
Monotonic Conflict Resolution Mechanisms

for Inheritance t

R. Ducournau
Sema Group,

16-18 rue Barb&,92126 Montrouge Cedex, France,

email: ducour@sema-taa.fr

M. Habib, M. Huchard, M.L. Mugnier

Dpt. Injormatique Fondamentale, LIRMM,
860 rue de Saint-Priest, 34090 Montpellier, France,

email: name@crim.fr

Abstract

The main topic of this paper is multiple inheritance
and conflict resolution methods in Object Orient-
ed Programming. Our aim is to develop sound
mechanisms easily understandable to any user. For
this purpose, coherent behaviors of conflict reso-
lution methods for multiple inheritance (such as
supporting incrementality-monotonicity and sta-
bility under link subdivision) are introduced. We
present interesting examples in which multiple in-
heritance known linearization algorithms (such as
in CLOS [2] and LOOPS [19]) behave badly. Then
we carefully study the conditions (on the inheri-
tance graph) which assure good linearizations. We
end with some suggestions for an incremental in-
heritance algorithm.

1 Introduction

1.1 Inheritance in object oriented sys-
tems

Inheritance is among the most interesting concepts

t This work was partially supported by the Greco de Pro-

grammotion.

Permission to copy without fee all or part of this material is

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notica and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

of object oriented systems. However, it is an impor-

tant motive for divergence. In this paper we adopt

the general definition of inheritance as a specializa-

tion relation close to subtyping. Similarly, we use

the general term “property” of an object, which

may be a method, a datum, or both, depending on

what specific language one refers to. Let us spec-

ify that our experience is essentially based on the

hybrid language Y3 [7] and on object oriented sys-

tems based upon Lisp.

An inheritance strategy deals with answering the

question: given a class x and a property P, what

does z inherit concerning P?

One refers to simple inheritance when a class in-

herits directly from one class and multiple inheri-
tance when a class may inherit directly from several

classes.

When inheritance is simple, so is the strategy.

The following masking rule applies: when a prop-

erty P is defined in a class x and refined in a sub-

class of 2, say y, then the value of P in y hides -or

masks- the value of P in 2, for y and its subclass-

es. Consequently, the P value for some x inheriting

P is provided by the most specific superclass of x

defining P.

With multiple inheritance, given a class z which

inherits a property P, several superclasses of x

may be in conflict when defining P. One has to

0 1992 ACM 0-89791-539.9/92/0010/0016...$1.50

OOPSLA’92, pp. 16-2.1

16

choose between them. In addition, there can be

clarity problems of the inheritance mechanism or

even intelligibility. These stumbling blocks have

led some people to exclude multiple inheritance [5].

However, there are strong arguments in its favour:

modelisation closer to represented objects or better

sharing of code [21], [19]. Besides, multiple inher-

itance is a feature offered by most object oriented

systems.

1.2 Conflicts solving

We distinguish between two kinds of conflicts: con-

flicts with different values of the same property,

called value conflicts, and conflicts between two dis-

tinct properties with the same name, called name

conflicts [ll]. In this paper, we are concerned with

value conflicts. Indeed, we consider name conflict-

s to be software accidents which cannot be solved

specifically by the inheritance mechanism.

The ways of solving conflicts differ with respect

to several parameters. Examples given, the mo-

ment of the conflict resolution -at compile or run

time- the kind of answer given to the user, the

number of inherited occurrences [13]... However, s-

trategies are divided into two main classes, depend-

ing on whether they request an interaction with

the user or not. The first class includes explic-

it designation (C-+-t [20], extended Smalltalk [4],

Trellis/Owl [17]), renaming (Eiffel [141)) exclusion

(CommonObjects [IS]), point of views (Objlog [lo],

Rome [S]). The only representatives of the second

cla.ss are the linearization techniques.

1.3 Linearization techniques

The linearization techniques are mainly used for

inheritance in object oriented languages based up-

on LISP -Old and NewFlavors [19], [15], Com-

monLOOPS [3], CLOS [2], Y3 [8], [7], [9], LOOPS

[19]. They are also used in frame languages for

reading and writing mechanisms with reflexes [22].

