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Abstract This paper addresses the problem of determining cost-minimal pro-
cess designs for ideal multi-component distillation columns. The special case of
binary distillation was considered in the former work [2]. Therein, a problem-
specific bound-tightening strategy based on monotonic mole fraction profiles of
single components was developed to solve the corresponding MINLPs (mixed-
integer nonlinear problems) globally. In the multi-component setting, the mole
fraction profiles of single components may not be monotonic. Therefore the
bound-tightening strategy from the binary case cannot be applied directly. In
this follow-up paper, a model reformulation for ideal multi-component distilla-
tion columns is presented. The reformulation is achieved by suitable aggrega-
tions of the involved components. Proofs are given showing that mole fraction
profiles of aggregated components are monotonic. This property is then used
to adapt the bound-tightening strategy from the binary case to the proposed
model reformulation. Computational results are provided that indicate the
usefulness of both the model reformulation and the adapted bound tighten-
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ing technique for deterministic global optimization of ideal multi-component
distillation column designs.

Keywords deterministic global optimization · bound tightening · model
reformulation · distillation

1 Introduction

The focus of this paper is on deterministic global mixed-integer nonlinear op-
timization of distillation columns, often dominating the cost of chemical pro-
duction processes. Despite recent progress in deterministic global optimization
(e.g., see [5] and [7] for recent surveys), those problems are often very difficult
to solve due to high computational effort that is caused by non-convexities and
a large number of variables and equations. Deterministic global optimization
of distillation processes is, hence, a very challenging task.

In the literature, rigorous deterministic global optimization of distillation
processes is not well-covered. Instead, restrictive model assumptions are used
to get so-called short-cut models that are easier to solve. In a recent publication
[19], optimal sequencing of multi-component distillation columns at minimum
reflux, i.e., smallest feasible internal vapor und liquid flows, using short-cut
models is calculated with deterministic global optimization methods.

By dropping simplifying assumptions such as minimum reflux, tray-to-tray
distillation models offer a wider range of validity compared to short-cut mod-
els. The increased computational effort is significantly reduced by applying
problem-specific global optimization strategies as demonstrated for ideal bi-
nary mixtures in our previous work [2]. Therein, it has been shown that com-
putational cost could be reduced by orders of magnitude using a specific bound
tightening strategy based on monotonicity of molar fractions, i.e., fractions of
mole numbers of individual components relative to the total mole number of all
components, throughout the column. The application was demonstrated for a
hybrid process combining distillation and crystallization units for the separa-
tion of two isomers that are difficult to separate by distillation alone. However,
an extension to multi-component mixtures is non-trivial because molar frac-
tion profiles associated with certain components typically show non-monotonic
behavior.

In this follow-up paper, a reformulation of a distillation column model is
presented to overcome this problem. The reformulation is obtained by aggrega-
tion of single components, resulting in a linear transformation of the variables
used for molar fractions. For mixtures with ideal liquid and vapor behavior,
we prove that the transformed variables show the desired monotonic behavior,
which allows us to extend the bound tightening strategy from the binary case
to the multi-component setting.

Bound tightening, also known as domain reduction or range reduction, is
a common strategy in global optimization to reduce the initial domain of the
problem variables without cutting off the optimal solutions. This results in two
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benefits in view of deterministic global optimization. First of all, a reduction
of the search space is achieved. But most importantly, available global opti-
mization software often relies on the use of convex relaxations for nonlinear
mixed-integer optimization problems. In general, such convex relaxations can
be tightened when the underlying domains are reduced.

In the literature, it is mainly distinguished between two basic types of
domain reduction. Feasibility based bound tightening (FBBT) cuts off infeasible
points using the constraints of the underlying problem. Optimization based
bound tightening (OBBT) applies optimization techniques in order to derive
tighter variable bounds. Both types are integrated in many state-of-the-art
global optimization software packages (e.g., see BARON [22], COUENNE [6],
SCIP [26], and GloMIQO [18]).

For FBBT, standard methods are often based on interval arithmetic (e.g.,
see [21]) and the description of nonlinearities using expression trees (e.g., see
[23,25]). Bounds on the variables can be propagated onto the nonlinear expres-
sions via forward propagation. Also, the other way around, tighter bounds on
the variables can be computed using the bounds on the nonlinearities (back-
ward propagation). This procedure can be iterated until no further strength-
ening of the bounds is achieved. The iteration can be formally interpreted as
an operator which is shown in [4] to have a limit point. For special problems,
this point can be determined using polynomial time algorithms. In [3], the con-
cept of FBBT is expanded on convex combinations of two linear constraints.
In [9], additional results on constraint satisfaction problems with quadratic
constraints are presented.

The key idea of OBBT is to consecutively minimize and maximize each
variable appearing in the problem on the feasible set. This is in general as hard
as finding the optimal solution of the problem itself, so a common approach
is to only use (linear) relaxations of the feasible set. This procedure can be
iterated multiple times in order to further tighten the bounds. OBBT can be
more effective, but is often much more time-consuming. It is, hence, used very
rarely or only at the root node of the Branch-and-Bound tree. For more details,
we refer to work [11]. An early reference in which OBBT is applied in the context
of heat exchanger networks is [20]. In [8], a so-called nonlinearities removal
domain reduction is introduced by fixing the value of a variable whose domain
is intended to be tightened. Under some assumptions, the equivalence of this
approach to standard procedures is shown, and it is concluded that general
domain reduction techniques are independent in the ordering of the considered
variables. In [11], Lagrangian variable bound constraints are described, making
it easier to propagate bounds throughout the branching tree. Additionally,
enhancements on the computation of OBBT are given.

According to this terminology, the bound tightening strategy that is de-
veloped in this paper for ideal multi-component distillation column models
belongs to FBBT. We especially make use of interval arithmetics that we apply
to two types of well-structured model constraints. Preliminary results of this
work have already been presented in a conference paper [17]. The additional
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content in the present publication comprises three points. First of all, a more
detailed description and interpretation of the model and the reformulation is
given. Furthermore, we provide mathematical background and proofs regard-
ing the monotonicity property and the domain reduction strategies. Finally
we present a computational study including a diverse set of test instances and
solver selections.

The remainder of the paper is structured as follows. In Section 2, we present
the ideal multi-component distillation column model we are working with. In
Section 3, we derive an alternative model formulation by introducing suitable
aggregated components. In Section 4, we prove that the transformed variables
associated with each newly introduced aggregated component fulfill the desired
monotonicity property. This is exploited in Section 5 in order to extend the
bound tightening strategy from the binary case [2] to the general ideal multi-
component case. In Section 6, we solve several numerical test examples to
global optimality and experimentally analyze the influence of the developed
techniques on the running time.

2 Distillation Column Model

In this section, the model under consideration is presented. As in previous work
[2,15], we focus on a tray-by-tray model of a distillation column in steady state,
and assume ideal liquid and vapor phase, total condenser and total reboiler,
single liquid feed flow at boiling temperature, and constant molar overflow.
Notation and model description are basically taken from [2,15] and adapted,
if necessary. For a general introduction to the topic of thermal separation
processes, we refer to [16]. Table 1 displays the name and meaning of all
parameters, variables and indices that we are using in this work.

We are given a mixture consisting of n single components labeled by
1, . . . , n. The order of the components is defined with respect to the boil-
ing point. Here, component 1 is the component with the lowest boiling point
and component n refers to the component with the highest boiling point. In
the model, the composition of a mixture is given in terms of molar fractions.
Thus, the sum of molar fractions over all components is equal to one at every
position of the column, which is known as the summation conditions.

