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Abstract 

The main topic of this paper is multiple inheritance 
and conflict resolution methods in Object Orient- 
ed Programming. Our aim is to develop sound 
mechanisms easily understandable to any user. For 
this purpose, coherent behaviors of conflict reso- 
lution methods for multiple inheritance (such as 
supporting incrementality-monotonicity and sta- 
bility under link subdivision) are introduced. We 
present interesting examples in which multiple in- 
heritance known linearization algorithms (such as 
in CLOS [2] and LOOPS [19]) behave badly. Then 
we carefully study the conditions (on the inheri- 
tance graph) which assure good linearizations. We 
end with some suggestions for an incremental in- 
heritance algorithm. 

1 Introduction 

1.1 Inheritance in object oriented sys- 
tems 

Inheritance is among the most interesting concepts 
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of object oriented systems. However, it is an impor- 

tant motive for divergence. In this paper we adopt 

the general definition of inheritance as a specializa- 

tion relation close to subtyping. Similarly, we use 

the general term “property” of an object, which 

may be a method, a datum, or both, depending on 

what specific language one refers to. Let us spec- 

ify that our experience is essentially based on the 

hybrid language Y3 [7] and on object oriented sys- 

tems based upon Lisp. 

An inheritance strategy deals with answering the 

question: given a class x and a property P, what 

does z inherit concerning P? 

One refers to simple inheritance when a class in- 

herits directly from one class and multiple inheri- 
tance when a class may inherit directly from several 

classes. 

When inheritance is simple, so is the strategy. 

The following masking rule applies: when a prop- 

erty P is defined in a class x and refined in a sub- 

class of 2, say y, then the value of P in y hides -or 

masks- the value of P in 2, for y and its subclass- 

es. Consequently, the P value for some x inheriting 

P is provided by the most specific superclass of x 

defining P. 

With multiple inheritance, given a class z which 

inherits a property P, several superclasses of x 

may be in conflict when defining P. One has to 
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choose between them. In addition, there can be 

clarity problems of the inheritance mechanism or 

even intelligibility. These stumbling blocks have 

led some people to exclude multiple inheritance [5]. 

However, there are strong arguments in its favour: 

modelisation closer to represented objects or better 

sharing of code [21], [19]. Besides, multiple inher- 

itance is a feature offered by most object oriented 

systems. 

1.2 Conflicts solving 

We distinguish between two kinds of conflicts: con- 

flicts with different values of the same property, 

called value conflicts, and conflicts between two dis- 

tinct properties with the same name, called name 

conflicts [ll]. In this paper, we are concerned with 

value conflicts. Indeed, we consider name conflict- 

s to be software accidents which cannot be solved 

specifically by the inheritance mechanism. 

The ways of solving conflicts differ with respect 

to several parameters. Examples given, the mo- 

ment of the conflict resolution -at compile or run 

time- the kind of answer given to the user, the 

number of inherited occurrences [13]... However, s- 

trategies are divided into two main classes, depend- 

ing on whether they request an interaction with 

the user or not. The first class includes explic- 

it designation (C-+-t [20], extended Smalltalk [4], 

Trellis/Owl [17]), renaming (Eiffel [ 141)) exclusion 

(CommonObjects [IS]), point of views (Objlog [lo], 

Rome [S]). The only representatives of the second 

cla.ss are the linearization techniques. 

1.3 Linearization techniques 

The linearization techniques are mainly used for 

inheritance in object oriented languages based up- 

on LISP -Old and NewFlavors [19], [15], Com- 

monLOOPS [3], CLOS [2], Y3 [8], [7], [9], LOOPS 

[19]. They are also used in frame languages for 

reading and writing mechanisms with reflexes [22]. 

Their main advantage is the run-time conflict solv- 

ing without human intervention. This specifical- 

ly allows dynamic creation/destruction of objects. 

This technique appears to be a good default mech- 

anism, used when no precise information on the ob- 

ject and its properties are available. Besides, in the 

above systems it is the basis of more sophisticated 

techniques. For instance, the numerous modes of 

method combination in Flavors [15]. 

On the other hand, the linearization algorithms 

are reproached for being non intuitive [5], [l]. Their 

implicit priority rules are indeed a cause of difficul- 

ties for the programmer to understand. Our work 

focusses on this stumbling block. We base it on the 

concept of monotonicity, previously introduced in 

[12], which corresponds to incremental computing 

of a linearization. 

