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Monotone Quantities and Unique Limits

for Evolving Convex Hypersurfaces

Ben Andrews

1 Introduction

The aim of this paper is to introduce a new family of monotone integral quantities asso-

ciated with certain parabolic evolution equations for hypersurfaces, and to deduce from

these some results about the limiting behaviour of the evolving hypersurfaces.

A variety of parabolic equations for hypersurfaces have been considered. One of

the earliest was the Gauss curvature flow, introduced in [Fi] as a model for the changing

shape of a stone wearing on a beach. The stone is represented by a bounded convex

region, and each point on its surface moves in the inward normal direction with speed

equal to the Gauss curvature: If the surface at time t is given by an embedding xt, then

∂x

∂t
= −Kn,

where K is the Gauss curvature, and n the outward unit normal. Firey showed that stones

which are symmetric about the origin shrink to points in finite time, and are asymptoti-

cally spherical in shape.

Other evolution equations have been considered since then, of the form

∂x

∂t
= −Fn, (1)

where x is an embedding into Rn+1, and F depends on the curvature and normal direction

of the hypersurface. Examples include flows by mean curvature ([Hu1]) with F = H, thenth

root of the Gauss curvature ([Ch1]) with F = K1/n, and many other homogeneous degree 1

functions of the principal curvatures ([Ch2], [An1]). Flows which expand hypersurfaces
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with F homogeneous of degree −1 have also been considered, with quite general results

([U1], [U2], [Ge], [Hu2]).

The behaviour of solutions of equations of this kind can be quite complicated,

even in the case where F depends only on the principal curvatures and not explicitly

on the normal direction. In particular, hypersurfaces evolving by small powers of their

Gauss curvature do not in general become spherical [An3], and a given equation can

have several different solutions which evolve by contracting without changing shape

[An7], [An8], [An9]. There are very few equations for which the behaviour of solutions

is well understood, other than those mentioned above with F homogeneous of degree

1 or of negative degree in the principal curvatures. A single exception is the flow with

F = K1/(n+2), which has a remarkable invariance under the special affine group. In [An5]

and [ST], it was shown that solutions become ellipsoidal in shape as they contract to

points. As a guiding principle, we expect that flows in which F is homogeneous of large

degree in the curvatures will have solutions which are asymptotically homothetic—that

is, the solution hypersurfaces can be rescaled to converge as the final time is approached,

to a limit which satisfies the identity

F = c〈x,n〉 (2)

for some c > 0. This implies that the limit hypersurface evolves by shrinking without

changing shape. On the other hand, if F is homogeneous of small degree, we expect that

some isoperimetric ratio will usually become unbounded as the solution shrinks to a

point. In the case of curves in the plane, this picture has been confirmed in detail ([An6],

[An7]). In higher dimensions, results are known only for flows involving Gauss curvature

([An8], [An9]).

Theorem 1. Let ψ ∈ C∞(Sn) be strictly positive, and α ∈ (1/(n + 2), 1/n]. Let Ω ⊂ Rn+1

be an open bounded convex region, and let M0 be the boundary of Ω. Then there exists

a family of C∞ embeddings {xt: Sn → Rn+1}0<t<T , unique up to composition with an

arbitrary time-independent smooth diffeomorphism of Sn, such that the hypersurfaces

Mt = xt(Sn) bound strictly convex open regionsΩt for t > 0, converge toM0 in Hausdorff

distance as t→ 0, and satisfy the evolution equation (1) with

F = ψ(n)Kα.

The embeddings xt converge uniformly to a point p ∈ Rn+1 as t → T, and the rescaled

embeddings

x̃t =
(

Vol(Sn)

Vol(Ωt)

)1/n+1 (
xt − p

)
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have images which converge in C∞ for a subsequence of times approaching T to a hyper-

surface Σ which satisfies (2).

Part of the difficulty in treating the general case of equation (1) is that there is no

associated variational principle, and consequently it is difficult to find quantities which

improve under the flow. The present paper concerns a family of flows of a somewhat

special form, for which something more can be said. In particular,we prove the existence

of many improving integral quantities for these flows, and use these to simplify the

possible types of behaviour: We show that if a solution approaches a solution of (2)

modulo rescaling, even in a very weak sense or on a subsequence of times, then it must

converge smoothly to that solution. Hence a solution can have at most one limiting shape.

The class of flows we consider was introduced by the author in [An3], and includes

the Gauss curvature flows (with F = ψKα) and flows with F = (K/Ek)α, where Ek is the kth

elementary symmetric function of the principal curvatures. We will refer to these flows

as “mixed discriminant” flows, or MDFs for brevity. The complete description of this

class is given in Section 2. For each of these flows there is a family of associated integral

quantities, which we introduce in Section 3. In particular, any hypersurface satisfying

the identity (2) is necessarily a critical point of every one of these quantities. We show in

Section 4 that some of these quantities evolve monotonically in time for MDF solutions.

The main result, given in Section 6, is the following theorem.

Theorem 2. Let {xt}0≤t<T be a solution of a mixed discriminant flow, converging to a

point in Rn+1 as t → T . Suppose there exist sequences tk → T, Rk → ∞, and pk ∈ Rn+1

such that the hypersurfaces Rk
(
xtk (S

n)− pk
)

converge in Hausdorff distance as k→∞ to

a compact convex C2 hypersurface Σwith F > 0. Then Σ is C∞ and satisfies the identity (2)

for some choice of origin in Rn+1, and there exists p ∈ Rn+1 such that the hypersurfaces

M̃t =
(

Vol(Σ)

Vol(Ωt)

)1/n+1 (
xt(S

n)− p)
converge in C∞ to Σ as t→ T, whereΩt is the region enclosed by the hypersurface xt(Sn).

In particular, this improves the result of Theorem 1 for Gauss curvature flows:

Convergence for a subsequence of times to a homothetic limit is improved to convergence

in C∞ as t→ T . Our argument is similar to that of Simon [Si1] which applied to gradient

flows of convex functionals, and to the uniqueness problem for tangent cones of minimal

surfaces and harmonic maps. The present case is complicated by the fact that the flows

are fully nonlinear, and are not gradient flows, so some work is required to relate the

evolution equations to the gradients of appropriate functionals.
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One of the main technical difficulties which arises in the proof is that of proving

bounds on the radius of curvature. This difficulty stems from the explicit dependence of

the speed on the normal direction,which introduces terms into the evolution equation for

the radii of curvature which we can control only when the solution is close to a solution

of (2). The control of such terms should be important in the study of other anisotropic

equations, such as anisotropic mean curvature flows which are important in modelling

interfaces ([Gu], [AG1], [AG2]).

We remark that some of the integral quantities we use have been considered

before: Firey [Fi] showed that the integral
∫
M̃t
K ln〈x,n〉dµ decreases for solutions of the

Gauss curvature flow. This was extended to flows of curves in [An6, Lemma I1.16]. A

second integral quantity is the entropy, which was found by Hamilton for the curve

shortening flow in [Ha] and extended to the higher-dimensional Gauss curvature flow

(with F = K) by Chow in [Ch3]. It is given by
∫
M̃t
K lnKdµ, and decreases for solutions of

the Gauss curvature flow. This was generalised for other MDF solutions in [An3]. Both

of these examples are included in the family of integral quantities we consider in this

paper.

2 Notation and preliminary results

In this section, we review some notation and results concerning convex regions in Eu-

clidean space, including the definitions of mixed volume and mixed discriminant. We also

define the mixed discriminant flows and discuss some of their elementary properties.

Support functions

The support function s: Sn→ R of a convex region Ω in Rn+1 is defined by

s(z) = sup
y∈Ω
〈y, z〉 (3)

for each z in Sn. This gives the distance of each supporting hyperplane of Ω from the

origin. The region Ω can be recovered from s as follows:

Ω =
⋂
z∈Sn
{y ∈ Rn+1: 〈y, z〉 ≤ s(z)}.

