂ X × Z as follows:

X∗ = (X × {0}) ∪ (R× {k ∈ Z : k < 0}) ∪ (L × {k ∈ Z : k > 0}).

Let X∗ have the open interval topology generated by the lexicographical order. Then

e : X → X∗ defined by e(x) = 〈x, 0〉 is an order-preserving homeomorphism from X

onto the closed subspace X×{0} of X∗. So the space X∗ is a closed linearly ordered

extension of X .

It is well known that if P is paracompactness (respectively, metrizability, Lin-

delöfness or quasi-developability), then a GO-space X hasP if and only if its closed

linearly ordered extension X∗ has P. Now we have
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Proposition 5. For a GO-space X , the following are equivalent:

(1) X is monotonically meta-Lindelöf;

(2) the closed linearly ordered extension X∗ of X is monotonically meta-Lindelöf.

P r o o f. (2) ⇒ (1). By Proposition 3 the closed subspace X × {0} of X∗ is

monotonically meta-Lindelöf. So X is monotonically meta-Lindelöf.

(1)⇒ (2). We will identify X with the subspace X × {0} of X∗.

Let U be an open cover of X∗ by convex sets. Then UX = {U ∩ X : U ∈ U }

is an open cover of X by convex sets. By Lemma 1, UX has point-countable open

refinement rX(UX) consisting of convex sets of X , where rX is a monotone meta-

Lindelöf operator for X . For a convex set S of X , put

I(S) = {x ∈ S : ∃ a, b ∈ S with a < x < b},

S∼ = {〈x, k〉 ∈ X∗ : x ∈ I(S)} ∪ {〈x, 0〉 : x ∈ S \ I(S)}

and

S
∼ = {S∼ : S ∈ rX(UX)}.

For any S∼ ∈ S ∼ with S ∈ rX(UX), there exists a U ∈ U such that S ⊂ U .

Since S is an open convex set and U ⊂ X∗ is convex, S∼ is open and S∼ ⊂ U (see

Lemma 3.2 (b), (c) of [10].

Let r(U ) = S ∼ ∪ {{〈x, k〉} : 〈x, k〉 ∈ X∗ \X}. Since rX(UX) is point-countable

and each {〈x, k〉} with k 6= 0 is open, r(U ) is a point-countable open cover of X∗

refining U . If U and V are open covers of X∗ by convex sets and U ≺ V , then

rX(UX) ≺ rX(VX). For any S ∈ rX(UX), there exists a T ∈ rX(VX) such that the

convex sets S and T satisfy S ⊂ T and thus by Lemma 3.2 (a) of [10] S∼ ⊂ T∼. So

r(U ) ≺ r(V ). By Lemma 1, X∗ is monotonically meta-Lindelöf. �

If P is “a continuous separating family”, then the Michael line M and the Sor-

genfrey line S have P ([8]), M∗ has P ([2]), but S∗ does not have P ([2], [12]).

For comparison we have

Corollary 3. For the Sorgenfrey line S and the Michael line M , their closed

linearly ordered extensions S∗ and M∗ are monotonically meta-Lindelöf.

For a GO-space X , let R and L be defined as in (†). Put

ℓ(X) = (X × {0}) ∪ (R × {−1})∪ (L× {1}).

Equip ℓ(X) with the open interval topology generated by the lexicographical order.

Then the space ℓ(X) has a dense subspace X × {0} which is homeomorphic to the

space X . So the space ℓ(X) is a dense linearly ordered extension of X .
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Example 5. There exists a monotone meta-Lindelöf GO-space X for which its

dense linearly ordered extension ℓ(X) is not monotonically meta-Lindelöf.

P r o o f. Define a topology on the linearly ordered set X = [0, ω1] with a base as

follows: points of [0, ω1) are isolated and ω1 has the neighborhoods of the form [α, ω1],

α < ω1. For an open cover U of X , put αU = min{α : [α, ω1] ⊂ U for some U ∈ U }

and r(U ) = {[αU , ω1]} ∪ {{β} : β < α}. Then r is a monotone meta-Lindelöf

operator for the GO-space X .

Note that ℓ(X) can actually be constructed from [0, ω1] by inserting a predecessor

〈α,−1〉 at each limit ordinal α less than ω1. These inserted predecessors in ℓ(X) play

the role of the limit ordinals in [0, ω1]. So it is clear that ℓ(X) is homeomorphic to

the space [0, ω1] which is not monotonically meta-Lindelöf by Proposition 2. Hence

ℓ(X) is not monotonically meta-Lindelöf. �

Note that for the Michael lineM , the space ℓ(M) = (R×{0})∪(P×{−1, 1}) with

the open interval topology generated by the lexicographical order. Let

(‡) M1 = (Q × {0}) ∪ (P× {1}) and M−1 = (Q× {0}) ∪ (P× {−1})

be subspaces of ℓ(M).

Lemma 2. Let M1 and M−1 be the subspaces of ℓ(M) defined in (‡). Then for

any open convex set S of M1, there exists a minimal interval IS of ℓ(M) such that

S = IS ∩M1. For any open convex set S of M−1, an analogous conclusion holds.