1.4 Outline of the paper 

The paper is organized as follows: 

Section 2 specifies the basic notations on inher- 

itance graphs. Section 3 defines what a sound 

conflict resolution mechanism should be. We 

introduce the principles of uniformity, masking, 

monotonicity-incrementality and stability. In sec- 

tion 4, we restrict previous principles to the specific 

case of linearization. In section 5 and 6, we describe 

the linearization techniques, and particularly two 

linearization algorithms that we think are repre- 

sentative of their family, namely: LOOPS-Y3 and 

CLOS algorithms. We study their behavior with 

respect to the above criteria. Section 7 is devot- 

ed to our main results. We formalize an intuitive 

inheritance relation and prove that it is computed 

by the LOOPS-Y 3 and CLOS algorithms on a very 

large class of graphs. On these graphs both algo- 

rithms are monotonic and stable. Furthermore, we 

actually characterize graphs on which the LOOPS- 

Y3 and CLOS algorithms are monotonic and sta- 

ble. 

2 Basic definitions and lineari- 
zat ions 

The inheritance graphs we consider H = (X, U) 

with X being the classes and U being the inheri- 

tance links, are by definition directed, simple (with- 

out multiple edges), loopless and without transi- 
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tivity edges. Usually H has no directed cycles and 

has a greatest element, denoted by w. Therefore, 

to such a graph one may associate a strict order 

relation <H (or simply < when non ambiguous) 

defined as follows: for 2, y E X, 2 < y if and only 

if there is a path from z to y in H. In OOP ter- 

minology, z (resp. y) is said to be a .subcIass (resp. 

superclass) of y (resp. z). When xy E U, y is said 

to be a direct superclass of x (resp. z is a direct 

subclass of y). 

The inheritance hierarchy of a class 1~ E H, de- 

noted by H,, is the subgraph of H induced by z 

and its superclasses. For our study, we are only 

concerned by hierarchies. 

A linear e&en&on or topological sorting of H = 

(X, U), is a total ordering of its vertices r such 

that z <H y =+ x <7 y. For commodity r is also 

considered as a permutation (word of length 1x1 ) 

on X. 

A linearization is a mapping L which associates 

with every inheritance graph H = (X, U), a linear 

extension of < denoted by L(H). 

3 Sound conflict resolution me- 
chanisms 

In our model, a multiple inheritance mechanism is 

a mapping M, which associates to a class 2 of an 

inheritance graph H, and a property P, a class 

y E Hz which possesses P. Let us denote this 

class by M(z, H, P) ( or simply M(z, P) when non 

ambiguous). Therefore z inherits from M(z, P) the 

value of property P. Of course if P is refined in 2, 

then M(z, P) = x. 

Uniformity principle: The mechanism 

is said to be uniform when, for all classes 

x and for all properties P and Q -P and 

Q being defined on the same set of classes, 

Wx, P> = Wx, 9). 

In other words, the inheritance mechanism is u- 

niform if it is independent of the semantics of the 

property. 

Let us denote by CS(s, P) (for conflict set) the 

set of minimal classes in H, which possesses P. 

Conflicts appear when ]CS(x, P)( > 1. Conflict 
resolution mechanisms must choose one superclass 

as an answer. Generalization of the masking prop- 

erty defined in section 1 for simple inheritance is: 

Masking principle: For every z and ev- 

ery property P, M(x, P) E CS(x, P). 

In other words, the P value inherited by x has 

to be chosen from the most specialized occurrences 

of P in superclasses of 2. More sophisticated ways 

of computing the inherited value can be based on 

this concept. They are typically processed by com- 

bining several values of the conflict set, taking the 

infimum or the supremum in a lattice, or others 

techniques (for a description see [9]). We do not 

consider these extensions here. 

Let us now introduce new principles, monotonic- 

ity and stability, which we consider must be fol- 

lowed by every reasonnable inheritance mechanis- 

m. Moreover they are generalizations of previous 

observations: [12], [5] and [l]. 

3.1 Monotonicity-Incrementality 

A good conflict resolution mechanism M must sup- 

port abstraction or incrementality. In other words, 

for any property P and for any class x inheriting 

P, the value of P for z must be one of the P val- 

ues inherited or defined by a direct superclass of x. 