Table 1 displays the name and meaning of all used parameters, variables
and indices. A sketch of a distillation column is shown in Figure 1. The mix-
ture enters the column at the feed tray with molar feed flow F and initial
composition xin

i , i = 1, . . . , n. At the top tray (condenser), the distillate mo-
lar flow D leaves the column with composition xdist

i , i = 1, . . . , n, and at the
bottom tray (reboiler), the molar flow B leaves the column with composition
xbot
i , i = 1, . . . , n. V denotes the vapor flow that streams upwards through the

column. The overall mass balance equations

Fxin
i = Dxdist

i +Bxbot
i , i = 1, . . . , n, (1)
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Parameters:

u Upper bound on the number of trays (length)

αi Constant relative volatility of component i

σ Position of the split between less and more volatile components

π Purity requirement on the components

F Feed molar flow entering the column, given in mol s−1

Variables:

V Vapor flow streaming upwards through the column, given in mol s−1

D Distillate molar flow withdrawn at the condenser, given in mol s−1

B Bottom molar flow withdrawn at the reboiler, given in mol s−1

νr Ratio of downward flow to upward flow in the rectifying section

νs Ratio of upward flow to downward flow in the stripping section

l Number of trays in the part of the column specified by superscript

β Binary coupling variable determining the position of the feed tray

xi/yi Liquid/Vapor molar fraction of component i

Xk/Yk Liquid/Vapor molar fraction of the aggregated component k

Indices:

in Feed flow

dist Distillate flow

bot Bottom flow

feed Feed tray

feed−1 Tray above the feed tray

feed+1 Tray below the feed tray

col Whole column

rect Rectifying section

lr Tray number in rectifying section

strip Stripping section

ls Tray number in stripping section

Table 1: List of parameters, variables and indices used in our model

ensure that the amount of component i entering the column coincides with
the overall amount of component i leaving the column.

Rectifying section (above the feed tray) and stripping section (below the
feed tray) can contain several trays. Trays of the rectifying section are num-
bered from the top to the bottom by lr = 1, . . . , lrect, and trays in the stripping
section are numbered from the bottom to the top by ls = 1, . . . , lstrip. Vari-
ables used for molar fractions of component i in liquid and in vapor phases are
denoted by xi and yi, respectively. In order to specify the tray a variable is
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Fig. 1: A fixed design of a distillation column. Numbers of trays in the recti-
fying and stripping sections are lrect and lstrip. The total number of trays in
the column is given by lcol = lrect + lstrip + 1.

associated with, we introduce superscripts “feed”, “feed-1”, “feed+1”, “rect”
and “strip”. The script “feed-1” denotes the tray above the feed tray and the
script “feed+1” denotes the tray below the feed tray. Trays from the rectify-
ing and stripping sections are additionally equipped with their associated tray
number as subscript. Mass balances comprising the first tray and a number of
consecutive trays are established for the stripping and the rectifying section
as well as a mass balance comprising the feed tray. The mass transfer in liquid
and vapor phase through the column is then described by the component mass
balance equations

yrecti,lr+1 = νr x
rect
i,lr

+ (1− νr) y
rect
i,1 ,

νs y
feed
i + xfeed

i = νs y
feed+1
i + νr νs x

feed-1
i + (1− νr νs)x

in
i ,

xstrip
i,ls+1 = νs y

strip
i,ls

+ (1− νs)x
strip
i,1 ,

(2)

for i = 1, . . . , n, lr = 1, . . . , urect and ls = 1, . . . , ustrip, where urect and ustrip

denote upper bounds imposed on lrect and lstrip, respectively. We remark that
in the equations (2) the subscripts indicating trays formally range to urect +1
and ustrip + 1, respectively. This way, two artificial trays are introduced to
the model. These two trays are later used to model the coupling of the feed
tray with the rectifying and the stripping sections (see equations (6)). The
auxiliary variables νr, νs ∈ [0, 1] defined as

νr =
V −D

V
and νs =

V

V +B
(3)

describe the ratio of upward and downward molar flows in the rectifying and
stripping section.
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The separation behavior of component i is given by its volatility. Com-
ponents with higher volatility accumulate in the vapor phase, while compo-
nents with lower volatility accumulate in the liquid phase. We assume constant
relative volatilities of the components, expressed by parameters αi > 0, for
i = 1, . . . , n. Due to our assumption on the order of the components, we have
that α1 ≥ α2 ≥ · · · ≥ αn. At all trays, the interactions of the mole fractions
in the vapor phase and in the liquid phase are given by the phase equilibrium
equations

yrecti,lr
=

αi x
rect
i,lr

∑n
j=1 αjxrect

j,lr

, yfeedi =
αi x

feed
i

∑n
j=1 αjxfeed

j

, ystripi,ls
=

αi x
strip
i,ls

∑n
j=1 αjx

strip
j,ls

(4)

for i = 1, . . . , n, lr = 1, . . . , urect + 1 and ls = 1, . . . , ustrip + 1. Note that the
index j is used to indicate the respective component in the sums.

The vapor flow at the top of the column is completely condensed and the
liquid flow fed back to the column at the bottom is completely vaporized. Total
condenser and total reboiler are modeled by

xdist
i = yrecti,1 and xbot

i = xstrip
i,1 , i = 1, . . . , n. (5)

The total number lcol of trays used in a distillation column is given by the
number of trays used in the rectifying section, the number of trays used in the
stripping section, and the feed tray. To specify lcol in our model, the following
coupling conditions are imposed.

xfeed-1
i =

urect

∑

lr=1

βrect
lr

xrect
i,lr

, xfeed
i =

urect

∑

lr=1

βrect
lr

xrect
i,lr+1, i = 1, . . . , n,

yfeed+1
i =

ustrip

∑

ls=1

βstrip
ls

ystripi,ls
, xfeed

i =

ustrip

∑

ls=1

βstrip
ls

xstrip
i,ls+1, i = 1, . . . , n,

(6a)

lcol =

urect

∑

lr=1

βrect
lr

lr +

ustrip

∑

ls=1

βstrip
ls

ls + 1,

urect

∑

lr=1

βrect
lr

= 1, βrect
lr

∈ {0, 1}, lr = 1, . . . , urect,

ustrip

∑

ls=1

βstrip
ls

= 1, βstrip
ls

∈ {0, 1}, ls = 1, . . . , ustrip.

(6b)

Note that the binary variables βrect
lr

and βstrip
ls

attain value one if and only if
tray lr of the rectifying section and tray ls of the stripping section are chosen
to be the trays above and below the feed tray in the column.

The purpose of the distillation column is to separate the more volatile
components from the less volatile components under given purity constraints.
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Let the predefined split parameter σ ∈ {1, . . . , n − 1} be the index such that
the components 1 to σ belong to the more volatile part and components σ+1
to n belong to the less volatile part of the mixture, and let πdist, πbot ∈ [0, 1]
denote the purity requirements imposed on the more volatile components at
the condenser and on the less volatile components at the reboiler. Then, the
purity constraints are given as follows:

σ
∑

i=1

xdist
i ≥ πdist and

n
∑

i=σ+1

xbot
i ≥ πbot. (7)

The objective function of our column model reflects the total annualized cost
of the distillation process that needs to be minimized. In our work, we make
use of the following cost function that is taken from previous work [15].

cost = λ1V + λ2l
col + λ3(λ4V + λ5B)lcol

+ λ6(λ4V + λ5B)γ1 (λ7l
col + λ8)

γ2 + λ9(λ4V + λ5B)γ3 lcol,
(8)

with coefficients as specified in Table 2. This objective function was originally
developed for the distillation of dodecanal and 2-methylundecanal. However,
its structure is typical for economical cost estimation and therefore suitable
for the computational studies in our work.

