MONOTONE *n*-FRAMES ARE TAME¹

RICHARD GILLETTE AND JAMES VAN BUSKIRK

An *n*-frame \mathfrak{F}_n is the union of *n* arcs which are disjoint except for a common end point called the *branch point* of \mathfrak{F}_n . An *n*-frame of E^3 is *tamely imbedded* provided there is an autohomeomorphism of E^3 which carries it onto a polygonal *n*-frame. We will say that an *n*-frame \mathfrak{F}_n in E^3 is *monotone* provided each geometric 2-sphere centered at the branch point of \mathfrak{F}_n intersects each of the *n* defining arcs of \mathfrak{F}_n in at most one point. Because each monotone *n*-frame is of the same imbedding type as a monotone *n*-frame having its branch point at the origin and its end points on the unit sphere, we will assume that a monotone *n*-frame has these properties as well as a prescribed ordering, say a_1, a_2, \cdots, a_n , of its defining arcs.

Since for each $s \in (0, 1]$, the arc a_i intersects the sphere of radius s centered at the origin in a single point $p_i(s)$, the equation $\phi(s) = (p_1(s), \dots, p_n(s)), \ 0 < s \leq 1$, defines a continuous function from (0, 1] into the space $F_n(S^2)$ of all *n*-tuples of distinct points of S^2 . In this way there is established a one-one correspondence between monotone *n*-frames \mathfrak{F}_n and continuous maps ϕ of (0, 1] into $F_n(S^2)$. We restrict our attention to frames \mathfrak{F}_n for which the *n*-tuple of end points $(p_1(1), \dots, p_n(1))$ is the base point (p_1, \dots, p_n) of $F_n(S^2)$.

Let $LH(B^3)$ be the space of all orientation preserving autohomeomorphisms H of the unit ball B^3 which are level preserving in the sense that ||H(x)|| = ||x|| for all $x \in B^3$. To each $H \in LH(B^3)$ there corresponds a family h_* of autohomeomorphisms of the boundary sphere S^2 of B^3 defined by $h_*(x) = H(sx)/s$ for $s \in (0, 1]$, $x \in S^2$. Therefore $LH(B^3)$ is in one-one correspondence with the set of maps of (0, 1]into the group $G(S^2)$ of all orientation preserving autohomeomorphisms of S^2 .

In order to relate monotone *n*-frames \mathfrak{F}_n and level preserving homeomorphisms H, consider the map $\rho_n: G(S^2) \to F_n(S^2)$ defined by $\rho_n(f) = (f(p_1), \dots, f(p_n))$, where (p_1, \dots, p_n) is the base point of $F_n(S^2)$.

The following theorem is patterned after a result of G. S. McCarty [3, Lemma 4.1], but, as used here, is better viewed as a generalization of a fundamental theorem of E. Artin in braid theory [1, p. 104]. (See

Presented to the Society, August 28, 1968; received by the editors July 3, 1967.

¹ Prepared with partial support from the Office of Scientific and Scholarly Research of the Graduate School of the University of Oregon.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

D. M. Dahm [2, p. 15], where this generalization is developed for braids on arbitrary manifolds.) Although the theorem is stated for S^2 , the proof given is valid for any connected manifold of dimension at least 2.

THEOREM 1. $G(S^2)$ is a fiber bundle over $F_n(S^2)$ relative to the map ρ_n .

PROOF. $G(S^2)$ is an effective transitive group of transformations of $F_n(S^2)$. Consequently, by the bundle structure theorem, it suffices to show that ρ_n admits a local cross-section. But, since the basic open sets in $F_n(S^2)$ may be chosen to be products of n disjoint open discs, this is a consequence of the following elementary fact. Let $G(B^2, S^1)$ be the group of autohomeomorphisms of the 2-cell B^2 which are pointwise fixed on the boundary S^1 , and let π be the map of $G(B^2, S^1)$ onto the interior of B^2 defined by $\pi(f) = f(0)$. Then π admits a global cross section.

As a corollary to Theorem 1, we have our main result.

THEOREM 2. Any monotone n-frame is tame.

PROOF. Let \mathfrak{F}_n be a monotone *n*-frame. Then \mathfrak{F}_n corresponds to a map $\phi: (0, 1] \rightarrow F_n(S^2)$. Choosing the base point (p_1, \dots, p_n) to be $\phi(1)$, the map ϕ lifts to a map $h: (0, 1] \rightarrow G(S^2)$ such that h_1 is the identity. The corresponding map H in $LH(B^3)$ is an autohomeomorphism of B^3 carrying \mathfrak{F}_n onto *n* radial segments in B^3 . Since H is the identity on the boundary sphere, H extends to all of E^3 and hence \mathfrak{F}_n is tame.

ADDED IN PROOF. The authors are grateful to Professor R. H. Bing for pointing out that Theorem 2 (generalized, as noted, to *n*-manifolds) is equivalent to Proposition 2.3 of: R. H. Bing and V. L. Klee, *Every simple closed curve in* E^3 *is unknotted in* E^4 , J. London Math. Soc. 39 (1964), 86-94.

Bibliography

1. E. Artin, Theory of braids, Ann. of Math. 48 (1947), 101-126.

2. D. M. Dahm, A generalization of braid theory, Ph.D. Thesis, Princeton Univ., Princeton, N. J., 1962.

3. G. S. McCarty, Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 293-304.

UNIVERSITY OF OREGON