Their main advantage is the run-time conflict solv-

ing without human intervention. This specifical-

ly allows dynamic creation/destruction of objects.

This technique appears to be a good default mech-

anism, used when no precise information on the ob-

ject and its properties are available. Besides, in the

above systems it is the basis of more sophisticated

techniques. For instance, the numerous modes of

method combination in Flavors [15].

On the other hand, the linearization algorithms

are reproached for being non intuitive [5], [l]. Their

implicit priority rules are indeed a cause of difficul-

ties for the programmer to understand. Our work

focusses on this stumbling block. We base it on the

concept of monotonicity, previously introduced in

[12], which corresponds to incremental computing

of a linearization.

1.4 Outline of the paper

The paper is organized as follows:

Section 2 specifies the basic notations on inher-

itance graphs. Section 3 defines what a sound

conflict resolution mechanism should be. We

introduce the principles of uniformity, masking,

monotonicity-incrementality and stability. In sec-

tion 4, we restrict previous principles to the specific

case of linearization. In section 5 and 6, we describe

the linearization techniques, and particularly two

linearization algorithms that we think are repre-

sentative of their family, namely: LOOPS-Y3 and

CLOS algorithms. We study their behavior with

respect to the above criteria. Section 7 is devot-

ed to our main results. We formalize an intuitive

inheritance relation and prove that it is computed

by the LOOPS-Y 3 and CLOS algorithms on a very

large class of graphs. On these graphs both algo-

rithms are monotonic and stable. Furthermore, we

actually characterize graphs on which the LOOPS-

Y3 and CLOS algorithms are monotonic and sta-

ble.

2 Basic definitions and lineari-
zat ions

The inheritance graphs we consider H = (X, U)

with X being the classes and U being the inheri-

tance links, are by definition directed, simple (with-

out multiple edges), loopless and without transi-

17

tivity edges. Usually H has no directed cycles and

has a greatest element, denoted by w. Therefore,

to such a graph one may associate a strict order

relation <H (or simply < when non ambiguous)

defined as follows: for 2, y E X, 2 < y if and only

if there is a path from z to y in H. In OOP ter-

minology, z (resp. y) is said to be a .subcIass (resp.

superclass) of y (resp. z). When xy E U, y is said

to be a direct superclass of x (resp. z is a direct

subclass of y).

The inheritance hierarchy of a class 1~ E H, de-

noted by H,, is the subgraph of H induced by z

and its superclasses. For our study, we are only

concerned by hierarchies.

A linear e&en&on or topological sorting of H =

(X, U), is a total ordering of its vertices r such

that z <H y =+ x <7 y. For commodity r is also

considered as a permutation (word of length 1x1)

on X.

A linearization is a mapping L which associates

with every inheritance graph H = (X, U), a linear

extension of < denoted by L(H).

3 Sound conflict resolution me-
chanisms

In our model, a multiple inheritance mechanism is

a mapping M, which associates to a class 2 of an

inheritance graph H, and a property P, a class

y E Hz which possesses P. Let us denote this

class by M(z, H, P) (or simply M(z, P) when non

ambiguous). Therefore z inherits from M(z, P) the

value of property P. Of course if P is refined in 2,

then M(z, P) = x.

Uniformity principle: The mechanism

is said to be uniform when, for all classes

x and for all properties P and Q -P and

Q being defined on the same set of classes,

Wx, P> = Wx, 9).

In other words, the inheritance mechanism is u-

niform if it is independent of the semantics of the

property.

Let us denote by CS(s, P) (for conflict set) the

set of minimal classes in H, which possesses P.

Conflicts appear when]CS(x, P)(> 1. Conflict
resolution mechanisms must choose one superclass

as an answer. Generalization of the masking prop-

erty defined in section 1 for simple inheritance is:

Masking principle: For every z and ev-

ery property P, M(x, P) E CS(x, P).