For Ω strictly convex and smoothly bounded, there is a natural embedding x̄ describing

the boundary ∂Ω, such that the Gauss map z→ n(x̄(z)) is the identity on Sn. This is given

in terms of s by the following expression:

x̄(z) = s(z)z+∇s(z) (4)
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where ∇s is the gradient vector of s with respect to the standard metric g on Sn. For any

f ∈ C2(S1), we define an associated bilinear form r[f] by

ri j[f] = ∇i∇jf+ fgi j, (5)

where ∇ is the Levi-Civita connection of g. Then the principal radii of curvature of ∂Ω at

the point x̄(z) are the eigenvalues with respect to g of r[s] at z. The constant curvature of

g implies that r has totally symmetric covariant derivative: ∇ir[f]jk = ∇jr[f]ik.
If Ω is a convex region and ε > 0, then εΩ is the convex region {εa: a ∈ Ω}. For

any two convex regions Ω1 and Ω2, the Minkowski sum Ω1 + Ω2 is the convex region

{a+ b: a ∈ Ω1, b ∈ Ω2}. If Ω1 and Ω2 have support functions s1 and s2 respectively, then

ε1Ω1 + ε2Ω2 has support function s = ε1s1 + ε2s2.

Mixed volumes and mixed discriminants

The volume Vol(Ω) of a convex region Ω can be calculated in terms of its support

function s:

Vol(Ω) = 1

n+ 1

∫
Sn
sdet

(
r[s]

)
dµ

where dµ is the standard measure on Sn, and the determinant is taken with respect to g.

Let Ωi, i = 1, . . . , N be convex regions with support functions si, and consider

the Minkowski sum
∑N

i=1 εiΩi for arbitrary positive εi. The support function of this sum

is a linear combination of the support functions si, and so the volume is a degree n + 1

polynomial of the coefficients εi:

Vol
(∑

εiΩi

)
= 1

n+ 1

∑
1≤i0,...,in≤N

εi0 . . . εinV
(
Ωi0 , . . . ,Ωin

)
.

The coefficientV
(
Ωi0 , . . . ,Ωin

)
is called the mixed volume of then+1 regionsΩi0 , . . . ,Ωin,

and is given by

V
(
Ω0, . . . ,Ωn

) = ∫
Sn
s0Q [s1, . . . , sn]dµ

where Q is given in terms of the bilinear forms r[si] by

Q [s1, . . . , sn] = 1

n!

∑
σ,τ∈Sn

sgn(τ) sgn(σ)r [s1]σ(1)
τ(1) . . . r [sn]σ(n)

τ(n) , (6)

where the sum is over all pairs of permutations on n elements. The operator Q is called

the mixed discriminant of s1, . . . , sn (see [Al2], and [Hö, Proposition 2.1.31]).
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Proposition 3. (1) Q is symmetric: Q [f1, . . . , fn] = Q
[
fσ1 , . . . , fσn

]
for any permutation σ;

(2) Q[f1, . . . , fn] > 0 for any f1, . . . , fn with r[fi] positive definite;

(3) If r[fi] is positive definite for i = 2, . . . , n, then Q[f] := Q [f, f2, . . . , fn] is a nonde-

generate second-order linear elliptic operator:

Q[f] =
∑
i, j

Q̇i j
(∇i∇jf+ gi jf)

where Q̇ = Q̇[f2, . . . , fn] is positive definite and symmetric;

(4) For any f2, . . . , fn,
∑
i ∇iQ̇i j = 0.

(5) If r[fi] > 0 for i = 2, . . . , n, then

Q [f1, f1, f3, . . . , fn] Q [f2, f2, f3, . . . , fn] ≤ Q [f1, f2, f3, . . . , fn]2 .

Property (5) amounts to a concavity property for mixed discriminants:

Q

s, . . . , s︸ ︷︷ ︸
k times

, sk+1, . . . , sn

1/k

is a concave function of the components of r[s], provided r[sj] > 0 for j = k+ 1, . . . , n.

These properties of Q allow us to deduce some important properties of the mixed

volumes, as shown in the following.

Proposition 4. For Ω0,Ω
′
0,Ω1, . . . ,Ωn ⊂ Rn+1 convex and p ∈ Rn+1, V is:

(1) Symmetric: V(Ω0, . . . ,Ωn) = V (Ωσ0 , . . . ,Ωσn ) for any permutation σ;

(2) Translation-invariant: V(Ω0 + p,Ω1, . . . ,Ωn) = V(Ω0,Ω1, . . . ,Ωn);

(3) Positive: V(Ω0, . . . ,Ωn) ≥ 0;

(4) Monotone: If Ω0 ⊆ Ω′0, then V (Ω0,Ω1, . . . ,Ωn) ≤ V(Ω′0,Ω1, . . . ,Ωn).

Property (1) follows from statement (4) of Proposition 3,which allows integration

by parts. Property (2) follows because r[〈z, p〉] = 0. Positivity follows since we can choose

the origin to make s0 positive, and Q[s1, . . . , sn] is positive by part (2) of Proposition 3.

Monotonicity follows since s0 ≤ s′0 and Q[s1, . . . , sn] ≥ 0.

The Aleksandrov-Fenchel inequalities

The Aleksandrov-Fenchel inequalities relate the various mixed volumes which can be

formed from a collection of convex regions.

Theorem 5 ([Al1], [Al2], [Fe]). For Ω0, . . . ,Ωn ⊂ Rn+1 bounded and convex,

V
(
Ω0,Ω0,Ω2, . . . ,Ωn

)
V
(
Ω1,Ω1,Ω2, . . . ,Ωn

) ≤ V (Ω0,Ω1,Ω2, . . . ,Ωn

)2
.
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Mixed discriminant flows

For convenience, we define for k ∈ {1, . . . , n} and functions s, sk+1, . . . , sn the kth order

mixed discriminant

Qk[s; sk+1, . . . , sn] = Q

s, . . . , s︸ ︷︷ ︸
k times

, sk+1, . . . , sn

 . (7)

By a mixed discriminant flow we mean a flow of the form (1) where

F(x̄(z)) = ψ(z)Qk[s;ℵ]−α

for some α > 0 and k ∈ {1, . . . , n}, and ψ: Sn → R smooth and strictly positive. Here s is

the support function of the evolving convex region, and ℵ denotes some fixed collection

of smooth functions sk+1, . . . , sn such that r[si] is positive definite for i = k+ 1, . . . , n.

Particular examples of mixed discriminant flows are the Gauss curvature flows

(with k = n), and the anisotropic harmonic mean curvature flows (with k = 1). If ℵ is taken

to consist of n − k copies of the unit ball and ψ ≡ 1, the corresponding flow takes the

form F = Ek(r1, . . . , rn)−α = K/En−k(κ1, . . . , κn)α, where r1, . . . , rn are the principal radii of

curvature, κ1, . . . , κn are the principal curvatures, and Ek is the kth elementary symmetric

function.

In considering the mixed discriminant flows, it is useful to work with the induced

evolution equation for the support function s:

∂

∂t
s = −ψQk[s;ℵ]−α. (8)

Property (3) of Proposition 3 shows that this is a fully nonlinear second order scalar

parabolic partial differential equation, and property (5) shows that the right-hand side

of equation (8) is a concave function of the second derivatives of s. A smooth solution of

equation (8) with r[s] > 0 can be used to construct a smooth, strictly convex solution of

the original equation (1), and vice versa: The embeddings given by equation (4) give such

a solution after suitable reparametrisation.

3 Integral quantities

In this section, we introduce a family of integral quantities associated with any mixed

discriminant flow, and show that any homothetic solution is a critical point of every one

of these functionals.

Fix a number α > 0, a smooth, strictly positive function ψ on Sn, an integer

k ∈ {1, . . . , n}, and a collection ℵ = {sk+1, . . . , sn} of support functions of smooth, strictly
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convex regions (if k < n). We define the mixed volume Vk+1[s;ℵ] by

Vk+1[s;ℵ] = V
 s, . . . , s︸ ︷︷ ︸
k+1 times

, sk+1, . . . , sn

 = ∫
Sn
sQk[s;ℵ]dµ.

We denote by s̃ the support function of the region given by rescaling to constant Vk+1:

s̃ = s
( |Sn|
Vk+1[s;ℵ]

) 1
k+1

.

Then for any function G: R→ R, we define

ZG =
∫
Sn
s̃Qk[s̃,ℵ]G

(
ψ

s̃Qk[s̃;ℵ]α

)
dµ.

In particular, for each real number β, we take Zβ to be ZG where G(x) = xβ:

Zβ = Vk+1[s;ℵ]β−1+k(αβ−1)

(∫
Sn
sQk[s;ℵ]

(
ψ

sQk[s;ℵ]α

)β
dµ

)k+1

.