Coefficent λ1 λ2 λ3 λ4 λ5 λ6

Value 17544 173.6 2009.7 0.2378 0.0221 2364.5
Unit e a−1mol−1s e a−1 e a−1 mol−1s mol−1s e a−1

Coefficient λ7 λ8 λ9 γ1 γ2 γ3

Value 0.2 4 -171.4 0.533 0.5 0.82
Unit e a−1

Table 2: Coefficients for the cost function

The resulting mixed-integer nonlinear optimization problem is given by

min (8) s.t. (1)− (7). (9)

3 Model Reformulation by Aggregating Components

In the binary case, mole fractions associated with a single component be-
have monotonic through the distillation column. Based on that property, a
problem-specific bound tightening strategy for binary distillation column de-
sign problems has been developed in our previous work [2].

To formalize the notion of monotonicity, we consider the distillation column
tray by tray from the bottom to the top. We say that a component i shows
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monotonic behaviour through the distillation column when the sequence of
respective molar fractions in the liquid phase are either non-decreasing or
non-inreasing, i. e. either

xstrip
i,1 ≤ · · · ≤ xstrip

i,lstrip
≤xfeed

i ≤ xrect
i,lrect ≤ · · · ≤ xrect

i,1

or

xstrip
i,1 ≥ · · · ≥ xstrip

i,lstrip
≥xfeed

i ≥ xrect
i,lrect ≥ · · · ≥ xrect

i,1

holds. A sequence of values associated with liquid phase (or vapor phase) mole
fractions of a single component, considered from the bottom to the top, is also
refered to as a mole fraction profile.

However, the molar fractions of a single component may not behave mono-
tonic in the multi-component setting. Such a typical situation is illustrated in
Figure 2 (a) for component 2 (blue-colored dashed curve) and component 3
(yellow-colored dotted curve). This fact makes it hard to generalize the bound

(a) Molar fraction profiles of single compo-
nents (original model formulation)

(b) Profiles of transformed variables for ag-
gregated components (aggregated model for-
mulation)

Fig. 2: The figure shows molar fraction profiles and profiles of transformed
variables in liquid phase for a four component mixture.

tightening strategy for the binary case [2] to the multi-component case, di-
rectly.

We overcome this problem by aggregating, for k = 1, . . . , n, the first k
components. This is achieved by summing up the corresponding variables used
for molar fractions at every position of the distillation column.

The driving force for separating the components of a mixture using distil-
lation are differences in the volatilities of the single components. For compo-
nents sorted by decreasing volatility, any group of the first k components has
an effective volatility larger than that of the complementary group of n − k
components. Therefore, the same direction of the driving force and thus mono-
tonicity of the aggregated molar fractions is expected over the whole column.
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To be more precise, let xi and yi (for i = 1, . . . , n) be the variables used
for molar fractions of component i in the liquid and in the vapor phase at an
arbitrary position. The associated sub- and superscripts indicating the specific
position are omitted for a clean presentation. We label the aggregated compo-
nents by k = 1, . . . , n and introduce aggregated concentration variables Xk

and Yk for the liquid and vapor phases. The original variables used for molar
fractions and the new aggregated concentration variables are linearly linked
to each other by the following bijective relations.

Xk =

k
∑

i=1

xi and Yk =

k
∑

i=1

yi, k = 1, . . . , n. (10)

We also introduce an (aggregated) dummy component 0 for which the liquid
and vapor phase concentrations X0 and Y0 are zero at all positions. Hence we
can formulate the inverse to the relations (10) by

xi = Xi −Xi−1, and yi = Yi − Yi−1, k = 1, . . . , n. (11)

By definition and due to the summation conditions (i.e.
∑n

i=1 xi =
∑n

i=1 yi =
1), we have

0 = X0 ≤ X1 ≤ · · · ≤ Xn = 1 and 0 = Y0 ≤ Y1 ≤ · · · ≤ Yn = 1. (12)

Note that the equations (3), (6b) and the objective function (8) do not
depend on the molar fractions. Hence, they remain unchanged in our ag-
gregated model formulation. Observe further that the overall mass balance
equations (1), the component mass balance equations (2), the coupling con-
ditions (6a), total condenser and total reboiler conditions (5) and the purity
constraints (7) are linear in x and y while using the same coefficients for every
i = 1, . . . , n respectively. Therefore, we obtain the corresponding constraints
for each aggregated component k by summing up the corresponding condi-
tions associated with the first k single components. Only the phase equilibrium
equations (4) are not linear in the original concentration variables and need
to be adapted by applying the inverse relations (11). The aggregated model
formulation reads as

– The aggregated overall mass balance equations :

FX in
k = DXdist

k +BXbot
k , k = 1, . . . , n. (13)

– The aggregated component mass balance equations :

Y rect
k,lr+1 = νr X

rect
k,lr

+ (1− νr)Y
rect
k,1 ,

νs Y
feed
k +X feed

k = νs Y
feed+1
k + νr νs X

feed-1
k + (1− νr νs)X

in
k ,

Xstrip
k,ls+1 = νs Y

strip
k,ls

+ (1− νs)X
strip
k,1

(14)

for k = 1, . . . , n, lr = 1, . . . , urect and ls = 1, . . . , ustrip.
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– The auxiliary variables constraints:

νr =
V −D

V
and νs =

V

V +B
. (15)

– The aggregated phase equilibrium equations :

Y rect
k,lr

=
∑k

j=1
αj(X

rect
j,lr

−Xrect
j−1,lr

)
∑

n
j=1

αj(Xrect
j,lr

−Xrect
j−1,lr

)
,

Y feed
k =

∑k
j=1

αj (Xfeed
j −Xfeed

j−1 )∑
n
j=1

αj(Xfeed
j

−Xfeed
j−1

)
,

Y strip
k,ls

=
∑k

j=1
αj(X

strip

j,ls
−X

strip

j−1,ls
)

∑
n
j=1

αj(X
strip

j,ls
−X

strip

j−1,ls
)

(16)

for k = 1, . . . , n, lr = 1, . . . , urect + 1 and ls = 1, . . . , ustrip + 1. Note that
in this case also the index j is used to indicate the respective aggregated
components in the sums.

– The aggregated constraints for the total condenser/reboiler :

Xdist
k = Y rect

k,1 and Xbot
k = Xstrip

k,1 , k = 1, . . . , n. (17)

– The aggregated coupling conditions:

X feed-1
k =

urect

∑

lr=1

βrect
lr

Xrect
k,lr

, k = 1, . . . , n,

X feed
k =

urect

∑

lr=1

βrect
lr

Xrect
k,lr+1, k = 1, . . . , n,

Y feed+1
k =

ustrip

∑

ls=1

βstrip
ls

Y strip
k,ls

, k = 1, . . . , n,

X feed
k =

ustrip

∑

ls=1

βstrip
ls

Xstrip
k,ls+1, k = 1, . . . , n,

(18a)

lcol =

urect

∑

lr=1

βrect
lr

lr +

ustrip

∑

ls=1

βstrip
ls

ls + 1,

urect

∑

lr=1

βrect
lr

= 1, βrect
lr

∈ {0, 1}, lr = 1, . . . , urect,

ustrip

∑

ls=1

βstrip
ls

= 1, βstrip
ls

∈ {0, 1}, ls = 1, . . . , ustrip.

(18b)

– The aggregated purity constraints:

Xdist
σ ≥ πdist and (1−Xbot

σ ) ≥ πbot. (19)
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– The objective function:

cost = λ1V + λ2l
col + λ3(λ4V + λ5B)lcol

+ λ6(λ4V + λ5B)γ1 (λ7l
col + λ8)

γ2

+ λ9(λ4V + λ5B)γ3 lcol,

(20)

with coefficients as specified inTable 2.