In other words, the P value inherited by x has

to be chosen from the most specialized occurrences

of P in superclasses of 2. More sophisticated ways

of computing the inherited value can be based on

this concept. They are typically processed by com-

bining several values of the conflict set, taking the

infimum or the supremum in a lattice, or others

techniques (for a description see [9]). We do not

consider these extensions here.

Let us now introduce new principles, monotonic-

ity and stability, which we consider must be fol-

lowed by every reasonnable inheritance mechanis-

m. Moreover they are generalizations of previous

observations: [12], [5] and [l].

3.1 Monotonicity-Incrementality

A good conflict resolution mechanism M must sup-

port abstraction or incrementality. In other words,

for any property P and for any class x inheriting

P, the value of P for z must be one of the P val-

ues inherited or defined by a direct superclass of x.

Thus the user can easily add new classes as spe-

cializations of previously defined ones, by simply

checking the behavior of direct superclasses. This

allows incremental conception.

In our formalism this gives:

Monotonicity-Incrementality princi-

ple

For every inheritance graph H and for ev-

ery property P defined in H, for every

x E X, either M(z, P) = x or there is

at least one direct superclass y of z, such

that 44(x, P) = M(y, P).

18

f

d

b

a

l-l P= ?

Assume that M(b, P) = M(c,P) = f. In f

the P value is cr. Let us imagine the surprise

of the programmer when adding a, he discov-

ers that the P value of a is /3. This may occur

with linearization techniques (see Figure 4).

Figure 1: Non Incrementality

3.2 Stability under arc subdivision

In many cases when developing an application, one

notices that some class z has properties which are

general enough to be pushed up in the hierarchy

and have to be separated from 2. These proper-

ties can thus be reused by classes which are not

necessarily specializations of 2. Such an opera-

tion might simply locally modify the inheritance.

In graph terms, such an operation is called an arc

subdivision, since we can understand it as follows:

an extra class CE - y has been added on the arc from

CE to y. From this we obtain:

Stability principle

For every inheritance graph H = (X, U),

for every link zy E U, if H,, denotes the

graph obtained from H by subdividing

the arc sy, then:

for every z E X and every property P,

if M(z, H, P) # z then M(z, Hzy, P) =

M(z, H, P), otherwise M(z, Hzy, P) E

{x, z - y} (depending on the definition of

x - 51).

4 Specific case of linearization

A linearization yields a natural conflict resolution

mechanism. Since it totally orders the ancestors of

a class 2 in H, we can apply the simple inheritance

mechanism (for inheriting P, take the first class in

H, where P is defined along this order). For a

class 2 and a property P, let us denote this class

by Lb, H, P).
A linearization is obviously uniform and respects

masking principle. It is not hard to be convinced

that the following property ensures the respect of

the above incrementality/monotonicity principle.

Monotonic linearization

For every inheritance graph H = (X, U)

and for every s,y E X such that x < y,

then L(H,) is a subword of L(H,).

This property can be understood as being a

monotonic behavior of the mapping L among in-

heritance subgraphs: x < y + H, c H, + L(H,)

subword of L(HY) and ‘to be a subword’ is a partial

order.

An alternative way of defining a monotonic be-

havior is related to the possibility of incrementally

building L(H,) f rom linear extensions of x direct

superclasses. Let x r...zp be the direct superclass-

es of x. Then L(H,) can be obtained by merging

L(&,) . . . L(Hz,).
Similarly, our stability principle becomes in the

specific case of linearizations:

Stable linearization

For every inheritance graph H = (X, U),

for every link xy E U, then L(H) is a

subword of L(H,,).

Let us now examine in full details some available

linearizations.

5 Known linearization techni-
ques

All systems, for their inheritance mechanisms, ben-

efit from the local ordering yielded by the list of the

19

direct superclasses of a class (called local prece-

dence order in CLOS, or multiplicity in Y3). In

order to formalize this idea, we define a representa-

tion of an inheritance graph together with its pre-

decessor ordering, i.e. R(H) = (X, U, pred) with

H = (X, U) and pred c U x U, a total order on

the edges with same origin. See Figure 2.