In the special case α = 1, this quantity is trivial when β = 1, and we instead modify the

definition to give two separate integrals:

Z+1 = exp
{

1

|Sn|
∫
Sn
ψ log Qk[s;ℵ]dµ

}
Vk+1[s;ℵ]−

k
k+1 ,

which appears as the limit of Z
1/(1−α)
1 as α→ 1, and

Z−1 = exp
{

1

|Sn|
∫
Sn
ψ log s dµ

}
Vk+1[s;ℵ]−

1
k+1 ,

which is the limit of Z
α/(α−1)
1/α as α→ 1.

The special case β = 1 (or Z+1 if α = 1) gives the entropy, considered before for

these flows in [An3], and in special cases before that in [Ha] and [Ch3]. In the case α = 1,

k = n, ψ ≡ 1, the quantity Z−1 was considered by Firey in [Fi]. The quantity Z1/α in the

case n = 1 played a role in [An6].

Proposition 6. If s is the support function of a solution of equation (2), then s is a critical

point of the quantity ZG for any smooth function G.

Proof. We consider a variation ∂
∂t
s = η. Then define

η̃ = ∂

∂t
s̃

= ∂

∂t

(
s

( |Sn|
Vk+1[s;ℵ]

) 1
k+1
)

=
( |Sn|
Vk+1[s;ℵ]

) 1
k+1

(
η− s

Vk+1[s;ℵ]

∫
Sn
ηQk[s;ℵ]dµ

)
,
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so that
∫
Sn
η̃Q[s̃;ℵ]dµ = 0. Then

∂

∂t
ZG =

∫
Sn
η̃Qk[s̃;ℵ]Gdµ+ k

∫
Sn
s̃Q[η̃, s, . . . , s;ℵ]Gdµ

−
∫
Sn
s̃Qk[s̃;ℵ]G′

ψ

s̃Qk[s̃;ℵ]α

(
η̃

s̃
+ kαQ[η̃, s, . . . , s;ℵ]

Qk[s̃;ℵ]

)
dµ.

In the special case where equation (2) holds, we have

ψ

s̃Qk[s̃;ℵ]α
= c

for some constant c, and so G and G′ are constants, and

∂

∂t
ZG = G(c)

∫
Sn
η̃Qk[s̃;ℵ]+ ks̃Q[η̃, s̃, . . . , s̃;ℵ]dµ

− cG′(c)
∫
Sn
η̃Qk[s̃;ℵ]+ αks̃Q[η̃, s̃, . . . , s̃;ℵ]dµ.

The identity (4) of Proposition 4 gives∫
Sn
s̃Q[η̃, s̃, . . . , s̃;ℵ]dµ =

∫
Sn
η̃Qk[s̃;ℵ]dµ

after integrating by parts twice. Therefore, for a solution of equation (2) we have

∂

∂t
ZG =

(
(1+ k)G(c)− (1+ αk)cG′(c)

) ∫
Sn
η̃Qk[s̃;ℵ]dµ = 0.

4 Monotonicity in time

In this section,we show for anyα that there is a nontrivial range ofβ for which Zβ evolves

monotonically in time for a solution of an MDF.

Theorem 7. For a positive solution s of equation (8), the quantity Zβ increases if α < 1,

and decreases if α > 1, provided that

β ∈



[1, β−] ∪ [β+, 1/α], if k > 8 and 0 < α < 1+ 4(1−√k+1)
k

,

[1, 1/α], if k ≤ 8 or 1+ 4(1−√k+1)
k

≤ α ≤ 1,

[1/α, 1], if 1 ≤ α ≤ 1+ 4(1+√k+1)
k

,

[1/α, β−] ∪ [β+, 1], if α > 1+ 4(1+√k+1)
k

,

where

β± = k(1+ α)− 2±√(k(1+ α)− 2)2 − 4(k+ 1)(1+ kα)

2(1+ kα)
.
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Figure 1 Small α: Graphs of β = 1/α, and of β± for various k. The upper part of the
curve for any given k is the graph of β+, and the lower curve gives β−. The allowed
values of β are those which lie between 1 and 1/α but not between β− and β+.

In the case α = 1, Z−1 decreases and Z+1 increases. The time derivative is zero only when

equation (2) is satisfied (possibly after translation if β = 1, or in the case of Z+1 for α = 1).

Proof. From equation (8) and the definition of s̃, we have

∂

∂t
s̃ =

( |Sn|
Vk+1[s;ℵ]

) 1+kα
1+k

(
−ψQk[s̃;ℵ]−α + s̃

|Sn|
∫
Sn
ψQk[s̃;ℵ]1−α dµ

)
.

It is convenient to define a new time variable τ by

τ =
∫ t

0

( |Sn|
Vk+1[su;ℵ]

)1+kα/1+k
du,

so that

∂

∂τ
s̃ = −ψQk[s̃;ℵ]−α + s̃

|Sn|
∫
Sn
ψQk[s̃;ℵ]1−α dµ.

In the following calculation, we denote by ρ the quantity ψ/s̃Qk[s̃;ℵ]α, and use the abbre-
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Figure 2 Large α: The allowed values of β are again those which are between 1/α
and 1 but not between β− and β+. β± are graphed for various values of k. For any k
and α, there are always allowed values of β close to 1 and to 1/α.

viations Qk = Qk[s̃;ℵ] and Qk[f] = Q[f, s̃, . . . , s̃;ℵ] for any function f:

∂

∂τ
Zβ = −(1− β)

(
Zβ+1 − 1

|Sn|Z1Zβ

)
− k(1− αβ)

(∫
Sn
s̃ρβQk[s̃ρ]dµ− 1

|Sn|ZβZ1

)
.

Consider the second bracket in more detail: By property (3) of Proposition 3, we have

∫
Sn
s̃ρβQk[s̃ρ]dµ =

∫
Sn
s̃ρβQ̇i j

(∇i∇j(s̃ρ)+ gi js̃ρ
)
dµ

=
∫
Sn
s̃ρβQ̇i j

(
r[s]i jρ+ 2∇is∇jρ+ s̃∇i∇jρ

)
dµ

= Z1+β − β
∫
Sn
s̃2Q̇i j∇iρ∇jρβ dµ

= Z1+β − 4β

(1+ β)2

∫
Sn
s̃2Q̇i j∇i

(
ρ

1+β
2

)
∇j
(
ρ

1+β
2

)
dµ,

where we used the identity (4) from Proposition 3 to integrate by parts.
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Lemma 8. For any f ∈ C∞(Sn),∫
Sn
s̃2Q̇i j∇if∇jf dµ ≥

∫
Sn
s̃Qkf

2 dµ− 1

|Sn|
(∫

Sn
s̃Qkf dµ

)2

,

with equality if and only if f = c+ 1/s̃〈z, p〉 for some constant c and some p ∈ Rn+1.

Proof. The Aleksandrov-Fenchel inequalities give

V[Ω′,Ω′;ℵ]V[Ω,Ω;ℵ] ≤ V[Ω,Ω′,ℵ]2

for any convex regionsΩ andΩ′. Furthermore, equality holds if and only ifΩ andΩ′ are

scaled translates of each other ([Sc, Theorem 6.6.8]), since ℵ consists of support functions

of smooth, strictly convex regions.

Fix f ∈ C∞(Sn), and letΩ have support function s̃. For c sufficiently large, r[(f+c)s̃]
is positive definite, and so (f+ c)s̃ is the support function of some convex region Ω′. The

Aleksandrov-Fenchel inequality then reads

0 ≥
∫
Sn
s̃(f+ c)Q[s̃(f+ c)]dµ

∫
Sn
s̃Qk dµ−

(∫
Sn
s̃(f+ c)Qk dµ

)2

=
(
c2
∫
Sn
s̃Qk dµ+ 2c

∫
Sn
s̃Qkf dµ+

∫
Sn
s̃fQk[s̃f]dµ

) ∫
Sn
s̃Qk dµ

− c2

(∫
Sn
s̃Qk dµ

)2

− 2c
∫
Sn
s̃Qk dµ

∫
Sn
s̃Qkf dµ−

(∫
Sn
s̃Qkf dµ

)2

= |Sn|
∫
Sn
s̃fQk[s̃f]dµ−

(∫
Sn
s̃Qkf dµ

)2

= |Sn|
(∫

Sn
s̃Qkf

2 dµ−
∫
Sn
s̃2Q̇i j∇if∇jf dµ

)
−
(∫

Sn
s̃Qkf dµ

)2

,

where we used the identity
∫
Sn
s̃Qk dµ = |Sn| and integration by parts.

