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Abstract

Simultaneous machine translation begins to

translate each source sentence before the

source speaker is finished speaking, with ap-

plications to live and streaming scenarios. Si-

multaneous systems must carefully schedule

their reading of the source sentence to bal-

ance quality against latency. We present the

first simultaneous translation system to learn

an adaptive schedule jointly with a neural ma-

chine translation (NMT) model that attends

over all source tokens read thus far. We do so

by introducing Monotonic Infinite Lookback

(MILk) attention, which maintains both a hard,

monotonic attention head to schedule the read-

ing of the source sentence, and a soft attention

head that extends from the monotonic head

back to the beginning of the source. We show

that MILk’s adaptive schedule allows it to ar-

rive at latency-quality trade-offs that are fa-

vorable to those of a recently proposed wait-k
strategy for many latency values.

1 Introduction

Simultaneous machine translation (MT) addresses

the problem of how to begin translating a source

sentence before the source speaker has finished

speaking. This capability is crucial for live or

streaming translation scenarios, such as speech-to-

speech translation, where waiting for one speaker

to complete their sentence before beginning the

translation would introduce an intolerable delay.

In these scenarios, the MT engine must balance

latency against quality: if it acts before the nec-

essary source content arrives, translation quality

degrades; but waiting for too much source con-

tent can introduce unnecessary delays. We refer

to the strategy an MT engine uses to balance read-

ing source tokens against writing target tokens as

its schedule.

∗Equal contributions.

Recent work in simultaneous machine transla-

tion tends to fall into one of two bins:

• The schedule is learned and/or adaptive to the

current context, but assumes a fixed MT sys-

tem trained on complete source sentences, as

typified by wait-if-* (Cho and Esipova, 2016)

and reinforcement learning approaches (Gris-

som II et al., 2014; Gu et al., 2017).

• The schedule is simple and fixed and can thus

be easily integrated into MT training, as typi-

fied by wait-k approaches (Dalvi et al., 2018;

Ma et al., 2018).

Neither scenario is optimal. A fixed schedule may

introduce too much delay for some sentences, and

not enough for others. Meanwhile, a fixed MT sys-

tem that was trained to expect complete sentences

may impose a low ceiling on any adaptive sched-

ule that uses it. Therefore, we propose to train an

adaptive schedule jointly with the underlying neu-

ral machine translation (NMT) system.

Monotonic attention mechanisms (Raffel et al.,

2017; Chiu and Raffel, 2018) are designed for in-

tegrated training in streaming scenarios and pro-

vide our starting point. They encourage streaming

by confining the scope of attention to the most re-

cently read tokens. This restriction, however, may

hamper long-distance reorderings that can occur

in MT. We develop an approach that removes this

limitation while preserving the ability to stream.

We use their hard, monotonic attention head

to determine how much of the source sentence is

available. Before writing each target token, our

learned model advances this head zero or more

times based on the current context, with each ad-

vancement revealing an additional token of the

source sentence. A secondary, soft attention head

can then attend to any source words at or be-

fore that point, resulting in Monotonic Infinite
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Lookback (MILk) attention. This, however, re-

moves the memory constraint that was encourag-

ing the model to stream. To restore streaming be-

haviour, we propose to jointly minimize a latency

loss. The entire system can efficiently be trained

in expectation, as a drop-in replacement for the fa-

miliar soft attention.

Our contributions are as follows:

1. We present MILk attention, which allows us

to build the first simultaneous MT system

to learn an adaptive schedule jointly with an

NMT model that attends over all source to-

kens read thus far.

2. We extend the recently-proposed Average

Lagging latency metric (Ma et al., 2018),

making it differentiable and calculable in ex-

pectation, which allows it to be used as a

training objective.

3. We demonstrate favorable trade-offs to those

of wait-k strategies at many latency values,

and provide evidence that MILk’s advantage

extends from its ability to adapt based on

source content.

2 Background

Much of the earlier work on simultaneous MT

took the form of strategies to chunk the source

sentence into partial segments that can be trans-

lated safely. These segments could be triggered

by prosody (Fügen et al., 2007; Bangalore et al.,

2012) or lexical cues (Rangarajan Sridhar et al.,

2013), or optimized directly for translation qual-

ity (Oda et al., 2014). Segmentation decisions are

surrogates for the core problem, which is decid-

ing whether enough source content has been read

to write the next target word correctly (Grissom II

et al., 2014). However, since doing so involves dis-

crete decisions, learning via back-propagation is

obstructed. Previous work on simultaneous NMT

has thus far side-stepped this problem by making

restrictive simplifications, either on the underlying

NMT model or on the flexibility of the schedule.