----o pred

(local precedence order) j

h

a

MLOOPS = &LOS = (abcdefgh$

Figure 2: Representation of an inheritance graph

We define predx c X x X a natural extension

of pred: if (~y,zz) E pred, then (y, Z) E predx.

pred also provides an order, denoted by pred*, on

the paths leaving a single class. Let (Y = (Pzz;...~)

and ,0 = (Pzzj...a) be two paths having a common

prefix (PX). CY <pred+ p if xx; <pr& XXj. p is

also said to be righter than cr, with reference to

the natural drawing of R(H), edges being drawn

from left to right in an increasing order of pred.

In the following, we assume that predx has no

cycle and the respect of U and predx is not con-

tradictory. A linear extension for R(H) is a linear

extension of H which is compatible with pred or-

der. A linearization of R(H) is a mapping L which

associates, for every R(H) = (X, U,pred), a linear

extension of R(H) denoted by L(R(H)). A lin-

earization must at least produce same results on

isomorphic representations, i.e. satisfy the follow-

ing property: if there is an isomorphism 8 from

RI = (Xl,U~,predl) onto & = (X2, U2,pr&),

then for every x E Xr, for every a, b E X1, then

(u <L(&) b) if and only if B(u) <L(R~) O(b).

6 The behavior of most popular
linearizat ions

We have extracted two algorithms out of the sys-

tems LOOPS, Y3 and CLOS. Rather than provid-

ing their official definitions, we propose equivalent

definitions which enable easier comparisons of their

features. Both algorithms have a linear time com-

plexity in the size of the examinated subgraph.

6.1 LOOPS-Y3 algorithm

Thelinearization algorithm of LOOPS [19], and the

historical basis of the algorithm of Y3 [7], [9] have

been defined independently but produce the same

result. Let us call this mechanism M~oops.

M~oops builds a linear extension of HZ, for

some 5, as follows: successively choose a HZ-

minimal object among the remaining objects. A

HZ-minimal object is an object whose all subclass-

es in H, have been taken. When several objects

are available, take a HZ-minimal direct superclass

of the object the most recently taken which pos-

sesses such a superclass (i.e. backtrack as less as

possible). If this object has several HZ-minimal su-

perclasses, take the first HE-minimal superclass in

pTedx order.

In figure 2, M~oops(H~) = (ubcdefghij).

One can find other definitions of M~oops in [9].

6.2 CLOS Algorithm

The following definition of MCLOS is equivalent to

the official one [a].

MCLOS builds a linear extension of R(H,) as fol-

lows: successively choose a R(H,)-minimal object

among the remaining objects. A R(H,)-minimal

object is an object whose all subclasses in H,

and all predecessors by predx have been taken.

When several objects are available, take the R(Hz)-

minimal direct superclass of the object the most re-

cently taken which possesses such a superclass (i.e.

backtrack as less as possible).

In Figure 2, MCLOS behaves as M~oops, but it

is not true in general.

20

6.3 The behavior of MLoop~ and Mc~0.q

u b
-------)

a

M~oo~s(Ha) = (a (~1 b (~2 a~)

Figure 3: M~oops does not respect predx

M~oops is always stable. It may be non mono-

tonic, and furthermore it may contradict the order

given by predx -see Figure 3.
7 Main results

In general, MCLOS is non monotonic, and non 7.1 MLOOPS and MCLOS are equivalent
stable -see Figure 4. for almost all inheritance graphs

P= a P= p

n

P= ?

d-y

-------* c
v

u

P= ?

Figure 4: Bad behaviour of M~oops and

&LOS

Figure 4 -up- M~oops(H~) = (abecdf)

M~Los(H,) = (abcdfe). MLOOPS is not

monotonic: it does not respect predx between

d and e. MCLOS is monotonic but not sta-

ble (See next Figure 4 -bottom-). Its be-

haviour is surprising: it puts f before e and

so a inherits P with value /3.

Figure 4 -bottom- (obtained from Figure

4 -up- by subdivision of the edge bd) Now,

MLOOPS(H,) = McLos(H,) = (abxecdf).
MCLOS is not monotonic. a inherits P from

e. b and c both inherit P with value a but a

inherits P with value ,B!