We write the evolution equation for Zβ as follows:

∂

∂τ
Zβ = (β− 1)

(
k(1− αβ)

1− β
(1+ β)2

+ 1
)

Zβ+1

+ (1− β+ k(1− αβ)
) ZβZ1

|Sn| −
4βk(1− αβ)

(1+ β)2
Z2

(β+1)/2

|Sn|
+ 4βk(1− αβ)

(1+ β)2

(∫
Sn
s̃2Q̇i j∇iρ

1+β
2 ∇jρ

1+β
2 dµ− Zβ+1 + 1

|Sn|Z
2
β+1

2

)
.

Lemma 8 with f = ρ(1+β)/2 shows that the quantity in the last bracket is nonnegative.

If β > 0, then the Hölder inequality shows that |Sn|Zβ+1 is larger than both ZβZ1 and

Z2
(β+1)/2. Therefore, the entire time derivative has a sign, provided that the coefficient of

Zβ+1 has the same sign as 1− αβ. The coefficient of Zβ+1 is equal to

(β− 1)

(β+ 1)2
(
(1+ kα)β2 + (2− k(1+ α))β+ k+ 1

)
,
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which has the same sign as β − 1 unless β− < β < β+. So outside this range, the time

derivative has a sign provided that 1− αβ and β− 1 have the same sign.

The quantities Zβ depend on the choice of origin (unless β = 1). By choosing the

origin at each time, we obtain the following corollary.

Corollary 9. If s is a smooth solution of (8) with r[s] > 0, with Ωt the convex region

with support function st, then for β as in Theorem 7, infp∈Ωt Zβ[st − 〈p, z〉] increases for

α < 1, and supp∈Ωt Zβ[st − 〈p, z〉] decreases for α > 1. If α = 1, then supp∈Ωt Z
−
1 [st − 〈p, z〉]

decreases.

5 Regularity estimates

The main result of this section (Proposition 11) is that a solution which is close in Haus-

dorff distance to a homothetic solution Σ is subsequently smooth, strictly convex, and

close to Σ in any Ck norm. For this we need to assume that the homothetic solution itself

is nondegenerate, in the sense that it is a C2 hypersurface, and that it has speed F strictly

positive. This result implies immediately that if there is a subsequence of times on which

a solution converges in Hausdorff distance to a homothetic solution (after rescaling and

possibly translation), then there is a subsequence of times for which the rescaled solu-

tions converge in C∞ to Σ (Proposition 17).

The most difficult step in the proof of Proposition 11 is the proof of a C1,1 bound

for the solution s. Our proof works only in the case where the solutions are close to the

homothetic solution, for reasons which are entirely due to the explicit anisotropy in the

operator Qk—there is no such difficulty in isotropic cases, or in the cases k = 1 or k = n.

Once this bound is established, the evolution equation remains uniformly parabolic,

and further regularity follows from the results of Krylov and Safonov [KS] and Schauder

estimates.

Proposition 10. Suppose Σ is a C2 convex hypersurface with support function σ satis-

fying equation (2), where F is of the form (7). If F > 0, then Σ is C∞ and strictly convex.

Proof. For convenience here and henceforward, we first arrange (by rescaling time by

a constant and adjusting ψ accordingly) that c = 1 in equation (2). The assumption

that Σ is C2 implies that the principal curvatures are bounded, and hence the principal

radii of curvature are bounded below: r[σ] ≥ C0g. Since ℵ consists of support functions

of smooth, strictly convex regions, there exist positive constants C1 and C2 such that

C1gi j ≤ r[sm]i j ≤ C2gi j for m = k + 1, . . . , n. Hence by Property (2) of Proposition 3 we
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have Cn−k1 Ek[σ] ≤ Qk[σ;ℵ] ≤ Cn−k2 Ek[σ], where Ek = Qk[σ; 1, . . . , 1] is the kth elementary

symmetric function of the eigenvalues of r[σ]. If the eigenvalues of r[σ] are r1, . . . , rn, then

Ek = k!(n− k)!

n!

∑
1≤i1<...<ik≤n

ri1 . . . rik ≥
k

n
rmaxr

k−1
min

where rmax = max1≤i≤n ri and rmin = min1≤i≤n ri. Therefore

rmax ≤ nEk

krk−1
min

≤ nQk[σ;ℵ]

kCn−k1 Ck−1
0

≤ n(supψ)1/α

kCn−k1 Ck−1
0 (inf F)1/α

,

so r[σ] is bounded, and Σ is strictly convex. By the identity (2), σ satisfies the uniformly

elliptic equation

Qk[σ;ℵ]1/k =
(
ψ

σ

)1/kα

,

in which Q
1/k
k is a monotone, concave function of the second derivatives of σ. By Theorem

5.5 of [K], [Ev], or Theorem 17.14 of [GT], we derive C2,α bounds for σ. Bounds on higher

derivatives follow from Schauder estimates (e.g., [GT, Theorem 6.2]).

Proposition 11. Let Σ be a C2 convex hypersurface with F > 0, satisfying equation (2)

and having support function σ. Then for any t0 ∈ (0, 1/(1+ kα)), ε > 0, and k ≥ 1, there

exist δ > 0 such that whenever s: Sn × [0, T )→ R is a solution of (8) (maximally extended

in time) with |s(z, 0)− σ(z)| < δ for all z ∈ Sn, then T > t0,∣∣∣∣s(z, t)− (1− (1+ kα)t)
) 1

1+kα σ(z)

∣∣∣∣ < ε
for all z ∈ Sn and all t ∈ [0, t0], and∣∣∣∣st0 − (1− (1+ kα)t0)

) 1
1+kα σ

∣∣∣∣
Ck

< ε.

Proof. The Hausdorff distance between the two solutions remains small.

Lemma 12. If (1− δ)σ(z) ≤ s(z, 0) ≤ (1+ δ)σ(z) for all z, and equation (8) holds, then(
(1− δ)1+kα − (1+ kα)t

) 1
1+kα σ ≤ s(., t) ≤ ((1+ δ)1+kα − (1+ kα)t

) 1
1+kα σ

for all z ∈ Sn and 0 ≤ t ≤ 1
1+kα (1− δ)1+kα.

Proof. By the maximum principle for equation (8), the solution s remains between the

solutions obtained by evolving (1± δ)σ.

From this we also deduce bounds on the gradient of the support function.
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Lemma 13. There exists a constant C depending only on Σ such that any convex hyper-

surface M with support function s satisfying (1− δ)σ ≤ s ≤ (1+ δ)σ necessarily satisfies

|D(s− σ)| ≤ C
√
δ.

Proof. This result is purely geometric, and does not depend on the evolution equation.

By Proposition 10 there exist C3 and C4 such that C−1
3 g ≤ r[σ] ≤ C3g and C−1

4 ≤ σ ≤ C4.

By hypothesis, the point x̄(z) on M with normal z lies between the hypersurface (1 + δ)Σ
and the hyperplane 〈y, z〉 = (1− δ)σ(z). Equation (4) gives x̄(z) = s(z)z+Ds(z), so it suffices

to bound the width of this region in directions perpendicular to z. The radii of curvature

of Σ are bounded by C3, so the region is contained inside a spherical cap of height 2δσ(z)

and radius C3, which has width bounded by min{2C3, 4
√
C3C4δ}.

Next we control the speed F above and below.

Lemma 14. There exist constants δ0 > 0 and C5 such that if δ < δ0 and s satisfies

equation (8) with (1− δ)σ(z) ≤ s(z, 0) ≤ (1+ δ)σ(z), then∣∣∣F(z,√δ)− σ(z)
∣∣∣ ≤ C5δ

1/4.

Proof. We use Lemma 12, together with the following (Theorem 5.6 from [An4]):

d

dt
F+ αF

(1+ α)t
≥ 0. (9)

Equivalently, the quantity Ftα/(1+α) is nondecreasing pointwise.

The result of Lemma 12 on the time interval I =
[√
δ,
√
δ
(
1+ δ1/4

)]
gives∫

I

F(z, t)dt = s
(
z,
√
δ
)
− s

(
z,
√
δ(1+ δ1/4)

)
≤
(
δ3/4 + Cδ

)
σ(z).

By the estimate (9), we also have

F(z, t) ≥ F(z,
√
δ)
(
t√
δ

)−α/1+α
≥ F(z,

√
δ)(1− Cδ1/4),

and so ∫
I

F(z, t)dt ≥ F(z,
√
δ)(1− Cδ1/4)δ3/4.