Cho and Esipova (2016) apply heuristics mea-

sures to estimate and then threshold the confidence

of an NMT model trained on full sentences to

adapt it at inference time to the streaming scenario.

Several others use reinforcement learning (RL) to

develop an agent to predict read and write deci-

sions (Satija and Pineau, 2016; Gu et al., 2017;

Alinejad et al., 2018). However, due to compu-

tational challenges, they pre-train an NMT model

on full sentences and then train an agent that sees

the fixed NMT model as part of its environment.

Dalvi et al. (2018) and Ma et al. (2018) use fixed

schedules and train their NMT systems accord-

ingly. In particular, Ma et al. (2018) advocate for

a wait-k strategy, wherein the system always waits

for exactly k tokens before beginning to translate,

and then alternates between reading and writing

at a constant pre-specified emission rate. Due to

the deterministic nature of their schedule, they can

easily train the NMT system with the schedule in

place. This can allow the NMT system to learn to

anticipate missing content using its inherent lan-

guage modeling capabilities. On the downside,

with a fixed schedule the model cannot speed up

or slow down appropriately for particular inputs.

Press and Smith (2018) recently developed an

attention-free model that aims to reduce compu-

tational and memory requirements. They achieve

this by maintaining a single running context vec-

tor, and eagerly emitting target tokens based on

it whenever possible. Their method is adaptive

and uses integrated training, but the schedule itself

is trained with external supervision provided by

word alignments, while ours is latent and learned

in service to the MT task.

3 Methods

In sequence-to-sequence modeling, the goal is to

transform an input sequence x = {x1, . . . , x|x|}
into an output sequence y = {y1, . . . , y|y|}. A

sequence-to-sequence model consists of an en-

coder which maps the input sequence to a se-

quence of hidden states and a decoder which con-

ditions on the encoder output and autoregressively

produces the output sequence. In this work, we

consider sequence-to-sequence models where the

encoder and decoder are both recurrent neural net-

works (RNNs) and are updated as follows:

hj = EncoderRNN(xj , hj−1) (1)

si = DecoderRNN(yi−1, si−1, ci) (2)

yi = Output(si, ci) (3)

where hj is the encoder state at input timestep j, si
is the decoder state at output timestep i, and ci is

a context vector. The context vector is computed

based on the encoder hidden states through the

use of an attention mechanism (Bahdanau et al.,
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Figure 1: Simplified diagrams of the attention mechanisms discussed in Sections 3.1 and 3.2. The shading of each

node indicates the amount of attention weight the model assigns to a given encoder state (horizontal axis) at a given

output timestep (vertical axis).

2014). The function Output(·) produces a distri-

bution over output tokens yi given the current state

si and context vector ci. In standard soft attention,

the context vector is computed as follows:

ei,j = Energy(hj , si−1) (4)

αi,j = softmax(ei,:)j :=
exp(ei,j)

∑T
k=1 exp(ei,k)

(5)

ci =

|x|
∑

j=1

αi,jhj (6)

where Energy() is a multi-layer perceptron.

One issue with standard soft attention is that it

computes ci based on the entire input sequence for

all output timesteps; this prevents attention from

being used in streaming settings since the entire

input sequence needs to be ingested before gener-

ating any output. To enable streaming, we require

a schedule in which the output at timestep i is gen-

erated using just the first ti input tokens, where

1 ≤ ti ≤ |x|.

3.1 Monotonic Attention

Raffel et al. (2017) proposed a monotonic atten-

tion mechanism that modifies standard soft at-

tention to provide such a schedule of interleaved

reads and writes, while also integrating training

with the rest of the NMT model. Monotonic at-

tention explicitly processes the input sequence in a

left-to-right order and makes a hard assignment of

ci to one particular encoder state denoted hti . For

output timestep i, the mechanism begins scanning

the encoder states starting at j = ti−1. For each

encoder state, it produces a Bernoulli selection

probability pi,j , which corresponds to the proba-

bility of either stopping and setting ti = j, or else

moving on to the next input timestep, j+1, which

represents reading one more source token. This se-

lection probability is computed through the use of

an energy function that is passed through a logis-

tic sigmoid to parameterize the Bernoulli random

variable:

ei,j = MonotonicEnergy(si−1, hj) (7)

pi,j = σ(ei,j) (8)

zi,j ∼ Bernoulli(pi,j) (9)

If zi,j = 0, j is incremented and these steps are

repeated; if zi,j = 1, ti is set to j and ci is set to

hti .