The resulting reformulated mixed-integer nonlinear optimization problem is
given by

min (20) s.t. (13)− (19). (21)

It turns out that the concentration variables of each aggregated compo-
nent show the desired monotonic behavior, i.e., the overall molar fraction of
all components above each possible split position σ ∈ {1, . . . , n − 1} change
monotonically throughout the distillation column. This is illustrated in Fig-
ure 2 (b), and will be proven in Section 4.

4 Monotonicity of the Aggregated Concentration Profiles

In this section we prove that for each aggregated component, the correspond-
ing concentration variables introduced in Section 3 behave monotonic through
the distillation column. We refer to a sequence of liquid or vapor phase con-
centration values of an aggregated component as a (concentration) profile.

In what follows, we investigate the restrictions of each such profile to the
stripping section and to the rectifying section separately. Subsection 4.1 deals
with the stripping section. We show that each profile is non-decreasing when
considered from the bottom to the top. For the rectifying section discussed in
Subsection 4.2, we first apply a suitable transformation. That transformation
traces the profiles restricted to the rectifying section back to the case of profiles
restricted a stripping section. We then conclude that each profile also behaves
non-decreasing in the rectifying section from bottom to the top.

As the coupling conditions (18) ensure that, for each profile, the parts
restricted to the stripping section and restricted to the rectifying section must
coincide at the feed tray, we finally obtain that each profile of an aggregated
component runs monotonically through the whole distillation column.

4.1 Stripping Section

We omit superscript “strip” and denote by X := (Xk,ls)k=0,...,n, ls=1,...,u+1

and Y := (Yk,ls)k=0,...,n, ls=1,...,u+1 the matrices consisting of all liquid and
vapor phase concentration variables w.r.t. aggregated components (including
the dummy one) and restricted to the stripping section.

With this notation and combining the phase equilibrium equations (16)
with the component mass balance equations (14), we obtain the following
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subsystem that is satisfied by every feasible solution of our distillation column
model from Section 3.

Xk,ls+1 = νs

∑k
j=1

αj(Xj,ls−Xj−1,ls )∑
n
j=1

αj(Xj,ls−Xj−1,ls )
+ (1− νs)Xk,1, k = 0, . . . , n,

ls = 1, . . . , u,

0 < X1,ls ≤ X2,ls ≤ · · · ≤ Xn,ls , ls = 1, . . . , u+ 1,

X0,ls = 0, Xn,ls = 1, ls = 1, . . . , u+ 1,

X ∈ R
(n+1)×(u+1), vs ∈ [0, 1].

(22)

For our analysis, the following remarks are worth to mention.

– In System (22), we impose that all variables Xk,ls , k ≥ 1, are strictly
positive. This assumption can be made with out loss of generality. Indeed,
when Xk,ls = 0 holds, for some k ≥ 1 and some ls, the recursive formula
already implies that the concentration of component k is zero at every
position in the stripping section, and, hence, in the entire column. In that
case we can exclude component k from our considerations.

– To keep the notation simple, we define the following expressions to denote
the denominators appearing in System (22).

Nls(X) :=

n
∑

j=1

αj(Xj,ls −Xj−1,ls), ls = 1, . . . , u+ 1.

Note that Nls(X) > 0 holds for all X such that there is a νs ∈ [0, 1] with
(X, νs) being feasible to System (22).

– Finally, we observe the identities
∑k

j=1 αj(Xj,ls −Xj−1,ls) =
∑k−1

j=1 Xj,ls(αj − αj+1) +Xk,lsαk.

for k = 1, . . . , n and ls = 1, . . . , u+1, that we will frequently use throughout
the proofs.

For a solution (X, νs) feasible to System (22), we will next show that for
each aggregated component k = 1, . . . , n, the sequence {Xk,ls}

u+1
ls=1 is non-

decreasing. More precisely, we will prove a more general statement implying
the desired property.

Theorem 1 Let X ∈ R
(n+1)×(u+1) and νs ∈ [0, 1] be feasible to System (22)

for some α ∈ R
n with α1 ≥ α2 ≥ · · · ≥ αn > 0. Then,

Xk,ls+1 −Xk,ls

Xk,ls

≥
Xk+1,ls+1 −Xk+1,ls

Xk+1,ls

(23)

holds for k = 1, . . . , n− 1 and for ls = 1, . . . , u.
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Proof The statement is proven by induction on ls. We first consider the case
with ls = 1. For an arbitrary k ∈ {1, . . . , n− 1}, System (22) yields

Xk,2 −Xk,1 = νsXk,1

(

∑k
j=1 αj(Xj,1 −Xj−1,1)

N1(X)Xk,1
− 1
)

and

Xk+1,2 −Xk+1,1 = νsXk+1,1

(

∑k+1
j=1 αj(Xj,1 −Xj−1,1)

N1(X)Xk+1,1
− 1
)

,

or equivalently

Xk,2 −Xk,1

Xk,1
=

νs
N1(X)

(

∑k
j=1 αj(Xj,1 −Xj−1,1)

Xk,1

)

− νs,

Xk+1,2 −Xk+1,1

Xk+1,1
=

νs
N1(X)

(

∑k+1
j=1 αj(Xj,1 −Xj−1,1)

Xk+1,1

)

− νs.

Thus, in order to prove our statement for ls = 1, we show that
∑k

j=1 αj(Xj,1 −Xj−1,1)

Xk,1
≥

∑k+1
j=1 αj(Xj,1 −Xj−1,1)

Xk+1,1
.

Observing that Xk+1,1 ≥ Xk,1 and
∑k

j=1 αj(Xj,1 − Xj−1,1) − αk+1Xk,1 ≥ 0
hold, yields
∑k+1

j=1 αj(Xj,1 −Xj−1,1)

Xk+1,1
=

∑k
j=1 αj(Xj,1 −Xj−1,1)− αk+1Xk,1

Xk+1,1
+ αk+1

≤

∑k
j=1 αj(Xj,1 −Xj−1,1)− αk+1Xk,1

Xk,1
+ αk+1

=

∑k
j=1 αj(Xj,1 −Xj−1,1)

Xk,1
,

i.e., for ls = 1, the statement holds for k = 1, . . . , n− 1.
Now assume that, for some ls ≥ 1, the statement is true for each k =

1, . . . , n − 1. We will show that for ls + 1 the statement is then true for each
k = 1, . . . , n − 1 as well. For this, we define mk :=

Xk,ls

Xk,ls−1
for each k =

1, . . . , n. By our induction hypothesis, we have that mk ≥ mk+1 holds for
k = 1, . . . , n− 1.

Next, the values of the terms Xk,ls+1 −Xk,ls and Xk+1,ls+1 −Xk+1,ls are
compared. Using the recursive formula and the definition of mk, we obtain for
Xk,ls+1 −Xk,ls that

νs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls)

Nls(X)
−

∑k
j=1 αj(Xj,ls−1 −Xj−1,ls−1)

Nls−1(X)

)

=

νs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls)

Nls(X)
−

∑k
j=1 αj

(

Xj,ls

mj
−

Xj−1,ls

mj−1

)

Nls−1(X)

)

.

(24)
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Moreover, we have that

∑k
j=1 αj(Xj,ls −Xj−1,ls)

m1
≤

k
∑

j=1

αj

(

Xj,ls

mj

−
Xj−1,ls

mj−1

)

≤

∑k
j=1 αj(Xj,ls −Xj−1,ls)

mk

.