Therefore we have

F(z,
√
δ)− σ(z) ≤ Cδ1/4.

The estimate on F from below follows by applying the same method on the time interval

[
√
δ(1− δ1/4),

√
δ].
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Lemma 15. For any t0 ∈
(
0, 1/1+ kα), there are δ1 > 0 and C6 such that if δ < δ1 and s

satisfies (8) with (1− δ)σ(z) ≤ s(z, 0) ≤ (1+ δ)σ(z), then for all z ∈ Sn,

r[s]i j(z, t0) ≤ C6gi j.

Proof. By Lemmas 12–14 and scaling, we can assume

∣∣∣s(z, t)− (1− (1+ kα)t
)1/(1+kα)

σ(z)
∣∣∣ ≤ Cδ;∣∣∣Ds(z, t)− (1− (1+ kα)t

)1/(1+kα)
Dσ(z)

∣∣∣ ≤ C√δ;∣∣∣F(z, t)− (1− (1+ kα)t
)−kα/(1+kα)

σ(z)
∣∣∣ ≤ Cδ1/4,

on the time interval [
√
δ, t0]. The evolution equation for r[s] is as follows:

∂

∂t
r[s]i j = r[−F]i j

= ∇i
(
−Q−αk ∇jψ+ αψQ−(1+α)

k ∇jQk
)
− gi jQ−αk

= αψQ−(1+α)
k ∇i∇jQk − α(1+ α)ψQ−(2+α)

k ∇iQk∇jQk
+ α∇iψQ−(1+α)

k ∇jQk + α∇jψQ−(1+α)
k ∇iQk − Q−αk r[ψ]i j. (10)

The second derivatives of Qk can be expanded as follows:

∇i∇jQk = ∇i
kQ̇pq

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ
∇jrpq + n∑

a=k+1

Q̇pq

s, . . . , s︸ ︷︷ ︸
k times

;ℵ\{sa}
∇jr[sa]pq


= kQ̇pq

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ
 ∇i∇j +∇j∇i

2
r[s]pq

+
n∑

a=k+1

Q̇pq

s, . . . , s︸ ︷︷ ︸
k times

;ℵ\{sa}
 ∇i∇j +∇j∇i

2
r[sa]pq

+ k(k− 1)Q̈pq mn

 s, . . . , s︸ ︷︷ ︸
k−2 times

;ℵ
∇ir[s]mn∇jr[s]pq

+ k
n∑

a=k+1

Q̈pq mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇ir[s]pq∇jr[sa]mn
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+ k
n∑

a=k+1

Q̈pq mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇jr[s]pq∇ir[sa]mn

+
∑

k+1≤a,b≤n
a6=b

Q̈pq mn

s, . . . , s︸ ︷︷ ︸
k times

;ℵ\{sa, sb}
∇ir[sa]pq∇jr[sb]mn. (11)

In order to produce an elliptic operator as the leading term in the evolution

equation, we note the following identity for the first term above:

(∇p∇q +∇q∇p)r[s]i j = 1

2
(∇p∇ir[s]qj +∇p∇jr[s]qi +∇q∇ir[s]p j +∇q∇jr[s]pi)

= 1

2
(∇i∇pr[s]qj +∇j∇pr[s]qi +∇i∇qr[s]p j +∇j∇qr[s]pi)

+ 1

2
(gpqr[s]i j − giqr[s]jp + gpjr[s]qi − gi jr[s]pq
+ gpqr[s]i j − gjqr[s]ip + gpir[s]qj − gi jr[s]pq
+ gpqr[s]i j − gipr[s]jq + gqjr[s]pi − gi jr[s]pq
+ gpqr[s]i j − gjpr[s]iq + gqir[s]p j − gi jr[s]pq)

= (∇i∇j +∇j∇i)r[s]pq + gpqr[s]i j − gi jr[s]pq. (12)

The second and last terms in (11) we estimate from above: There exists some constant C

such that

∇ir[sa]pq∇jr[sb]mn +∇jr[sa]pq∇ir[sb]mn ≤ Cgijr[sa]pqr[sb]mn

and

1

2
(∇i∇j +∇j∇i)r[sa]pq ≤ Cgijr[sa]pq

for a, b = k+ 1, . . . , n.

We bound the third term in equation (11) using the concavity property of the

mixed discriminants: By item (5) of Proposition 3, we have for each i,

QkQ̈
pq mn

 s, . . . , s︸ ︷︷ ︸
k−2 times

;ℵ
∇ir[s]pq∇ir[s]mn ≤

Q̇pq

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ
∇ir[s]pq

2

. (13)

The last term here will be controlled in terms of gradients of Qk:

kQ̇pq

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ
∇ir[s]pq = ∇iQk − n∑

a=k+1

Q̇pq

s, . . . , s︸ ︷︷ ︸
k times

;ℵ\{sa}
∇ir[sa]pq (14)
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where we have∣∣∣∣∣∣Q̇pq
s, . . . , s︸ ︷︷ ︸
k times

;ℵ\{sa}
∇ir[sa]pq

∣∣∣∣∣∣ ≤ CQk.
Combining estimates (10–14), we obtain the following inequality:

∂ri j

∂t
≤ kαψQ−(1+α)

k Q̇pq∇p∇qri j − kαψQ−(1+α)
k Q

 s, . . . , s︸ ︷︷ ︸
k−1 times

, 1;ℵ
 ri j + CQ−αk gi j

+ kαψQ−(1+α)
k

∑
k+1≤a,b≤n

a6=b

Q̈pq mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇ir[sa]pq∇jr[s]mn

+ kαψQ−(1+α)
k

∑
k+1≤a,b≤n

a6=b

Q̈pq mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇jr[sa]pq∇ir[s]mn.

The last two terms in this expression are yet to be controlled. These are the most

troublesome terms in the entire estimate, and it is only in controlling these that we

require the oscillation of s/σ to be small. As will be shown below, these terms can be

controlled using the leading elliptic term, at the expense of terms of the form

Q

 s, . . . , s︸ ︷︷ ︸
k−1 times

, 1;ℵ
 ri j.

These are in turn controlled using good terms in the evolution equation for s, as long as

the oscillation of s/σ is sufficiently small (note that in the case k = n, these terms do not

arise). The evolution equation for s can be written as follows:

∂

∂t
s = −ψQ−αk
= kαψQ−1−α

k Q̇pq∇p∇qs− (1+ kα)ψQ−αk

+ kαsψQ−1−α
k Q

 s, . . . , s︸ ︷︷ ︸
k−1 times

, 1;ℵ
 .

The first term here is elliptic, and the last is bounded above and below, but the second

term becomes large if some eigenvalue of r is large.

By choosing δ1 sufficiently small, we can ensure that s − ρ(t)σ remains strictly

positive up to time t0, where ρ(t) = (1 − γ)
∫
Sn
sdµ/

∫
Sn
σdµ for some γ > 0 to be chosen

later. Consider the function w on {(z, v) ∈ TSn: |v| 6= 0} defined by

w(z, v) = r[s](v, v)

g(v, v)(s− ρ(t)σ)
.
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If a maximum of w occurs at time t at a point (z, v), then we assume without loss of

generality that |v| = 1 and that we have normal coordinates {z1, . . . , zn} about z such

that v = ∂z1 . Then we have local coordinates for TSn given by {z1, . . . , zn, v1, . . . , vn}. The

criticality conditions at the point (z, v) are then

0 = ∂ziw =
1

s− ρσ
(∇ir[s]11

g11
− (∇is− ρ∇iσ)

r[s]11

g11(s− ρσ)

)
and

0 = ∂viw =
2

s− ρσ
(

r[s]1i
g11
− r[s]11

g2
11

g1i

)
for i = 1, . . . , n. Since the point (z, v) is a maximum of w, we also have the extremality

conditions

0 ≥ (∂zi +Λki ∂vk )(∂zj +Λ`j∂v` )w

= 1

s− ρσ
(∇i∇jr[s]11 −w∇i∇j(s− ρσ)

)+ 2
∑
k,`6=1

Λki Λ
`
j

s− ρσ (r[s]k` − r[s]11gk`)

+ 2
∑
k 6=1

Λki

s− ρσ∇1r[s]k j + 2
∑
`6=1

Λ`j

s− ρσ∇1r[s]`i (15)

in the sense that this matrix is positive definite for arbitrary Λj

i . Now consider the evo-

lution equation for w at this maximum point:

∂

∂t
w(z, v) = 1

s− ρσ
(
∂

∂t
r[s]11 −w ∂

∂t
(s− ρσ)

)
≤ kαψQ−(1+α)

k Q̇pq
(

1

s− ρσ
(∇p∇qr[s]11 −w∇p∇q(s− ρσ)

)
+ 2

Λmp

s− ρσ∇1rqm + 2
Λmq

s− ρσ∇1rpm

)

+ 1

s− ρσ

CQ−αk − 2kαψQ−(1+α)
k Q

 s, . . . , s︸ ︷︷ ︸
k−1 times

, 1;ℵ
 r11


− w

s− ρσ

kαρQ
 s, . . . , s︸ ︷︷ ︸
k−1 times

, σ;ℵ
− (1+ kα)ψQ−αk +

∫
Sn
Fdµ∫

Sn
σdµ

σ

 (16)

where

Λ
j

i =
(
Q̇−1)

ip

n∑
a=k+1

Q̈p j mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇1r[sa]mn.