Thus the user can easily add new classes as spe- 

cializations of previously defined ones, by simply 

checking the behavior of direct superclasses. This 

allows incremental conception. 

In our formalism this gives: 

Monotonicity-Incrementality princi- 

ple 

For every inheritance graph H and for ev- 

ery property P defined in H, for every 

x E X, either M(z, P) = x or there is 

at least one direct superclass y of z, such 

that 44(x, P) = M(y, P). 
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d 

b 

a 

l-l P= ? 

Assume that M(b, P) = M(c,P) = f. In f 

the P value is cr. Let us imagine the surprise 

of the programmer when adding a, he discov- 

ers that the P value of a is /3. This may occur 

with linearization techniques (see Figure 4). 

Figure 1: Non Incrementality 

3.2 Stability under arc subdivision 

In many cases when developing an application, one 

notices that some class z has properties which are 

general enough to be pushed up in the hierarchy 

and have to be separated from 2. These proper- 

ties can thus be reused by classes which are not 

necessarily specializations of 2. Such an opera- 

tion might simply locally modify the inheritance. 

In graph terms, such an operation is called an arc 

subdivision, since we can understand it as follows: 

an extra class CE - y has been added on the arc from 

CE to y. From this we obtain: 

Stability principle 

For every inheritance graph H = (X, U), 

for every link zy E U, if H,, denotes the 

graph obtained from H by subdividing 

the arc sy, then: 

for every z E X and every property P, 

if M(z, H, P) # z then M(z, Hzy, P) = 

M(z, H, P), otherwise M(z, Hzy, P) E 

{x, z - y} (depending on the definition of 

x - 51). 

4 Specific case of linearization 

A linearization yields a natural conflict resolution 

mechanism. Since it totally orders the ancestors of 

a class 2 in H, we can apply the simple inheritance 

mechanism (for inheriting P, take the first class in 

H, where P is defined along this order). For a 

class 2 and a property P, let us denote this class 

by Lb, H, P). 
A linearization is obviously uniform and respects 

masking principle. It is not hard to be convinced 

that the following property ensures the respect of 

the above incrementality/monotonicity principle. 

Monotonic linearization 

For every inheritance graph H = (X, U) 

and for every s,y E X such that x < y, 

then L(H,) is a subword of L(H,). 

This property can be understood as being a 

monotonic behavior of the mapping L among in- 

heritance subgraphs: x < y + H, c H, + L(H,) 

subword of L( HY) and ‘to be a subword’ is a partial 

order. 

An alternative way of defining a monotonic be- 

havior is related to the possibility of incrementally 

building L(H,) f rom linear extensions of x direct 

superclasses. Let x r...zp be the direct superclass- 

es of x. Then L(H,) can be obtained by merging 

L(&,) . . . L(Hz,). 
Similarly, our stability principle becomes in the 

specific case of linearizations: 

Stable linearization 

For every inheritance graph H = (X, U), 

for every link xy E U, then L(H) is a 

subword of L(H,,). 

Let us now examine in full details some available 

linearizations. 

5 Known linearization techni- 
ques 

All systems, for their inheritance mechanisms, ben- 

efit from the local ordering yielded by the list of the 
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direct superclasses of a class (called local prece- 

dence order in CLOS, or multiplicity in Y3). In 

order to formalize this idea, we define a representa- 

tion of an inheritance graph together with its pre- 

decessor ordering, i.e. R(H) = (X, U, pred) with 

H = (X, U) and pred c U x U, a total order on 

the edges with same origin. See Figure 2. 

----o pred 

(local precedence order) j 

h 

a 

MLOOPS = &LOS = (abcdefgh$ 

Figure 2: Representation of an inheritance graph 

We define predx c X x X a natural extension 

of pred: if (~y,zz) E pred, then (y, Z) E predx. 

pred also provides an order, denoted by pred*, on 

the paths leaving a single class. Let (Y = (Pzz;...~) 

and ,0 = (Pzzj...a) be two paths having a common 

prefix (PX). CY <pred+ p if xx; <pr& XXj. p is 

also said to be righter than cr, with reference to 

the natural drawing of R(H), edges being drawn 

from left to right in an increasing order of pred. 