This approach involves sampling a discrete ran-

dom variable and a hard assignment of ci = hti ,
which precludes backpropagation. Raffel et al.

(2017) instead compute the probability that

ci = hj and use this to compute the expected value

of ci, which can be used as a drop-in replacement

for standard soft attention, and which allows for

training with backpropagation. The probability

that the attention mechanism attends to state hj at

output timestep i is computed as

αi,j = pi,j

(

(1− pi,j−1)
αi,j−1

pi,j−1
+ αi−1,j

)

(10)

There is a solution to this recurrence relation

which allows αi,j to be computed for all j in paral-

lel using cumulative sum and cumulative product

operations; see Raffel et al. (2017) for details.

Note that when pi,j is either 0 or 1, the soft

and hard approaches are the same. To encourage

this, Raffel et al. (2017) use the common approach

of adding zero-mean Gaussian noise to the logis-

tic sigmoid function’s activations. Equation 8 be-

comes:

pi,j = σ (ei,j +N (0, n)) (11)
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One can control the extent to which pi,j is drawn

toward discrete values by adjusting the noise vari-

ance n. At run time, we forgo sampling in favor of

simply setting zi,j = ✶(ei,j > 0).

While the monotonic attention mechanism al-

lows for streaming attention, it requires that the

decoder attend only to a single encoder state,

hti . To address this issue, Chiu and Raffel

(2018) proposed monotonic chunkwise attention

(MoChA), which allows the model to perform

soft attention over a small fixed-length chunk pre-

ceding ti, i.e. over all available encoder states,

hti−cs+1, hti−cs+2, . . . , hti for some fixed chunk

size cs .

3.2 Monotonic Infinite Lookback Attention

In this work, we take MoChA one step further, by

allowing the model to perform soft attention over

the encoder states h1, h2, . . . , hti . This gives the

model “infinite lookback” over the past seen thus

far, so we dub this technique Monotonic Infinite

Lookback (MILk) attention. The infinite lookback

provides more flexibility and should improve the

modeling of long-distance reorderings and depen-

dencies. The increased computational cost, from

linear to quadratic computation, is of little concern

as our focus on the simultaneous scenario means

that out largest source of latency will be waiting

for source context.

Concretely, we maintain a full monotonic atten-

tion mechanism and also a soft attention mech-

anism. Assuming that the monotonic attention

component chooses to stop at ti, MILk first com-

putes soft attention energies

ui,k = SoftmaxEnergy(hk, si−1) (12)

for k ∈ 1, 2, . . . , ti where SoftmaxEnergy(·) is

an energy function similar to Equation (4). Then,

MILk computes a context ci by

ci =

ti
∑

j=1

exp(ui,j)
∑ti

l=1 exp(ui,l)
hj (13)

Note that a potential issue with this approach is

that the model can set the monotonic attention

head ti = |x| for all i, in which case the approach

is equivalent to standard soft attention. We address

this issue in the following subsection.

To train models using MILk, we compute the

expected value of ci given the monotonic attention

probabilities and soft attention energies. To do

so, we must consider every possible path through

which the model could assign attention to a given

encoder state. Specifically, we can compute the

attention distribution induced by MILk by

βi,j =

|x|
∑

k=j

(

αi,k exp(ui,j)
∑k

l=1 exp(ui,l)

)

(14)

The first summation reflects the fact that hj can in-

fluence ci as long as k ≥ j, and the term inside the

summation reflects the attention probability asso-

ciated with some monotonic probability αi,k and

the soft attention distribution. This calculation can

be computed efficiently using cumulative sum op-

erations by replacing the outer summation with a

cumulative sum and the inner operation with a cu-

mulative sum after reversing u. Once we have the

βi,j distribution, calculating the expected context

ci follows a familiar formula: ci =
∑|x|

j=1 βi,jhj .