The first bracket can be estimated using the inequality (15), provided we have an estimate

on the matrices Λj

i . More specifically, we need to estimate the terms produced by (15),
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which are

2

s− ρσkαψQ−(1+α)
k

∑
m,n6=1

Q̇pqΛmp Λ
n
q

(
r11gmn − rmn

)

+ 4kαψ

s− ρσQ−(1+α)
k

n∑
a=k+1

Q̈p1 mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇1r[sa]mn∇pr11. (17)

Consider the first term: There is some constant C such that −Cr[sa] ≤ ∇vr[sa] ≤ Cr[sa]

for every unit vector v and each a = k + 1, . . . , n. By the monotonicity of the mixed

discriminants (property (2) from Proposition 3), this implies

−CQ̇pq ≤ Q̈pq mn

 s, . . . , s︸ ︷︷ ︸
k−1 times

;ℵ\{sa}
∇1r[sa]mn ≤ CQ̇pq.

Now Q̇pq is a positive definite symmetric matrix, and so has a well-defined positive definite

square root Q̇1/2. Multiplying by the inverse of this matrix on the left and the right gives

−Cgpq ≤
(
Q̇1/2

)pr
Λsr

(
Q̇−1/2

)sq
≤ Cgpq,

and so the symmetric matrix Λ̃ obtained by conjugating Λ by the square root of Q̇ has

bounded eigenvalues and hence bounded norm. The terms we must control have the form

2kαψ

s− ρσQ−(1+α)
k gpqΛ̃rpΛ̃

s
q

(
Q̇1/2

)rm (
Q̇1/2

)sn (
r11gmn − rmn

)
,

and are therefore bounded by CQ−(1+α)
k

(
r11Qk−1 − Qk

)
/(s − ρσ). Finally, to control the re-

maining terms in equation (17),we use the criticality condition ∇pr11 = w∇p(s−ρσ). Then

we have

∂

∂t
w(z, v) ≤ CQ−(1+α)

k Qk−1w+ Cw

s− ρσQ−(1+α)
k Qk−1|∇(s− ρσ)|

+ CQ−αk
s− ρσ − C

wQ−(1+α)
k Qk−1

s− ρσ
≤ −CwQk−1Q

−(1+α)
k

1− C|∇(s− ρσ)| − C(s− ρσ)

s− ρσ + CQ−αk
s− ρσ.

The first term here is the most important: We have

Qk−1 ≥ cEk−1 ≥ cE1/(k−1)
1 E

(k−2)/(k−1)
k ≥ cr1/(k−1)

11 Q
1−1/(k−1)
k

and so

Qk−1w

s− ρσ ≥ cw
1+1/(k−1) Q

1−1/(k−1)
k

(s− ρσ)1−1/(k−1)
,



Evolving Convex Hypersurfaces 1021

and so, provided that s− ρσ and |∇(s− ρσ)| are sufficiently small, we have

∂

∂t
w ≤ −Cw1+1/(k−1) Q

−α−1/(k−1)
k

(s− ρσ)1−1/(k−1)
+ C Q−αk

s− ρσ.

Finally, since the exponent ofw is greater than 1 and the remaining terms and coefficients

are bounded, we obtain by the maximum principle a bound on w, independent of initial

data. This completes the proof of Lemma 15, since a bound on w implies a bound on r.

Lemma 16. If C−1
7 ≤ Qk ≤ C7 and r[s] ≤ C8g, then there exists a constant C9 such that

C−1
9 g ≤ Q̇ ≤ C9g.

Proof. The upper bound on Q̇ follows immediately from the bound on r. The lower bound

is proved as follows: By monotonicity of the mixed discriminants,

Q̇i j ≥ cĖi jk
for some constant c depending only on ℵ. The matrix Ėi jk is diagonal when r[s] is diagonal:

If {e1, . . . , en} is a basis for which r[s] = diag(r1, . . . , rn), then Ėk = diag(q1, . . . , qn), where

qi = c(k, n)
∑

1≤i1<...<ik−1≤n
ij 6=i

ri1 . . . rik−1

≥ c max
1≤i1<...<ik−1≤n

ij 6=i

ri1 . . . rik−1

≥ c

max1≤ j≤n rj
max

1≤i1<...<ik≤n
ri1 . . . rik

≥ c′ Ek
rmax

≥ c′′ Qk

rmax

≥ C.

Hence we have a bound below on the eigenvalues of Q̇, as required.

The proof of Proposition 11 now follows from the result of Lemmas 15 and 16: s

satisfies a fully nonlinear uniformly parabolic equation (by Lemma 16),which is concave

in the second derivatives of s. Hence the second derivatives of s are uniformly Hölder

continuous by Theorem 5.5 of [K] (see also Corollary 14.9 of [Lm]), and all higher deriva-

tives are uniformly bounded by parabolic Schauder estimates (see for example [Si2] or

Theorem 4.9 in [Lm]). Finally, interpolation inequalities (see Theorem 7.28 of [GT]) show

that any Ck norm of s/σ can be made arbitrarily small by taking the oscillation of s/σ

sufficiently small, since the C2k norm is bounded.
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An immediate corollary of Proposition 11 follows.

Proposition 17. Suppose σ is as in Proposition 10, and s is a solution of (8). If there exist

sequences ti → T, Ri → ∞, and pi ∈ Rn+1 such that Ri(sti − 〈z, pi〉) → σ uniformly, then

there exist t′i, R
′
i, and p′i such that R′i

(
st′
i
− 〈z, p′i〉

)
→ σ in C∞(Sn).

6 The convergence argument

In this section, we adapt a method of [Si1] to complete the proof of Theorem 2. This

method involves bounding the distance that the solution can move away from the limit

in terms of the change in Zβ for some β. The proof of this depends crucially on a bound

below for the norm of the gradient of Zβ in L2 near its critical point σ. This bound is

proved by reducing to an inequality for real-analytic functions on finite-dimensional

spaces proved by ÃLojasiewicz [L]. For a recent exposition of the ÃLojasiewicz inequality

and related topics, see [MV], especially Theorem 4.14.

The ÃLojasiewicz estimate has been used to prove convergence for gradient flows

of real-analytic functions. In our case, our evolution equations are not gradient flows, but

we do have monotone quantities. We will show that the angle between the direction of

motion and the gradient of one of these functionals remains acute, with cosine bounded

away from zero. This weaker condition suffices for the ÃLojasiewicz argument.

To illustrate the argument, we first describe an analogous situation for ordinary

differential equations: Suppose E: M→ R is a real-analytic function on a (real-analytic)

finite-dimensional Riemannian manifold M, and V is a vector field on M which satisfies

the angle condition 〈V,∇E〉 ≥ c0|V| |∇E| for some constant c0 > 0. Suppose x: [0,∞)→M

satisfies the ordinary differential equation ẋ = −V(x), where ẋ = dx/dt.
Suppose there is a subsequence of times {tk} approaching infinity such that x(tk)

approaches a limit x∞ ∈M. Then x∞ is necessarily a critical point of E, and since E(x(t)) is

a decreasing function of t, we have limt→∞ E(x(t)) = E(x∞). We show that x(t) approaches

x∞ as t→∞. The result of ÃLojasiewicz [L] is that there exists a neighbourhood U of x∞
in M and a constant θ ∈ (0, 1/2] such that |∇E(ξ)| ≥ |E(ξ)− E(x∞)|1−θ for all ξ ∈ U.