In the following, we assume that predx has no 

cycle and the respect of U and predx is not con- 

tradictory. A linear extension for R(H) is a linear 

extension of H which is compatible with pred or- 

der. A linearization of R(H) is a mapping L which 

associates, for every R(H) = (X, U,pred), a linear 

extension of R(H) denoted by L(R(H)). A lin- 

earization must at least produce same results on 

isomorphic representations, i.e. satisfy the follow- 

ing property: if there is an isomorphism 8 from 

RI = (Xl,U~,predl) onto & = (X2, U2,pr&), 

then for every x E Xr, for every a, b E X1, then 

(u <L(&) b) if and only if B(u) <L(R~) O(b). 

6 The behavior of most popular 
linearizat ions 

We have extracted two algorithms out of the sys- 

tems LOOPS, Y3 and CLOS. Rather than provid- 

ing their official definitions, we propose equivalent 

definitions which enable easier comparisons of their 

features. Both algorithms have a linear time com- 

plexity in the size of the examinated subgraph. 

6.1 LOOPS-Y3 algorithm 

Thelinearization algorithm of LOOPS [19], and the 

historical basis of the algorithm of Y3 [7], [9] have 

been defined independently but produce the same 

result. Let us call this mechanism M~oops. 

M~oops builds a linear extension of HZ, for 

some 5, as follows: successively choose a HZ- 

minimal object among the remaining objects. A 

HZ-minimal object is an object whose all subclass- 

es in H, have been taken. When several objects 

are available, take a HZ-minimal direct superclass 

of the object the most recently taken which pos- 

sesses such a superclass (i.e. backtrack as less as 

possible). If this object has several HZ-minimal su- 

perclasses, take the first HE-minimal superclass in 

pTedx order. 

In figure 2, M~oops(H~) = (ubcdefghij). 

One can find other definitions of M~oops in [9]. 

6.2 CLOS Algorithm 

The following definition of MCLOS is equivalent to 

the official one [a]. 

MCLOS builds a linear extension of R(H,) as fol- 

lows: successively choose a R(H,)-minimal object 

among the remaining objects. A R(H,)-minimal 

object is an object whose all subclasses in H, 

and all predecessors by predx have been taken. 

When several objects are available, take the R(Hz)- 

minimal direct superclass of the object the most re- 

cently taken which possesses such a superclass (i.e. 

backtrack as less as possible). 

In Figure 2, MCLOS behaves as M~oops, but it 

is not true in general. 
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6.3 The behavior of MLoop~ and Mc~0.q 

u b 
-------) 

a 

M~oo~s(Ha) = (a (~1 b (~2 a~) 

Figure 3: M~oops does not respect predx 

M~oops is always stable. It may be non mono- 

tonic, and furthermore it may contradict the order 

given by predx -see Figure 3. 
7 Main results 

In general, MCLOS is non monotonic, and non 7.1 MLOOPS and MCLOS are equivalent 
stable -see Figure 4. for almost all inheritance graphs 

P= a P= p 

n 

P= ? 

d-y 

-------* c 
v 

u 

P= ? 

Figure 4: Bad behaviour of M~oops and 

&LOS 

Figure 4 -up- M~oops(H~) = (abecdf) 

M~Los(H,) = (abcdfe). MLOOPS is not 

monotonic: it does not respect predx between 

d and e. MCLOS is monotonic but not sta- 

ble (See next Figure 4 -bottom-). Its be- 

haviour is surprising: it puts f before e and 

so a inherits P with value /3. 

Figure 4 -bottom- (obtained from Figure 

4 -up- by subdivision of the edge bd) Now, 

MLOOPS(H,) = McLos(H,) = (abxecdf). 
MCLOS is not monotonic. a inherits P from 

e. b and c both inherit P with value a but a 

inherits P with value ,B! 

After these basic remarks on M~oops and 

MCLOS, let us establish some results concerning 

their relationships and their connections with a 

new total relation. 

One can summarize the behavior of these algo- 

rithms in the following way. M,r~oops is a depth- 

first linearization which respects pred when possi- 

ble. Symmetrically, Mc~0.y is a linearization that 

respects pred which is depth-first when possible. 

The next result is thus not surprising. 