By the intermediate value theorem, there must exist some m̃ ∈ [mk,m1] with

k
∑

j=1

αj

(

Xj,ls

mj

−
Xj−1,ls

mj−1

)

=

∑k
j=1 αj(Xj,ls −Xj−1,ls)

m̃
. (25)

Combining formula (24) with formula (25) gives rise to

Xk,ls+1 −Xk,ls

= νs

k
∑

j=1

αj(Xj,ls −Xj−1,ls)
( 1

Nls(X)
−

1

m̃Nls−1(X)

)

=Xk,lsνs

∑k
j=1 αj(Xj,ls −Xj−1,ls)

Xk,ls

( 1

Nls(X)
−

1

m̃Nls−1(X)

)

.

(26)

Again, using the recursive formula and the definition of mk, the second
term can be rewritten as follows.

Xk+1,ls+1 −Xk+1,ls

= νs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls) + αk+1(Xk+1,ls −Xk,ls)

Nls(X)

−

∑k
j=1 αj

(

Xj,ls

mj
−

Xj−1,ls

mj−1

)

+ αk+1

(

Xk+1,ls

mk+1
−

Xk,ls

mk

)

Nls−1(X)

)

= νs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls)

Nls(X)
−

∑k
j=1 αj(

Xj,ls

mj
−

Xj−1,ls

mj−1
)

Nls−1(X)

)

+ νs

( (αk+1(Xk+1,ls −Xk,ls)

Nls(X)
−

αk+1(
Xk+1,ls

mk+1
−

Xk,ls

mk
)

Nls−1(X)

)

.
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Using formula (25) and the fact that mk+1 ≤ mk ≤ m̃ holds, we can further
estimate

Xk+1,ls+1 −Xk+1,ls

= νs

k
∑

j=1

αj(Xj,ls −Xj−1,ls)
( 1

Nls(X)
−

1

m̃Nls−1(X)

)

+ νs

( (αk+1(Xk+1,ls −Xk,ls)

Nls(X)
−

αk+1(
Xk+1,ls

mk+1
−

Xk,ls

mk
)

Nls−1(X)

)

≤ νs

k
∑

j=1

αj(Xj,ls −Xj−1,ls)
( 1

Nls(X)
−

1

m̃Nls−1(X)

)

+ νs

( (αk+1(Xk+1,ls −Xk,ls)

Nls(X)
−

αk+1(Xk+1,ls −Xk,ls)

m̃Nls−1(X)

)

= νs

k+1
∑

j=1

αj(Xj,ls −Xj−1,ls)
( 1

Nls(X)
−

1

m̃Nls−1(X)

)

.

Finally, we exploit that Xk+1,ls ≥ Xk,ls and that
∑k

j=1 αj(Xj,ls −Xj−1,ls) −
αk+1Xk,ls ≥ 0 holds. This yields

Xk+1,ls+1 −Xk+1,ls

≤ Xk+1,lsνs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls)− αk+1Xk,ls

Xk+1,ls

+ αk+1

)

·
( 1

Nls(X)
−

1

m̃Nls−1(X)

)

≤ Xk+1,lsνs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls)− αk+1Xk,ls

Xk,ls

+ αk+1

)

·
( 1

Nls(X)
−

1

m̃Nls−1(X)

)

= Xk+1,lsνs

(

∑k
j=1 αj(Xj,ls −Xj−1,ls)

Xk,ls

)( 1

Nls(X)
−

1

m̃Nls−1(X)

)

.

(27)

From formulas (26) and (27), we can deduce that

Xk,ls+1 −Xk,ls

Xk,ls

≥
Xk+1,ls+1 −Xk+1,ls

Xk+1,ls

holds. ⊓⊔

We are now able to prove that the concentration profiles behave non-
decreasing through the stripping section.

Corollary 2 Let (X, νs) be a feasible solution to System (22) for some α ∈ R
n

with α1 ≥ α2 ≥ · · · ≥ αn > 0. Let Y be the matrix consisting of all vapor
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phase concentration variables Yk,ls that are implied by X through the phase
equilibrium equations (16). Then, for each aggregated component k = 1, . . . , n,
both sequences {Xk,ls}

u+1
ls=1 and {Yk,ls}

u+1
ls=1 are non-decreasing.

Proof By definition, we have that Xn,ls = 1 holds for ls = 1, . . . , u+ 1. Thus,
the statement holds for k = n. For each fixed ls ∈ {1, . . . , u}, we obtain from
Theorem 1 that

X1,ls+1 −X1,ls

X1,ls

≥
X2,ls+1 −X2,ls

X2,ls

≥ · · · ≥
Xn,ls+1 −Xn,ls

Xn,ls

= 0.

By assumption Xk,ls > 0, for k = 1, . . . , n and ls = 1, . . . , u + 1, it follows
that Xk,ls+1 − Xk,ls ≥ 0, for all k = 1, . . . , n. This proves the statement for
sequence {Xk,ls}

u+1
ls=1.

Using the equations (14), and Xk,ls+2 ≥ Xk,ls+1, for all k and ls, we can
further derive, for all k = 1, . . . , n and ls = 1, . . . , ustrip, that

νsYk,ls+1 + (1− νs)Xk,1 ≥ νsYk,ls + (1− νs)Xk,1 ⇔ νs(Yk,ls+1 − Yk,ls) ≥ 0.

This implies that Yk,ls+1−Yk,ls ≥ 0 holds for νs > 0. Moreover, if νs = 0, then
we can deduce from the equations (14) that Xk,1 = Xk,2 = · · · = Xk,u+1. By
phase equilibrium equations (16), it follows that Yk,1 = Yk,2 = · · · = Yk,u+1.

⊓⊔

4.2 Rectifying Section

Next, we prove monotonicity for the profiles when restricted to the rectifying
section. We omit superscript “rect” and denote the matrices consisting of
all liquid and vapor phase concentration variables of aggregated components
(including the dummy one) and restricted to the rectifying section by X :=
(Xk,lr)k=0,...,n, lr=1,...,u+1 and Y := (Yk,lr)k=0,...,n, lr=1,...,u+1.

Recap that in our model description the trays in the rectifying section
are labeled from top to bottom. For this labeling, we show that the sequences
{Xk,lr}

u+1
lr=1 and {Yk,lr}

u+1
lr=1 are non-increasing for every k = 1, . . . , n. Therefore,

the profiles considered from the bottom to the top are non-decreasing.

In order to derive a system for the rectifying section that corresponds to
System (22) of the stripping section, we need the well-known inverses of the
phase equilibrium equations (16). For each aggregated component k ≥ 1 and
for each tray lr, they are given as

Xk,lr =

∑k
j=1 α

−1
j (Yj,lr − Yj−1,lr)

∑n
j=1 α

−1
j (Yj,lr − Yj−1,lr)

, lr = 1, . . . , u+ 1. (28)
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Using (28), we obtain from the component mass balance equations (14) the
following subsystem

Yk,lr+1 = νr

∑k
j=1

α−1
j

(Yj,lr−Yj−1,lr )
∑

n
j=1

α−1
j

(Yj,lr−Yj−1,lr )
+ (1− νr)Yk,1, k = 0, . . . , n,

lr = 1, . . . , u,
0 < Y1,lr ≤ Y2,lr ≤ · · · ≤ Yn,lr , lr = 1, . . . , u+ 1,

Y0,lr = 0, Yn,lr = 1, lr = 1, . . . , u+ 1,
Y ∈ R

(n+1)×(u+1), vr ∈ [0, 1],

(29)

that must be satisfied by every feasible solution of our distillation column
model.

Now, we make use of the following transformation rules.