Given ε > 0, we must show that there exists T (ε) such that for every t ≥ T (ε) we

have |x(t)− x∞| < ε. First, decrease ε if necessary to ensure that Bε(x∞) ⊂ U. Then choose

k sufficiently large to satisfy |x(tk) − x∞| < 1/2ε and |E(x(tk)) − E(x∞)| ≤ (c0θε/2)1/θ. Then

we have

|ẋ| = |V(x)|

≤ 〈V,∇E〉
c0|∇E|
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= |Ė|
c0|∇E|

≤ 1

c0
|Ė||E− E(x∞)|θ−1

= 1

c0θ

∣∣∣∣ ddt ((E− E(x∞))θ
)∣∣∣∣ .

Integrating from tk to any t > tk, we obtain

|x(t)− x(tk)| ≤ 1

c0θ
|E(x(tk))− E(x∞)|θ < 1

2
ε,

and so

|x(t)− x∞| ≤ |x(t)− x(tk)| + |xtk + x∞| < ε

for all t > tk. Thus T (ε) = tk suffices.

To apply this argument to the present situation,we take the real-analytic function

Z
α/(α−1)
1/α if α 6= 1, and Z− if α = 1.

As before, we denote by s̃ the rescaled support function(
Vk+1[σ]

Vk+1[s]

)1/(k+1)

s,

and define a new time parameter τ by

∂

∂τ
=
(
Vk+1[s]

Vk+1[σ]

)(1+kα)/(k+1)
∂

∂t
.

Proposition 18. There exists a neighbourhood in C2 about σ in which

d

dτ

(
Z
α/(α−1)
1/α

)
≤ −C

∥∥∥∥ ∂∂τ s̃
∥∥∥∥
L2(Sn)

∥∥∥∇L2(Sn)Z
α/(α−1)
1/α

∥∥∥
L2(Sn)

for some C > 0.

Proof. Direct calculation gives expressions for ∂
∂τ
s̃ and ∇L2(Sn)Z

α/(α−1)
1/α :

∂

∂τ
s̃ = −ψQk[s̃]

−α + Z1s̃,

∇L2(Sn)Z
α/(α−1)
1/α = Z

1/(α−1)
1/α

((
ψ

s̃

)1/α

− Qk[s̃]Z1/α

)
.

Let

φ = ψ

s̃Qk[s̃]α
.

Then we have

∂

∂τ
s̃ = −s̃ (φ− Z1

)
(18)



1024 Ben Andrews

and

∇L2(Sn)Z
α/(α−1)
1/α = Z

α/(α−1)
1/α Qk[s̃]

(
φ1/α

Z1/α
− 1

)
. (19)

Taking the L2 norm of each of these, we obtain∥∥∥∥ ∂∂τ s̃
∥∥∥∥2

L2(Sn)

=
∫
Sn
s̃2 (φ− Z1

)2
dµ

≤ sup
Sn

s̃

Qk[s̃]

(
Z2 − Z2

1

)
(20)

and ∥∥∥∇L2(Sn)Z
α/(α−1)
1/α

∥∥∥2

L2(Sn)
= Z2

1/α

∫
Sn

Qk[s̃]
2
(
φ1/α − Z1/α

)2
dµ

≤ Z2
1/α sup

Sn

Qk[s̃]

s̃

(
Z2/α − Z2

1/α

)
. (21)

We can also write the time derivative of Z
α/(α−1)
1/α in terms of φ:

d

dτ
Z
α/(α−1)
1/α = −Z

1/(α−1)
1/α

(
Z1+1/α − Z1Z1/α

)
. (22)

We consider any C2 neighbourhood of σ consisting of functions s satisfying r[s] > 0 and

the conditions

sup
Sn
φ ≤ eC inf

Sn
φ and

(
sup
Sn

Qk[s̃]

s̃

)(
sup
Sn

s̃

Qk[s̃]

)
≤ eC

for some constant C > 0.

We estimate each of the expressions (20–22):

Z1+α/α−Z1Z1/α=
∫
Sn
φ1+α/α dµ̃

∫
Sn
dµ̃−

∫
Sn
φdµ̃

∫
Sn
φ1/α dµ̃

= 1

2

∫
φ(x)α+1/α + φ(y)α+1/α − φ(x)φ(y)1/α − φ(y)φ(x)1/α dµ̃(x)dµ̃(y)

= 1

2

∫[
φ(x)φ(y)

]α+1/2α
[
ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α

]
dµ̃(x)dµ̃(y)

≥ 1

2

(
inf
Sn
φ

)α+1/α ∫ (
ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α

)
dµ̃(x)dµ̃(y)

where

ρ(x, y) =
√
φ(x)

φ(y)
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and dµ̃ = s̃Qk[s̃]dµ. By similar arguments, we have

Z2 − Z2
1 ≤

1

2

(
sup
Sn
φ

)2 ∫
Sn×Sn

(
ρ− ρ−1)2 dµ̃(x)dµ̃(y)

and

Z2/α − Z2
1/α ≤

1

2

(
sup
Sn
φ

)2/α ∫
Sn×Sn

(
ρ1/α − ρ−1/α

)2
dµ̃(x)dµ̃(y).

Lemma 19. If e−C/2 ≤ ρ ≤ eC/2, then for α ≥ 1 we have

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α ≥ α
(
ρ1/α − ρ−1/α

)2
,

and

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α ≥ sinh
(
C
2α

)
sinh

(
C
2

) (ρ− ρ−1)2 .
For 0 < α ≤ 1, we have

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α ≥ sinh
(
C
2

)
sinh

(
C
2α

) (ρ1/α − ρ−1/α
)2
,

and

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α ≥ 1

α

(
ρ− ρ−1)2 .

Proof of Lemma 19. We note that

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α =
(
ρ1/α − ρ−1/α

) (
ρ− ρ−1) ,

and so

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α(
ρ− ρ−1

)2 = ρ
1/α − ρ−1/α

ρ− ρ−1
,

and

ρα+1/α + ρ−α+1/α − ρα−1/α − ρ1−α/α(
ρ1/α − ρ−1/α

)2 = ρ− ρ−1

ρ1/α − ρ−1/α
.

Hence it suffices to bound the ratio of ρ− ρ−1 and ρ1/α − ρ−1/α from above and below. Let

r = ln ρ, so that the quantity we must bound above and below is sinh r/sinh(r/α). This

has limit α as r approaches zero, and

d

dr

sinh r

sinh(r/α)
= sinh r

sinh(r/α)

(
cosh r

sinh r
− cosh(r/α)

α sinh(r/α)

)
= sinh r

sinh(r/α)

(
K(r)− K(r/α)

)
r

,
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where

K(a) = a cosh(a)

sinh(a)
,

which is increasing in a (with derivative equal to sinh(2a)− 2a/2 sinh2
a > 0). Hence

sinh r

sinh(r/α)

is increasing for α ≥ 1 and decreasing for 0 < α ≤ 1. The result follows.

Applying the lemma directly, and using the estimate supSn φ ≤ eC infSn φ,we have

Zα+1/α ≥
√√√√min

{
α sinh

(
C
2α

)
sinh

(
C
2

) , sinh
(
C
2

)
α sinh

(
C
2α

)}e−C(α+1)/α
√

Z2 − Z2
1

√
Z2/α − Z2

1/α.

From the expression (20–22), this implies

d

dτ
Z
α−1/α
1/α ≤ −

√√√√√√min
{
α sinh

(
C
2α

)
sinh

(
C
2

) , sinh
(
C
2

)
α sinh

(
C
2α

)}
supSn

s̃
Qk[s̃] supSn

Qk[s̃]
s̃

e−C(α+1)/α

∥∥∥∥ ∂∂τ s̃
∥∥∥∥ ∥∥∥∇L2(Sn)Z

α/α−1
1/α

∥∥∥ .
This completes the proof of Proposition 18.

Proposition 20. There exist θ ∈ (0, 1/2] and a neighbourhood in C2,µ about σ in which

∥∥∥∇L2(Sn)Z
α/α−1
1/α [s]

∥∥∥
L2(Sn)

≥
∥∥∥Zα/α−1

1/α [s]− Zα/α−1
1/α [σ]

∥∥∥1−θ

L2(Sn)
.

Proof. Simon [Si1] showed that such an inequality can be deduced for gradients of

functionals of a slightly different form. The present case differs in the fact that the

gradient is a fully nonlinear elliptic operator rather than a quasilinear one, but the

details are otherwise identical. We refer the reader to the proof of Theorem 3 in [Si1].