3.3 Latency-augmented Training

By moving to an infinite lookback, we have gained

the full power of a soft attention mechanism over

any source tokens that have been revealed up to

time ti. However, while the original monotonic

attention encouraged streaming behaviour implic-

itly due to the restriction on the system’s memory,

MILk no longer has any incentive to do this. It

can simply wait for all source tokens before writ-

ing the first target token. We address this problem

by training with an objective that interpolates log

likelihood with a latency metric.

Sequence-to-sequence models are typically

trained to minimize the negative log likelihood,

which we can easily augment with a latency cost:

L(θ) = −
∑

(x,y)

log p(y|x; θ) + λC(g) (15)

where λ is a user-defined latency weight, g =
{g1, . . . , g|y|} is a vector that describes the delay

incurred immediately before each target time step

(see Section 4.1), and C is a latency metric that

transforms these delays into a cost.

In the case of MILk, gi is equal to ti, the posi-

tion of the monotonic attention head.1 Recall that

during training, we never actually make a hard de-

cision about ti’s location. Instead, we can use αi,j ,

1We introduce gi to generalize beyond methods with hard
attention heads and to unify notation with Ma et al. (2018).
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the probability that ti = j, to get expected delay:

gi =

|x|
∑

j=1

jαi,j (16)

So long as our metric is differentiable and well-

defined over fractional delays, Equation (15) can

be used to guide MILk to low latencies.

3.4 Preserving Monotonic Probability Mass

In the original formulations of monotonic atten-

tion (see Section 3.1), it is possible to choose not

to stop the monotonic attention head, even at the

end of the source sentence. In such cases, the at-

tention returns an all-zero context vector.

In early experiments, we found that this creates

an implicit incentive for low latencies: the MILk

attention head would stop early to avoid running

off the end of the sentence. This implicit incen-

tive grows stronger as our selection probabilities

pi,j come closer to being binary decisions. Mean-

while, we found it beneficial to have very-near-to-

binary decisions in order to get accurate latency

estimates for latency-augmented training. Taken

all together, we found that MILk either destabi-

lized, or settled into unhealthily-low-latency re-

gions. We resolve this problem by forcing MILk’s

monotonic attention head to once stop when it

reaches the EOS token, by setting pi,|x| = 1.2

4 Measuring Latency

Our plan hinges on having a latency cost that is

worth optimizing. To that end, we describe two

candidates, and then modify the most promising

one to accommodate our training scenario.

4.1 Previous Latency Metrics

Cho and Esipova (2016) introduced Average Pro-

portion (AP), which averages the absolute delay

incurred by each target token:

AP =
1

|x| |y|

|y|
∑

i=1

gi (17)

2While training, we perform the equivalent operation of
shifting the any residual probability mass from overshooting

the source sentence, 1−
∑|x|

j=1
αi,j , to the final source token

at position |x|. This bypasses floating point errors introduced
by the parallelized cumulative sum and cumulative product
operations (Raffel et al., 2017). This same numerical instabil-
ity helps explain why the parameterized stopping probability
pi,j does not learn to detect the end of the sentence without
intervention.

where gi is delay at time i: the number of source

tokens read by the agent before writing the ith

target token. This metric has some nice proper-

ties, such as being bound between 0 and 1, but it

also has some issues. Ma et al. (2018) observe

that their wait-k system with a fixed k = 1 incurs

different AP values as sequence length |x| = |y|
ranges from 2 (AP = 0.75) to ∞ (AP = 0.5).

Knowing that a very-low-latency wait-1 system in-

curs at best an AP of 0.5 also implies that much

of the metric’s dynamic range is wasted; in fact,

Alinejad et al. (2018) report that AP is not suf-

ficiently sensitive to detect their improvements to

simultaneous MT.

Recently, Ma et al. (2018) introduced Average

Lagging (AL), which measures the average rate by

which the MT system lags behind an ideal, com-

pletely simultaneous translator:

AL =
1

τ

τ
∑

i=1

gi −
i− 1

γ
(18)

where τ is the earliest timestep where the MT sys-

tem has consumed the entire source sequence:

τ = argminigi = |x| (19)

and γ = |y|/|x| accounts for the source and target

having different sequence lengths. This metric has

the nice property that when |x| = |y|, a wait-k
system will achieve an AL of k, which makes the

metric very interpretable. It also has no issues with

sentence length or sensitivity.