û := u, ν̂s := νr,

Ŷk,l := (1−Xn−k,l),

X̂k,l := (1− Yn−k,l),
k = 0, . . . , n, l = 1, . . . , u+ 1,

α̂k := α−1
n+1−k, k = 1, . . . , n.

(30)

These rules allow us to restate System (29) equivalently as follows (see Ap-
pendix A, for details).

X̂k,l+1 = ν̂s

∑k
j=1

α̂j(X̂j,l−X̂j−1,l)
∑

n
j=1

α̂j(X̂j,l−X̂j−1,l)
+ (1− ν̂s)X̂k,1, k = 0, . . . , n,

l = 1, . . . , û,

0 < X̂1,l ≤ X̂2,l ≤ · · · ≤ X̂n,l, l = 1, . . . , û+ 1,

X̂0,l = 0, X̂n,l = 1, l = 1, . . . , û+ 1,

X̂ ∈ R
(n+1)×(û+1), v̂s ∈ [0, 1].

(31)

Note that index k appears in the variables X̂k,l in reverse order compared with
the variables Yk,lr . Therefore, we have that in reverse order

α̂1 ≥ α̂2 ≥ · · · ≥ α̂n > 0

holds when α1 ≥ α2 ≥ · · · ≥ αn > 0 in the original order. This means that
System (31) satisfies all conditions of Theorem 1 and Corollary 2. We can,
hence, conclude that, for every k = 1, . . . , n, both sequences {X̂k,l}

û+1
l=1 and

{Ŷk,l}
û+1
l=1 are non-decreasing. Using the transformations rules (30), again, we

can draw the following conclusion.

Corollary 3 Let (Y, νr) be a feasible solution to System (29) for some α ∈
R

n with α1 ≥ α2 ≥ · · · ≥ αn > 0. Let X be the matrix consisting of all
liquid phase concentrations variables Xk,lr , that are implied by Y through the
phase equilibrium equations (28). Then, for each aggregated component k ∈
{1, . . . , n}, both sequences {Yk,lr}

u+1
lr=1 and {Xk,lr}

u+1
lr=1 are non-increasing.
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5 Domain Reduction Techniques

In this section, we use the results from Section 4 to derive a problem-specific
bound tightening strategy for our distillation column model associated with
the aggregated components (Subsection 5.1). For this, we adapt the arguments
used in previous work [2] for binary mixtures to the multi-component case with
aggregated components. In Subsection 5.2, we moreover restate a method to
derive additional bounds on the aggregated concentration variables by com-
puting the fixed points of the concentration profiles. This method has already
been applied in [15] to the binary distillation case. Both techniques are imple-
mented in global optimization software and their impact is computationally
evaluated in Section 6.

5.1 Bound Tightening Strategy

The monotonic behavior of the aggregated concentration profiles together with
the aggregated component mass balance equations allow us to propagate given
bounds on the aggregated concentration variables at a certain tray to the
aggregated concentration variables associated with an adjacent tray.

For this, recap that, for every k = 1, . . . , n, the aggregated component mass
balance equations (14)

Y rect
k,lr+1 = νr X

rect
k,lr

+ (1− νr)Y
rect
k,1 , lr = 1, . . . , urect,

Xstrip
k,ls+1 = νs Y

strip
k,ls

+ (1− νs)X
strip
k,1 , ls = 1, . . . , ustrip

associated with the trays in the rectifying and stripping sections form two
families of recursive functions (one for each section). By analyzing the partial
derivatives, one can show that in both cases the recursive functions behave
monotonic in each of their arguments (see also [2] for the binary case). The
analysis is mainly straightforward. Only the partial derivatives

∂Y rect
k,lr+1

∂νr
= Xrect

k,lr
− Y rect

k,1 and
∂Xstrip

k,ls+1

∂νs
= Y strip

k,ls
−Xstrip

k,1

need special attention. For these, we remark that the monotonicity of the
concentration profiles ensures for each aggregated component k = 1, . . . , n
that

Xrect
k,lr

≤ Xrect
k,1 , lr = 1, . . . , urect,

Y strip
k,ls

≥ Y strip
k,1 , ls = 1, . . . , ustrip,

(32)

hold. As Xk,ls > 0, we moreover observe that the phase equilibrium equations
can be restated as follows:

Y rect
k,lr

= Xrect
k,lr

∑k
j=1

αj

(

Xrect
j,lr

Xrect
k,lr

−
Xrect

j−1,lr

Xrect
k,lr

)

Xrect
k,lr

∑
k
j=1

αj

(

Xrect
j,lr

Xrect
k,lr

−

Xrect
j−1,lr

Xrect
k,lr

)

+
∑

n
j=k+1

αj(Xrect
j,lr

−Xrect
j−1,lr

)

. (33)
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Note further that the numerator in equation (33) is a convex combination
of parameters α1, . . . , αk. From αk ≤ αk−1 ≤ · · · ≤ α1, it follows that the
numerator is greater or equal to αk. The denominator is a convex combination
of the numerator and parameters αk+1, . . . , αn. As αn ≤ · · · ≤ αk+1 ≤ αk, we
can conclude that the fractional term in the right-hand-side of equation (33)
is greater or equal to one. This implies that Y rect

k,lr
≥ Xrect

k,lr
. In a similar way,

we can verify that Y strip
k,ls

≥ Xstrip
k,ls

holds. Combining these results shows that
∂Y rect

k,lr+1/∂νr ≤ 0 and ∂X
strip

k,ls+1/∂νs ≥ 0.
Thus, given bounds on the arguments in (14) can be used to compute

bounds on the aggregated concentration variables associated with the consec-
utive tray via standard interval arithmetic (e.g., see also [12]). The resulting
formulas are stated in the following two lemmas, where Lemma 4 addresses
the stripping section and Lemma 5 deals with the rectifying section. In both
lemmas, superscripts “strip” and “rect” are neglected in order to keep the
notation simple.

Lemma 4 (Stripping Section)
Consider any ls ∈ {1, . . . , u} and k ∈ {1, . . . , n}. Assume further that νs ranges
on [νlos , νups ], Yk,ls ranges on [Y lo

k,ls
, Y up

k,ls
] and that Xk,1 ranges on [X lo

k,1, X
up

k,1].

Then, lower and upper bounds X lo
k,ls+1, X

up

k,ls+1 on Xk,ls+1 are given by

X lo
k,ls+1 = νlos Y lo

k,ls
+ (1− νlos )X lo

k,1, Xup

k,ls+1 = νups Y up

k,ls
+ (1− νups )Xup

k,1.

Lemma 5 (Rectifying Section)
Consider any lr ∈ {1, . . . , u} and k ∈ {1, . . . , n}. Assume further that νr ranges
on [νlor , νupr ], Xk,lr ranges on [X lo

k,lr
, Xup

k,lr
] and that Yk,1 ranges on [Y lo

k,1, Y
up

k,1].

Then, lower and upper bounds Y lo
k,lr+1, Y

up

k,lr+1 on Yk,lr+1 are given by

Y lo
k,lr+1 = νupr X lo

k,lr
+ (1− νupr )Y lo

k,1, Y up

k,lr+1 = νlor Xup

k,lr
+ (1− νlor )Y up

k,1.

It is worth to mention that the equations (32) do not hold for the variables
used for the molar fractions in the original model formulation from Section 2,
e.g., see molar fraction profile of second component (blue-colored dashed curve)
in Figure 2 (a). Thus, Lemma 4 and Lemma 5 are not applicable in that case.