Proposition 21. For any ε > 0 there exists δ > 0 such that if s̃τ is rescaled from a solution

of equation (8) with limt→∞ Z1/α[s̃t] = Z1/α[σ], and |s̃0−σ|L2 < δ, then supt≥0 |s̃t−σ|C2,µ < ε.

Proof. The argument is similar to that described above for ordinary differential equa-

tions. Some complications arise because the ÃLojasiewicz inequality (Proposition 20) and

the angle condition (Proposition 18) have been established in a C2,µ neighbourhood about

σ; but the argument applied directly gives bounds only on the distance travelled by the

solution in L2.
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The results of Section 5 can be interpreted in terms of the rescaled solution s̃

to give the following, where we fix a positive number τ0: For every ε > 0, there exists a

δ1(ε) > 0 such that if ‖s̃0 − σ‖L2(sn) < δ1, then

‖s̃τ − σ‖L2(Sn) < ε

for 0 ≤ τ ≤ τ0. Similarly, there exists δ2(ε) such that ‖s̃0 − σ‖L2(sn) < δ1 implies

|s̃τ0 − σ|C2,µ < ε.

Proposition 18 gives the existence of constants ε1 > 0 and c0 > 0 such that

|s̃− σ|C2 < ε1 H⇒ ∂

∂τ
Z
α/(α−1)
1/α ≤ −c0

∥∥∥∇Z
α/(α−1)
1/α

∥∥∥
L2

∥∥∥∥ ∂∂τ s̃
∥∥∥∥
L2
,

and Proposition 20 gives ε2 > 0 and θ ∈ (0, 1/2] such that

|s̃− σ|C2,µ < ε2 H⇒
∥∥∥∇Z

α/(α−1)
1/α

∥∥∥
L2
≥
∣∣∣Z1/α[s̃]α/(α−1) − Z1/α[σ]α/(α−1)

∣∣∣1−θ .
Finally, by the continuity of Z1/α as a functional onC2, for every ε > 0 there exists δ3(ε) > 0

such that

|s̃− σ|C2 < δ3 H⇒
∣∣∣Z1/α[s̃]α/(α−1) − Z1/α[σ]α/(α−1)

∣∣∣ < ε.
Given ε > 0, we let ε∗ = min{ε, ε1, ε2}, and choose

δ = min

{
δ1

(
1

2
δ2
(
ε∗
))
, δ2

(
δ3

((
c0θδ2(ε∗)

2

)1/θ
))}

.

This choice guarantees that ‖s̃τ−σ‖L2 < 1/2δ2(ε∗) for 0 ≤ τ ≤ τ0, and hence |s̃τ−σ|C2,µ < ε∗
for τ0 ≤ τ ≤ 2τ0. Let

T = sup{τ1: |s̃τ − σ|C2,µ < ε∗ for τ0 ≤ τ ≤ τ1},

which is well-defined and greater than or equal to 2τ0 in view of the previous sentence.

For τ0 ≤ τ ≤ T, we have |s̃τ − σ|C2,µ < ε∗ ≤ min{ε1, ε2}, and so both the ÃLojasiewicz

inequality and the angle condition hold. Therefore

‖s̃τ − σ‖L2 ≤ ‖s̃τ0 − σ‖L2 + 1

c0θ

∣∣∣Z1/α[s̃τ0 ]α/α−1 − Z1/α[σ]α/α−1
∣∣∣θ

for τ0 ≤ τ ≤ T, by the argument described before Proposition 18. But we have

‖s̃τ0 − σ‖L2 <
1

2
δ2(ε∗),

and

‖s̃τ0 − σ‖C2,µ < δ3

((
c0θδ2(ε∗)

2

)1/θ
)
,
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and so by the definition of δ3 we have

1

c0θ

∣∣∣Z1/α[s̃τ0 ]α/α−1 − Z1/α[σ]α/α−1
∣∣∣θ < 1

2
δ2(ε∗).

Therefore for τ0 ≤ τ ≤ T (and, as we already know, for 0 ≤ τ ≤ τ0) we have

‖s̃τ − σ‖L2 < δ2(ε∗),

so by the definition of δ2, we have for τ0 ≤ τ ≤ T + τ0,

|s̃τ − σ|C2,µ < ε∗.

This contradicts the maximality of T if T < ∞. Therefore T = ∞, and we have s̃τ within

distance ε∗ of σ in C2,µ for all positive τ, as required.

Theorem 2, restated. Suppose s: Sn × [0, T ) → R is a smooth solution of equation (8),

and there exist ti → T, Ri → ∞, and pi ∈ Rn+1 such that Ri
(
sti − 〈pi, z〉

)
converges in

C0 to the support function σ of a C2 convex hypersurface Σ with F > 0. Then Σ satisfies

equation (2), and is C∞ and strictly convex, and there exists p ∈ Rn+1 such that for all

k ≥ 1,

lim
t→T

∣∣∣∣∣
(
Vk+1[σ]

Vk+1[st]

)1/k+1 (
st − 〈z, p〉

)− σ∣∣∣∣∣
Ck

= 0.

Proof. First,note that the hypersurfacesMt defined by the support functions st converge

to a point p ∈ Rn+1 as t → T : If we denote by Ωt the region enclosed by Mt, then Ωt2 ⊂
Ωt1 for t2 > t1 by the comparison principle, and since Ri → ∞, we have diamMti ≤
1/RidiamΣ→ 0 as i→∞, and so diamMt→ 0 as t→ T since diamMt is decreasing in t.

Then
⋂

0≤t<T Ωt = {p} for some p ∈ Rn+1.

Next we note that Ri(pi − p) approaches zero as i → ∞: If not, then there exists

some ε0 > 0 and a sequence ij→∞ such that |Rij (pij − p)| ≥ ε0. Define ε̃ = min{ε0, supσ}.
We know that |Risti − 〈Ripi, z〉 − σ|C0 → 0 as i→∞. But now choose I sufficiently large to

ensure that |Risti − 〈Ripi, z〉 − σ|C0 ≤ ε supσ for i ≥ I, where

(1+ ε)1+kα − 1 <
(

ε̃

supσ

)1+kα ((3

4

)1+kα
−
(

1

2

)1+kα)
and

(1− ε)1+kα − 1 > −
(

ε̃

supσ

)1+kα ((1

2

)1+kα
−
(

1

4

)1+kα)
.

Then, taking

τi =
1−

(
ε̃

2 supσ

)1+kα

(1+ kα)R1+kα
i

,
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we have by the comparison principle (as in Lemma 12) for i ≥ I,(
(1− ε)1+kα − (1+ kα)R1+kα

i τi
)
σ ≤ Ri

(
sti+τi − 〈pi, z〉

)
and

Ri
(
sti+τi − 〈pi, z〉

) ≤ ((1+ ε)1+kα − (1+ kα)R1+kα
i τi

)
σ;

the choices of τi and ε then imply that

ε̃ infσ

4 supσ
≤ Risti+τi − 〈Ripi, z〉 ≤

3ε̃

4
.

For j sufficiently large, we have ij ≥ I, and so the last inequality holds; but also

|Rij (pij − p)| ≥ ε0 ≥ ε̃ > 3ε̃

4
> sup

z∈Sn

(
Rijstij+τij − 〈Rijpij , z〉

)
,

and so at time tij + τij the point p is no longer in the enclosed region Ωtij
+τij . This is a

contradiction, since {p} =⋂Ωt. Therefore |Ri(pi − p)| → 0 as i→∞.

As a consequence,we can replace the sequence pi with a constant sequence, since

|Ri(sti − 〈p, z〉)− σ| ≤ |Ri(sti − 〈pi, z〉 − σ| + |Ri〈pi − p, z〉|,

and both terms on the right approach zero.

By Theorem 7, Z1/α[st−〈p, z〉]α/(α−1) is decreasing in time, and so has limit equal to

Z1/α[σ]α/(α−1) since Z converges on the sequence of times ti. Also, s̃ti converges in C0 (and

hence in L2) to σ, and so for any ε > 0 there exists i sufficiently large that sti satisfies the

conditions of Proposition 21. Therefore, s̃t remains within distance ε of σ in C2,µ for all

t ≥ ti. This gives convergence in C2,µ. Convergence in all higher Ck norms follows from

Proposition 11.
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