4.2 Differentiable Average Lagging

Average Proportion already works as a C func-

tion, but we prefer Average Lagging for the rea-

sons outlined above. Unfortunately, it is not dif-

ferentiable, nor is it calculable in expectation, due

to the argmin in Equation (19). We present Dif-

ferentiable Average Lagging (DAL), which elimi-

nates the argmin by making AL’s treatment of de-

lay internally consistent.

AL’s argmin is used to calculate τ , which is

used in turn to truncate AL’s average at the point

where all source tokens have been read. Why is

this necessary? We can quickly see τ ’s purpose

by reasoning about a simpler version of AL where

τ = |y|. Table 1 shows the time-indexed lags

that are averaged to calculate AL for a wait-3 sys-

tem. The lags make the problem clear: each po-

sition beyond the point where all source tokens

have been read (gi = |x|) has its lag reduced by



1318

Statistics Scores

i 1 2 3 4 τ = 2 τ = |y|
gi 3 4 4 4

ALi 3 3 2 1 AL = 3 AL = 2.25

Table 1: Comparing AL with and without its truncated

average, tracking time-indexed lag ALi = gi −
i−1

γ

when |x| = |y| = 4 for a wait-3 system.

1, pulling the average lag below k. By stopping its

average at τ = 2, AL maintains the property that

a wait-k system receives an AL of k.

τ is necessary because the only way to incur

delay is to read a source token. Once all source

tokens have been read, all target tokens appear in-

stantaneously, artificially dragging down the aver-

age lag. This is unsatisfying: the system lagged

behind the source speaker while they were speak-

ing. It should continue to do so after they finished.

AL solves this issue by truncating its average,

enforcing an implicit and poorly defined delay for

the excluded, problematic tokens. We propose in-

stead to enforce a minimum delay for writing any

target token. Specifically, we model each target to-

ken as taking at least 1
γ

units of time to write, mir-

roring the speed of the ideal simultaneous transla-

tor in AL’s Equation (18). We wrap g in a g
′ that

enforces our minimum delay:

g′i =

{

gi i = 1
max

(

gi, g
′
i−1 +

1
γ

)

i > 1
(20)

Like gi, g
′
i represents the amount of delay incurred

just before writing the ith target token. Intuitively,

the max enforces our minimum delay: g′i is either

equal to gi, the number of source tokens read, or

to g′i−1+
1
γ

, the delay incurred just before the pre-

vious token, plus the time spent writing that token.

The recurrence ensures that we never lose track of

earlier delays. With g
′ in place, we can define our

Differentiable Average Lagging:

DAL =
1

|y|

|y|
∑

i=1

g′i −
i− 1

γ
(21)

DAL is equal to AL in many cases, in particular,

when measuring wait-k systems for sentences of

equal length, both always return a lag of k. See

Table 2 for its treatment of our wait-3 example.

Having eliminated τ , DAL is both differentiable

and calcuable in expectation. Cherry and Foster

(2019) provide further motivation and analysis for

Statistics Scores

i 1 2 3 4

g′i 3 4 5 6

DALi 3 3 3 3 DAL = 3

Table 2: DAL’s time-indexed lag DALi = g′i −
i−1

γ

when |x| = |y| = 4 for a wait-3 system.

DAL, alongside several examples of cases where

DAL yields more intuitive results than AL.

5 Experiments

We run our experiments on the standard WMT14

English-to-French (EnFr; 36.3M sentences) and

WMT15 German-to-English (DeEn; 4.5M sen-

tences) tasks. For EnFr we use a combination of

newstest 2012 and newstest 2013 for development

and report results on newstest 2014. For DeEn we

validate on newstest 2013 and then report results

on newstest 2015. Translation quality is measured

using detokenized, cased BLEU (Papineni et al.,

2002). For each data set, we use BPE (Sennrich

et al., 2016) on the training data to construct a

32,000-type vocabulary that is shared between the

source and target languages.

5.1 Model

Our model closely follows the RNMT+ architec-

ture described by Chen et al. (2018) with modi-

fications to support streaming translation. It con-

sists of a 6 layer LSTM encoder and an 8 layer

LSTM decoder with additive attention (Bahdanau

et al., 2014). All streaming models including wait-

k, MoChA and MILk use unidirectional encoders,

while offline translation models use a bidirectional

encoder. Both encoder and decoder LSTMs have

512 hidden units, per gate layer normalization (Ba

et al., 2016), and residual skip connections after

the second layer. The models are regularized using

dropout with probability 0.2 and label smoothing

with an uncertainty of 0.1 (Szegedy et al., 2016).