The purity constraints (19) already provide (strong) valid bounds on the
concentration variables at the condenser and, hence, at the first tray of the
rectifying section as well as on the concentration variables at the reboiler and
the first tray (in our ordering) of the stripping section. Starting with these
bounds, our next goal is to propagate bounds on the concentration variables
tray by tray through each section by repeatedly applying the formulas for
bound calculations from Lemma 4 and Lemma 5. This procedure defines the
bound tightening strategy.

However, a re-use of the formulas from Lemma 4 and Lemma 5 will make
it necessary to translate bounds on the aggregated concentration variables
associated with the vapor or the liquid phase into valid bounds on the aggre-
gated concentration variables in the other phase. This is achieved by exploiting
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the phase equilibrium equations (16) and their inverses (28), respectively, and
leads to the formulas as given in Lemma 6 (for the stripping section) and in
Lemma 7 (for the rectifying section). Again, superscripts “strip” and “rect”
are omitted to keep the statements easy to read. The proofs are postponed to
Appendix B.

Lemma 6 (Stripping Section)
Let ls ∈ {1, . . . , u + 1} be fixed. Assume further that, for every k = 1, . . . , n,
lower and upper bounds X lo

k,ls
, Xup

k,ls
on Xk,ls are given, where

X lo
k,ls

≤ X lo
k+1,ls and Xup

k,ls
≤ Xup

k+1,ls
hold for k = 1, . . . , n− 1.

Then, for each k, lower and upper bounds Y lo
k,ls

, Y up

k,ls
on Yk,ls are given by

Y lo
k,ls

=

∑k
j=1 αj(X

ak

j,ls
−Xak

j−1,ls
)

∑n
j=1 αj(X

ak

j,ls
−Xak

j−1,ls
)
and Y up

k,ls
=

∑k
j=1 αj(X

bk
j,ls

−Xbk
j−1,ls

)
∑n

j=1 αj(X
bk
j,ls

−Xbk
j−1,ls

)
,

where we define for j = 1, . . . , n

Xak

j,ls
:=

{

X lo
j,ls

, if j ≤ k,

Xup

j,ls
, if j > k,

and Xbk
j,ls

=

{

Xup

j,ls
, if j ≤ k,

max{Xup

k,ls
, X lo

j,ls
}, if j > k.

Lemma 7 (Rectifying Section)
Let lr ∈ {1, . . . , u + 1} be fixed. Assume further that, for every k = 1, . . . , n,
lower and upper bounds Y lo

k,lr
, Y up

k,lr
on Yk,lr are given, where

Y lo
k,lr

≤ Y lo
k+1,lr and Y up

k,lr
≤ Y up

k+1,lr
hold for k = 1, . . . , n− 1.

Then, for each k, lower and upper bounds X lo
k,lr

, Xup

k,lr
on Xk,lr are given by

X lo
k,lr

=

∑k
j=1 α

−1
j (Y ak

j,lr
− Y ak

j−1,lr
)

∑n
j=1 α

−1
j (Y ak

j,lr
− Y ak

j−1,lr
)
and Xup

k,lr
=

∑k
j=1 α

−1
j (Y bk

j,lr
− Y bk

j−1,lr
)

∑n
j=1 α

−1
j (Y bk

j,lr
− Y bk

j−1,lr
)
,

where we define for j = 1, . . . , n

Y ak

j,lr
:=

{

min{Y up

j,lr
, Y lo

k,lr
}, if j < k,

Y up

j,lr
, if j ≥ k,

and Y bk
j,lr

=

{

Y lo
j,lr

, if j < k,

Y up

j,lr
, if j ≥ k.

5.2 Fixed Points

A further way to tighten the model formulation from Section 3 is to determine
the fixed points from the recursive functions given by the component mass
balance equations (14) and the phase equilibrium equations (16). Corollaries 2
and 3 imply that, for each aggregated component k, the four infinite sequences

{

Xstrip
k,ls

}

ls∈Z≥1
,
{

Y strip
k,ls

}

ls∈Z≥1
and

{

Xrect
k,lr

}

lr∈Z≥1
,
{

Y rect
k,lr

}

lr∈Z≥1
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must converge since they are monotonic and range on the bounded interval
[0, 1]. Due to the monotonic behavior, the limit of each sequence further pro-
vides either a lower or an upper bound valid for each element of the sequence.
As done in [15] for the binary case, we can exploit that property by incorpo-
rating, for each k = 1, . . . , n, the following (redundant) nonlinear constraints
to the aggregated model formulation.

Xstrip,⋆
k = νsY

strip,⋆
k + (1− νs)X

strip
k,1 ,

Y strip,⋆
k =

∑k
j=1 αj(X

strip,⋆
j −Xstrip,⋆

j−1 )
∑n

j=1 αj(X
strip,⋆
j −Xstrip,⋆

j−1 )
,

Xstrip,⋆
k ≥ Xstrip

k,ls
, Y strip,⋆

k ≥ Y strip
k,ls

, ls = 1, . . . , ustrip + 1,

Y rect,⋆
k = νrX

rect,⋆
k + (1− νr)Y

rect
k,1 ,

Xrect,⋆
k =

∑k
j=1 α

−1
j (Y rect,⋆

j − Y rect,⋆
j−1 )

∑n
j=1 α

−1
j (Y rect,⋆

j − Y rect,⋆
j−1 )

,

Xrect,⋆
k ≤ Xrect

k,lr
, Y rect,⋆

k ≤ Y rect
k,lr

, lr = 1, . . . , urect + 1.

(34)

We however remark that, in general, the fixed points lead to weaker bounds
than the bounds that can be obtained by the bound tightening strategy. This
holds as the bounds obtained by the bound tightening strategy are monotonic
with respect to the section lengths and also bounded by the fixed points.

6 Computational Studies

In this section, we computationally evaluate the impact of the presented tech-
niques on the performance of global optimization software. For this, we con-
sider several numerical test instances dealing with ideal multi-component dis-
tillation processes. The objective of all instances is to find an optimal column
design w.r.t. cost function (20) that separates the more volatile components
from the less volatile components.

6.1 Test Setting

We consider 16 test instances. The reference test instance ref consists of a mix-
ture of n = 4 components with initial composition xin

i = 1
4 for i = 1, 2, 3, 4, and

with the constant relative volatilities (α1, α2, α3, α4) = (6, 4, 1.2, 1). The num-
ber lcol of trays that can be used in the entire distillation column is bounded
by 25. Every section consists of at least one tray, so that the upper bound on
the number of trays used for the rectifying as well as for the stripping section
is given by urect = ustrip = 23. Molar flows F , B, D and V are given in terms
of mol s−1. The feed molar flow F is fixed to 1, while the remaining molar
flows are variable and may range as follows: 0 mol s−1 ≤ V ≤ 20 mol s−1,
0 mol s−1 ≤ B,D ≤ 1 mol s−1. We choose the split σ to be 2. Recap from
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Section 3 that σ defines the more volatile single components (1, . . . , σ) with-
drawn from the condenser and the less volatile single components (σ+1, . . . , n)
withdrawn from the reboiler. With respect to split σ, we call the components
σ and σ+1 key components, while the others are called non-key components.
The purity requirements are given by πdist = πbot = 0.99.

The remaining test instances are defined by changing the values of several
parameters, resulting in five groups of further test instances that are briefly
explained, next.

The first group is defined by varying the constant relative volatilities for
the non-key components from the reference instance. The specifications are
given in Table 3.

Instance adis1 adis2 adis3

(α1, α2, α3, α4) (12, 4, 1.2, 1) (12, 8, 2.4, 1) (24, 8, 2.4, 1)

Table 3: Specification of test instances with change in the distribution of
volatilities

The second group consists of two further instances for that the split σ is
changed. Moreover, the constant relative volatilities are adapted in such a way
that the ratios between the volatilities of the key components are the same as
in the reference setting. Table 4 shows the concrete specifications.