After these basic remarks on M~oops and

MCLOS, let us establish some results concerning

their relationships and their connections with a

new total relation.

One can summarize the behavior of these algo-

rithms in the following way. M,r~oops is a depth-

first linearization which respects pred when possi-

ble. Symmetrically, Mc~0.y is a linearization that

respects pred which is depth-first when possible.

The next result is thus not surprising.

Result 1 [ll] - M~oops and Mc~os

produce the same result if and only if

M~oops respects pred.

When M~oops is monotonic then it respects

pred. An immediate consequence is: if M~oops

is monotonic, so is MCLOS.

7.2 A new total relation

Consider a class a and let b and c be two super-

classes of a. If b and c are comparable by the in-

heritance relation, then there is a unique way of

ordering them in L(H,). If they have a common

direct subclass, say a’, then there is also a unique

way of ordering them in L(H,) according to the

relation pred on a’b and a’c. Otherwise there is no

a priori order.

Let us advance two principles:

21

l The relation between two incomparable class-

es is provided by their maximal common sub-

classes -a common subclass of b and c, say
a’, is maximal if no superclass of u’ is also a

common subclass of b and c.

l The relation between two incomparable classes

is an extension of predx. Intuitively, if there

is a path from a to b righter than a path from

a to c, then b has to precede c in L(H,).

Combining these ideas, we define an extended or-

dering, say <e, as follows:

Definition

Given two classes x and y, 2 <e y if

there are two paths a = (zz~...z) and

P = (ZYl...Y) such that ~51 <pr.& zyl,

with z is a maximal common subclass of

x and y.

Let us note that if zx <pred zy, then x <e y. In

general, <e may contain cycles, because the paths

may be shuffled. A fortiori, the union of R(H) and

< which we denote R(H)U <e, may be contra-

diI\or y.

If R(H)U <e is acyclic, then it totally orders the

objects: indeed, given two objects, they are either

comparable by R(H); or they are comparable by <e

because they possess at least one common subclass.

Furthermore, assuming that R(H)U <= is acyclic,

every linearization algorithm computing R(H)U <e

is monotonic.

Result 2 [II]-

If R(fl)U <e is acyclic, then M~oops and

MCLOS compute exactly R(H)U <e; they

are monotonic.

7.3 Conditions for A4Loops and hlc~os to
be monotonic

We now focus on precisely characterizing the mono-

tonicity and stability of M~oops and 44~~0s. Let

us first consider M~oops. When computing the

order L(H,), M LOOPS does not take into accoun-

t all paths from a to b and c; the decisive paths

are the Tightest paths from a to b and from a to c

respectively. This leads us to define the following

restriction of <e, say <r (T for right).

Definition

Given two classes x and y, x <r y if there

is z as a maximal common subclass of x

and y, such that: let cy = (zx:~...x) be the

rightest (greatest for <pr,&) path from z

to X; let ,f3 = (tgl...y) be the rightest path

from z to y; then ~51 <pred zyl.

Definition

A linearization L is *stable for R(H) if

there is no sequence R(H) = (RoRl...R,)

-where each R;+l is obtained from R;

by an edge subdivision- such that L is

not stable for R,. In other words, there

is no representation R,+I obtained from

R(H) by a sequence of edge subdivisions

such that L(R(H)) is not a subword of

W,+d.

Result 3 [16]-

(i) M~oops is monotonic if and only if

R(H)U <r is without cycles.

(ii) 44~~0s is monotonic and *stable if

and only if R(H)U <r is without cycles.

Of course, cr does not have a semantic justifi-

cation. Instead, the user bases his analysis on the

leftest (first) paths from a to b and c. This might

define a new relation we denote by <I. <e is in a

way the conciliation of <I, corresponding to the in-

tuition, and cr, explaining the behavior of known

algorithms.

8 Conclusion

Figure 5 captures most of our results concerning

existing algorithms. We have shown that they dif-

fer only on a very particular class of graphs.

Out of this study the notion of monotonicity

brings new ideas to build incremental algorithms.