Models are optimized until convergence using data

parallelism over 32 P100s, using Adam (Kingma

and Ba, 2015) with the learning rate schedule de-

scribed in Chen et al. (2018) and a batch size of

4,096 sentence-pairs per GPU. Checkpoints are

selected based on development loss. All streaming

models use greedy decoding, while offline models

use beam search with a beam size of 20.

We implement soft attention, monotonic atten-

tion, MoChA, MILk and wait-k as instantiations
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unpreserved preserved

λ BLEU DAL BLEU DAL

0.0 27.7 21.0 27.7 27.9

0.1 27.0 13.6 27.6 10.5

0.2 25.7 11.6 27.5 8.7

Table 3: Varying MILk’s λ with and without mass

preservation on the DeEn development set.

n BLEU DAL

0 3.4 24.2

1 10.8 12.9

2 24.6 12.3

3 27.5 10.4

4 27.5 8.7

6 26.3 7.2

Table 4: Varying MILk’s discreteness parameter n with

λ fixed at 0.2 on the DeEn development set.

of an attention interface in a common code base,

allowing us to isolate their contributions. By an-

alyzing development sentence lengths, we deter-

mined that wait-k should employ a emission rate

of 1 for DeEn, and 1.1 for EnFr.

5.2 Development

We tuned MILk on our DeEn development set.

Two factors were crucial for good performance:

the preservation of monotonic mass (Section 3.4),

and the proper tuning of the noise parameter n in

Equation 11, which controls the discreteness of

monotonic attention probabilities during training.

Table 3 contrasts MILk’s best configuration be-

fore mass preservation against our final system.

Before preservation, MILk with a latency weight

λ = 0 still showed a substantial reduction in la-

tency from the maximum value of 27.9, indicating

an intrinsic latency incentive. Furthermore, train-

ing quickly destabilized, resulting in very poor

trade-offs for λs as low as 0.2.

After modifying MILk to preserve mass, we

then optimized noise with λ fixed at a low but rel-

evant value of 0.2, as shown in Table 4. We then

proceeded the deploy the selected value of n = 4
for testing both DeEn and EnFr.

5.3 Comparison with the state-of-the-art

We compare MILk to wait-k, the current state-

of-the-art in simultaneous NMT. We also include

MILk’s predecessors, Monotonic Attention and

MoChA, which have not previously been evalu-

Figure 2: Quality-latency comparison for German-

to-English WMT15 (DeEn) with DAL (upper), AL

(lower-left), AP (lower-right).

ated with latency metrics. We plot latency-quality

curves for each system, reporting quality using

BLEU, and latency using Differentiable Average

Lagging (DAL), Average Lagging (AL) or Av-

erage Proportion (AP) (see Section 4). We fo-

cus our analysis on DAL unless stated otherwise.

MILk curves are produced by varying the latency

loss weight λ,3 wait-k curves by varying k,4 and

MoChA curves by varying chunk size.5 Both

MILk and wait-k have settings (λ = 0 and k =
300) corresponding to full attention.

Results are shown in Figures 2 and 3.6 For

DeEn, we begin by noting that MILk has a clear

separation above its predecessors MoChA and

Monotonic Attention, indicating that the infinite

lookback is indeed a better fit for translation. Fur-

thermore, MILk is consistently above wait-k for

lags between 4 and 14 tokens. MILk is able to re-

tain the quality of full attention (28.4 BLEU) up to

a lag of 8.5 tokens, while wait-k begins to fall off

for lags below 13.3 tokens. At the lowest compa-

rable latency (4 tokens), MILk is 1.5 BLEU points

3λ = 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.0
4k = 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 300
5
cs = 1 (Monotonic Attention), 2, 4, 8, and 16

6Full sized graphs for all latency metrics, along with the
corresponding numeric scores are available in Appendix A,
included as supplementary material.
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Figure 3: Quality-latency comparison for English-to-

French WMT14 (EnFr) with DAL (upper), AL (lower-

left), AP (lower-right).

ahead of wait-k.