Result 1 [ll] - M~oops and Mc~os 

produce the same result if and only if 

M~oops respects pred. 

When M~oops is monotonic then it respects 

pred. An immediate consequence is: if M~oops 

is monotonic, so is MCLOS. 

7.2 A new total relation 

Consider a class a and let b and c be two super- 

classes of a. If b and c are comparable by the in- 

heritance relation, then there is a unique way of 

ordering them in L(H,). If they have a common 

direct subclass, say a’, then there is also a unique 

way of ordering them in L(H,) according to the 

relation pred on a’b and a’c. Otherwise there is no 

a priori order. 

Let us advance two principles: 
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l The relation between two incomparable class- 

es is provided by their maximal common sub- 

classes -a common subclass of b and c, say 
a’, is maximal if no superclass of u’ is also a 

common subclass of b and c. 

l The relation between two incomparable classes 

is an extension of predx. Intuitively, if there 

is a path from a to b righter than a path from 

a to c, then b has to precede c in L(H,). 

Combining these ideas, we define an extended or- 

dering, say <e, as follows: 

Definition 

Given two classes x and y, 2 <e y if 

there are two paths a = (zz~...z) and 

P = (ZYl...Y) such that ~51 <pr.& zyl, 

with z is a maximal common subclass of 

x and y. 

Let us note that if zx <pred zy, then x <e y. In 

general, <e may contain cycles, because the paths 

may be shuffled. A fortiori, the union of R(H) and 

< which we denote R(H)U <e, may be contra- 

diI\or y. 

If R(H)U <e is acyclic, then it totally orders the 

objects: indeed, given two objects, they are either 

comparable by R(H); or they are comparable by <e 

because they possess at least one common subclass. 

Furthermore, assuming that R(H)U <= is acyclic, 

every linearization algorithm computing R(H)U <e 

is monotonic. 

Result 2 [II]- 

If R(fl)U <e is acyclic, then M~oops and 

MCLOS compute exactly R(H)U <e; they 

are monotonic. 

7.3 Conditions for A4Loops and hlc~os to 
be monotonic 

We now focus on precisely characterizing the mono- 

tonicity and stability of M~oops and 44~~0s. Let 

us first consider M~oops. When computing the 

order L(H,), M LOOPS does not take into accoun- 

t all paths from a to b and c; the decisive paths 

are the Tightest paths from a to b and from a to c 

respectively. This leads us to define the following 

restriction of <e, say <r (T for right). 

Definition 

Given two classes x and y, x <r y if there 

is z as a maximal common subclass of x 

and y, such that: let cy = (zx:~...x) be the 

rightest (greatest for <pr,&) path from z 

to X; let ,f3 = (tgl...y) be the rightest path 

from z to y; then ~51 <pred zyl. 

Definition 

A linearization L is *stable for R(H) if 

there is no sequence R(H) = (RoRl...R,) 

-where each R;+l is obtained from R; 

by an edge subdivision- such that L is 

not stable for R,. In other words, there 

is no representation R,+I obtained from 

R(H) by a sequence of edge subdivisions 

such that L(R(H)) is not a subword of 

W,+d. 

Result 3 [16]- 

(i) M~oops is monotonic if and only if 

R(H)U <r is without cycles. 

(ii) 44~~0s is monotonic and *stable if 

and only if R(H)U <r is without cycles. 

Of course, cr does not have a semantic justifi- 

cation. Instead, the user bases his analysis on the 

leftest (first) paths from a to b and c. This might 

define a new relation we denote by <I. <e is in a 

way the conciliation of <I, corresponding to the in- 

tuition, and cr, explaining the behavior of known 

algorithms. 

8 Conclusion 

Figure 5 captures most of our results concerning 

existing algorithms. We have shown that they dif- 

fer only on a very particular class of graphs. 

Out of this study the notion of monotonicity 

brings new ideas to build incremental algorithms. 

The main issue we are now considering is to define 

22 



MLoops respects pred 

is monotonic and *stable 

Figure 5: Summarizing our results 

an algorithm computing a monotonic linearization 

when possible, and as compatible with MCLOS as 

possible. Experimental results on existing hierar- 

chies have shown that the non-monotonicity cases 

are fortunatly not frequent and therefore in these 

cases the system could automatically direct the us- 

er toward good or better pred orders, if any exists. 
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