P r o o f. For an open convex set S of M1, S must be one of the following six

intervals of M1 (for x, y ∈ M1, by [x, y)M1
or (x, y)M1

we mean an interval of M1

with endpoints x and y).

(1) S = [〈p, 1〉, 〈p′, 1〉)M1
, p, p′ ∈ P;

(2) S = [〈p, 1〉, 〈q′, 0〉)M1
, p ∈ P, q′ ∈ Q;

(3) S = (〈p, 1〉, 〈p′, 1〉)M1
, p, p′ ∈ P;

(4) S = (〈p, 1〉, 〈q′, 0〉)M1
, p ∈ P, q′ ∈ Q;

(5) S = (〈q, 0〉, 〈p′, 1〉)M1
, q ∈ Q, p′ ∈ P;

(6) S = (〈q, 0〉, 〈q′, 0〉)M1
, q, q′ ∈ Q.

Correspondingly, take the minimal interval IS of ℓ(M) such that S = IS ∩M1 as

follows.

(1̇) IS = [〈p, 1〉, 〈p′,−1〉) for case (1);

(2̇) IS = [〈p, 1〉, 〈q′, 0〉) for case (2);

(3̇) IS = (〈p, 1〉, 〈p′,−1〉) for case (3);

(4̇) IS = (〈p, 1〉, 〈q′, 0〉) for case (4);
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(5̇) IS = (〈p, 1〉, 〈p′,−1〉) for case (5);

(6̇) IS = (〈q, 0〉, 〈q′, 0〉) for case (6).

Obviously, for any open convex set S of M−1, an analogous conclusion holds. �

Proposition 6. For the Sorgenfrey line S and the Michael line M , their dense

linearly ordered extensions ℓ(S) and ℓ(M) are monotonically meta-Lindelöf.

P r o o f. Note that the space ℓ(S) is the set R × {−1, 0} equipped with the

open interval topology generated by the lexicographical order. Clearly ℓ(S) has a

countable dense subset Q×{0}. So by Proposition 3.1 of [3] the separable space ℓ(S)

is monotonically Lindelöf and thus monotonically meta-Lindelöf.

To show that the space ℓ(M) = (R× {0}) ∪ (P× {−1, 1}) is monotonically meta-

Lindelöf, let the space Mr be R with the topology defined as follows:

Each q ∈ Q has a neighborhood base consisting of the usual open intervals;

each p ∈ P has a neighborhood base consisting of the sets [p, x), x ∈ R.

Clearly the GO-space Mr is separable. So by Proposition 3.1 of [3], Mr is mono-

tonically meta-Lindelöf. It is obvious that the subspace M1 = (Q×{0})∪ (P×{1})

of ℓ(M) is homeomorphic to Mr. So the space M1 is monotonically meta-Lindelöf.

Similarly, let the space Ml be R equipped with the topology: each q ∈ Q has

a neighborhood base consisting of the usual open intervals and each p ∈ P has a

neighborhood base consisting of the sets (x, p], x ∈ R. Then the GO-space Ml

is monotonically meta-Lindelöf and Ml is homeomorphic to the subspace M−1 =

(Q× {0}) ∪ (P× {−1}) of ℓ(M).

Let U be an open cover of ℓ(M) by convex sets. Then U1 = {U ∩M1 : U ∈ U }

is an open cover of M1 by convex sets. By Lemma 1, U1 has a point-countable open

refinement r1(U1) by convex sets, where r1 is a monotone meta-Lindelöf operator

for M1.

Similarly the open cover U−1 = {U ∩M−1 : U ∈ U } of M−1 by convex sets has a

point-countable open refinement r−1(U−1) by convex sets, where r−1 is a monotone

meta-Lindelöf operator for M−1.

For any S ∈ r1(U1), there exists a U ∈ U such that S ⊂ U ∩M1 ∈ U1. Since S is

an open convex set of M1, by Lemma 2 there exists a minimal interval IS of ℓ(M)

such that S = IS ∩M1.

Claim. IS ⊂ U .

P r o o f. Let x ∈ IS . If x ∈ IS ∩M1, then x ∈ U ∩M1 ⊂ U ; if x ∈ IS \M1, then

x = 〈p0, 0〉 or x = 〈p0,−1〉, where p0 ∈ P, and there exist q1, q2 ∈ Q with q1 < q2

such that x ∈ (〈q1, 0〉, 〈q2, 0〉) and 〈q1, 0〉, 〈q2, 0〉 ∈ IS ∩M1. So the points 〈q1, 0〉 and
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〈q2, 0〉 belong to U . Since U is a convex set of ℓ(M) we know that x ∈ U . Thus

IS ⊂ U .

Put S1 = {IS : S ∈ r1(U1)}. Then the cover S1 of M1 by open convex sets

of ℓ(M) refines U . By the point-countability of r1(U1), S1 is point-countable.

Similarly, we can obtain a point-countable open cover S−1 of M−1 by convex sets

of ℓ(M) refining U . Put

r(U ) = S1 ∪S−1 ∪ {{〈p, 0〉} : p ∈ P}.

Then r(U ) is a point-countable open refinement of U by convex sets and r is

a monotone meta-Lindelöf operator for ℓ(M). By Lemma 1 ℓ(M) is monotonically

meta-Lindelöf. �
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