The main issue we are now considering is to define

22

MLoops respects pred

is monotonic and *stable

Figure 5: Summarizing our results

an algorithm computing a monotonic linearization

when possible, and as compatible with MCLOS as

possible. Experimental results on existing hierar-

chies have shown that the non-monotonicity cases

are fortunatly not frequent and therefore in these

cases the system could automatically direct the us-

er toward good or better pred orders, if any exists.

References

[l] H. G. Baker. CLOStrophobia : Its Etiology

and Treatment. OOPS Messenger, 2(4), 1991.

[2] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,

S. E. Keene, G. Kiczales, and D. A. Moon.

Common Lisp Object System Specification

X3J13 document 8%002R. Sigplan Notices,

23, 1988.

[3] D. G. Bobrow, K. Kahn, G. Kiczales, L. Mas-

inter, M. Stefik, and F. Zdybel. Com-

monLoops : Merging Lisp and Object-

Oriented Programming. OOPSLA ‘86 Proceed-

ings, 1986.

[4] A. H. Borning and D. H. Ingalls. Multiple In-

heritance in Smalltalk 80. AAI’82 Proceedings,

1982.

[5] H. Brettauer, T. Christaller, and J. Kopp.

Multiple versus Single Inheritance in Objec-

t Oriented Programming. Arbeistpapiere der

GMD 415, 1989.

[6] B. Carre and J. Geib. The Point of

View notion for Multiple Inheritance. E-

COOP/OOPSLA ‘90 Proceedings, 1990.

[7] R. D ucournau. Y3, version 3. Sema Group,

1988.

[8] R. Ducournau and M. Habib. On some Algo-

rithms for Multiple Inheritance in Object Ori-

ented Programming. ECOOP’87 Proceedings,

1987.

[9] R. Ducournau and M. Habib. Masking and

Conflicts or To Inherit Is Not To Own! In

M. Lenzerini, D. Nardi, and M. Simi, editors,

Inheritance Hierarchies in Knowledge Repre-

sentation and Programming Languages, pages

223-244. John Wiley and Sons Ldt, Chich-

ester, West Sussex, 1991.

[lo] P. Dugerdil. Contribution ci l’e’tude de la

repksentution des connaissances fond&es sur

les objets. Le langage OBJLOG. PhD thesis,

Universite d’Aix-Marseille II, 1988.

[ll] M. Huchard. Sur quelques questions algorith-

miques de l’he’ritage multiple. PhD thesis, U-

niversite Montpellier II, 1992.

[12] M. Huchard, ML. Mugnier, M. Habib, and

R. Ducournau. Towards a Unique Multiple

Inheritance Linearization. EurOOp’e 91 Pro-

ceedings, 1991.

[13] J. L. Knudsen. Name Collision in Multiple

Inheritance Hierarchies. ECOOP’88 Proceed-

ings, 1988.

[14] B. Meyer. Object-oriented Software Construc-

tion. Prentice Hall, 1988.

[15] D. A. Moon. Object-Oriented Programming

with Flavors. OOPSLA ‘86 Proceedings, 1986.

[16] ML. Mugnier. PhD thesis, Universite Mont-

pellier II, to appear, October 1992.

[17] C. Schaffert, T. Cooper, B. Bullis, M. Kil-

lian, and C. Wilport. An introduction to Trel-

lis/Owl. OOPSLA ‘86 Proceedings, 1986.
/%

23

[18] A. Snyder. Encapsulation and Inheritance

in Object-Oriented Programming Languages.

OOPSLA ‘86 Proceedings, 1986.

[19] M. Stefik and D. G. Bobrow. Object-Oriented

Programming: Themes and Variations. The

AI Magazine, 6(4), 1986.

[20] B. Stroustrup. Multiple Inheritance for C-l-+.

EUUG Spring Conference Proceedings, 1987.

[21] P. Wegner. Concepts and Paradigms of

Object-Oriented Programming. OOPS Mes-

senger, l(l), 1990.

[22] P. H. Winston. Artificial Intelligence.

Addison-Wesley, 1977.

24