EnFr is a much easier language pair: both MILk

and wait-k maintain the BLEU of full attention at

lags of 10 tokens. However, we were surprised

to see that this does not mean we can safely de-

ploy very low ks for wait-k; its quality drops

off surprisingly quickly at k = 8 (DAL=8.4,

BLEU=39.8). MILk extends the flat “safe” re-

gion of the curve out to a lag of 7.2 (BLEU=40.5).

At the lowest comparable lag (4.5 tokens), MILk

once again surpasses wait-k, this time by 2.3

BLEU points.

The k = 2 point for wait-k has been omit-

ted from all graphs to improve clarity. The omit-

ted BLEU/DAL pairs are 19.5/2.5 for DeEn and

28.9/2.9 for EnFr, both of which trade very large

losses in BLEU for small gains in lag. However,

wait-k’s ability to function at all at such low laten-

cies is notable. The configuration of MILk tested

here was unable to drop below lags of 4.

Despite MILk having been optimized for DAL,

MILk’s separation above wait-k only grows as we

move to the more established metrics AL and AP.

DAL’s minimum delay for each target token makes

it far more conservative than AL or AP. Unlike

DAL, these metrics reward MILk and its predeces-

sors for their tendency to make many consecutive

writes in the middle of a sentence.

Figure 4: Two EnFr sentences constructed to contrast

MILk’s handling of a short noun phrase John Smith

against the longer John Smith’s lawyer. Translated by

MILk with λ = 0.2.

5.4 Characterizing MILK’s schedule

We begin with a qualitative characterization of

MILk’s behavior by providing diagrams of MILk’s

attention distributions. The shade of each circle

indicates the strength of the soft alignment, while

bold outlines indicate the location of the hard at-

tention head, whose movement is tracked by con-

necting lines.

In general, the attention head seems to loosely

follow noun- and verb-phrase boundaries, reading

one or two tokens past the end of the phrase to en-

sure it is complete. This behavior and its benefits

are shown in Figure 4, which contrast the simple

noun phrase John Smith against the more complex

John Smith’s laywer. By waiting until the end of

both phrases, MILk is able to correctly re-order

avocat (lawyer).

Figure 5 shows a more complex sentence drawn
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Figure 5: An example EnFr sentence drawn from our

development set, as translated by MILk with λ = 0.2.

Figure 6: An example EnFr sentence drawn from our

development set, as translated by wait-6.

from our development set. MILk gets going after

reading just 4 tokens, writing the relatively safe,

En 2008. It does wait, but it saves its pauses for

tokens with likely future dependencies. A partic-

ularly interesting pause occurs before the de in de

la loi. This preposition could be either de la or du,

depending on the phrase it modifies. We can see

MILk pause long enough to read one token after

law, allowing it to correctly choose de la to match

the feminine loi (law).

Looking at the corresponding wait-6 run in Fig-

ure 6, we can see that wait-6’s fixed schedule does

not read law before writing the same de. To its

credit, wait-6 anticipates correctly, also choosing

de la, likely due to the legal context provided by

the nearby phrase, the constitutionality.

We can also perform a quantitative analysis of

Figure 7: Histogram of initial delays for MILk (λ =
0.2) and wait-6 on the EnFr development set.

MILk’s adaptivity by monitoring its initial delays;

that is, how many source tokens does it read before

writing its first target token? We decode our EnFr

development set with MILk λ = 0.2 as well as

wait-6 and count the initial delays for each.7 The

resulting histogram is shown in Figure 7. We can

see that MILk has a lot of variance in its initial de-

lays, especially when compared to the near-static

wait-6. This is despite them having very similar

DALs: 5.8 for MILk and 6.5 for wait-6.

6 Conclusion

We have presented Monotonic Infinite Lookback

(MILk) attention, an attention mechanism that

uses a hard, monotonic head to manage the reading

of the source, and a soft traditional head to attend

over whatever has been read. This allowed us to

build a simultaneous NMT system that is trained

jointly with its adaptive schedule. Along the way,

we contributed latency-augmented training and a

differentiable latency metric. We have shown

MILk to have favorable quality-latency trade-offs

compared to both wait-k and to earlier monotonic

attention mechanisms. It is particularly useful for

extending the length of the region on the latency

curve where we do not yet incur a major reduction

in BLEU.
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Supplementary Material

We have provided a separate file containing sup-

plementary material. Its Appendix A contains full-

sized graphs and numeric scores to support our

primary experimental comparison in Section 5.3.