Instance apos1 apos2

σ 1 3

(α1, α2, α3, α4) (6.67, 2, 1.5, 1) (8, 5, 3.33, 1)

Table 4: Specification of test instances with changing σ

In the third group, we change the initial composition of the mixture as
given in Table 5.

Instance con1 con2 con3

(xin
1 , xin

2 , xin
3 , xin

4 ) ( 1
10

, 2
5
, 2
5
, 1
10

) ( 1
4
, 2
5
, 1
10

, 1
4
) ( 1

4
, 1
10

, 2
5
, 1
4
)

Table 5: Specification of test instances by varying the initial composition of
the mixture

Group four consists of the test instances, for that we vary the purity re-
quirements on condenser and reboiler. In addition, we adapt the constant
relative volatilities in order to keep the separation processes approximately as
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difficult as the separation process of the reference instance. Table 6 provides
the specific setting for the changed parameters.

Instance pur1 pur2 pur3

(πdist, πbot) (0.95, 0.95) (0.99, 0.95) (0.95, 0.99)

(α1, α2, α3, α4) (3.64, 2.42, 1.2, 1) (4.62, 3.08, 1.2, 1) (4.62, 3.08, 1.2, 1)

Table 6: Specification of test instances with different purity requirements

Finally, we define a fifth group of test instances in which different numbers
of components are considered. For each such instance, we adapt split σ, initial
composition and relative volatilities accordingly, as summarized in Table 7.

Instance comp1 comp2 comp3 comp4

n 2 3 5 5

σ 1 1 2 1

(xin
1 , . . . , xin

n ) ( 1
2
, 1
2
) ( 1

2
, 1
4
, 1
4
) ( 1

4
, 1
4
, 1
4
, 1
8
, 1
8
) ( 1

2
, 1
4
, 1
10

, 3
40

, 3
40

)

(α1, . . . , αn) (3.33, 1) (4, 1.2, 1) (6, 4, 1.2, 1.1, 1) (6.67, 2, 1.5, 1.2, 1)

Table 7: Test instances where the number of components is changed

6.2 Problem Formulation

For each instance, two MINLP formulations are derived. The first formula-
tion, called MINLP-O, is based on the original distillation column model (9) as
presented in Section 2. The second formulation makes use of the model formu-
lation (21) with aggregated concentration variables as introduced in Section 3
and is called MINLP-A. Additionally, we apply several different solution strate-
gies to MINLP-A. The first strategy, indicated by w/Mo, adds the (redundant)
conditions on monotonicity from Corollaries 2 and 3. The second strategy takes
the fixed-point equations (34) into account and is labeled by w/Fix.

All formulations have been implemented using the following standard refor-
mulation techniques. Due to their redundancy, all variables that are associated
with the (corresponding) last component n as well as the variables xdist

i , xbot
i ,

i = 1, . . . , n, and Xdist
k , Xbot

k , k = 1, . . . , n, are eliminated. Moreover, each
rational function appearing in one of the model constraints is expanded by its
denominator and restated by polynomial constraints.

Note that the coupling conditions (6a) and (18a) involve quadratic terms
including binary variables. We use a standard approach to linearize these types
of equations. We applied several different linearization techniques and found,
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based on preliminary computations, that the following one is best suited for
our cases. Consider the first line of the equations (18a)

X feed-1
k =

urect

∑

lr=1

βrect
lr

Xrect
k,lr

,

for a fixed k ∈ {1, . . . , n}. Using that
∑urect

lr=1 β
rect
lr

= 1 holds, we can reformulate
the equation as follows.

βrect
lr

X feed-1
k = βrect

lr
Xrect

k,lr
, lr = 1, . . . , urect.

Next, we introduce a new variable Clr for lr = 1, . . . , urect and demand

Clr = βrect
lr

X feed-1
k , Clr = βrect

lr
Xrect

k,lr
, lr = 1, . . . , urect.

For every lr = 1, . . . , urect, these two quadratic equations are linearized in the
following well-known way.

Clr ≥ βrect
lr

+X feed-1
k − 1, Clr ≥ βrect

lr
+Xrect

k,lr
− 1,

Clr ≤ βrect
lr

, Clr ≤ X feed-1
k , Clr ≤ Xrect

k,lr
.

The remaining equations in (18a) and (6a) are handled analogously.

All computations are carried out on a 3.00GHz Intel Xeon E5450 Processor
with a limit of 30GB memory space for each run. Moreover, running time is
limited to 24 hours and the relative optimality gap is chosen to be 10−4.

In order to compare different solving strategies for our test instances, we
utilize a standard performance measure. It is given by the geometric mean of
the solution times for each instance relative to a reference strategy. We will
use this as an auxiliary tool in our analysis without relying solely on it, as
the number of test instances is quite restricted. For calculating the average
solution time, we use 24 hours for all instances that have not been solved
during the time limit.

6.3 Results using SCIP

All MINLPs are implemented and solved with SCIP 3.2 [1] using CPLEX 12.6.0

[14] as LP-sub-solver and IPOPT 3.12.4 [27] (incl. HSL-routines MA27 and MC19

[13]) as NLP-sub-solver.
By using SCIP we are able to apply a third solution strategy to MINLP-A.

Therein, the bound tightening procedure as described in Section 5 is used at
every node in the branch and bound tree. This is achieved by implementing
a domain propagation routine as an own constraint handler in SCIP. The
label w/BT indicates that the bound tightening strategy is switched on.

Our computational results are summarized in the Tables 8 to 11. Table 8
shows the running time in CPU minutes for all instances that have been solved



26 Nick Mertens, Christian Kunde, Achim Kienle, Dennis Michaels

in the time limit of 24 hours. Table 9 displays the total number of Branch-and-
Bound nodes needed in the solving process for these instances. Table 10 lists
the relative gap between upper and lower bound in percentage after 24 hours
for all instances that have not been solved in this time. Table 11 shows the
geometric mean of the solution times for each instance relative to the standard
formulation MINLP-O and to other formulations, respectively.

Ex. MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A
w/Mo w/Mo,Fix w/BT w/Mo,BT

ref – 95 61 90 9 6

adis1 280 – 88 123 24 13

adis2 – – 372 122 26 8

adis3 – – 34 40 13 12

apos1 249 – – 92 15 12

apos2 – 51 34 20 5 4

con1 232 15 30 74 6 5

con2 – – 36 127 25 45

con3 1038 97 134 – 19 10

pur1 – – 658 405 64 32

pur2 – – 1331 110 21 12

pur3 1373 462 71 – 57 13

comp1 1.1 0.4 0.5 0.4 0.2 0.1

comp2 12 14 33 28 3 1

comp3 – 157 290 – 41 46

comp4 481 – 443 – 32 20

Table 8: Running time in CPU minutes using the SCIP framework. Label “–
” means that the problem was not solved during the time limit of 24 hours.
The lowest running time for every instance is highlighted.

First we compare the original formulation (MINLP-O) to the aggregated
one (MINLP-A). By using formulation MINLP-O, eight of the sixteen instances
are not solved to global optimality within the time limit (see column 2 of
Table 8). The same holds when formulation MINLP-A is used, but with a dif-
ferent subset of unsolved instances (see column 3 of Table 8). Comparing the
two columns, we see that among all instances that are solved by both formu-
lations, using formulation MINLP-A leads to a lower running time for all but
instance comp2, and to a lower number of Branch-and-Bound nodes needed for
all these instances (see columns 2, 3 of Table 9). Among all instances that are
not solved by both formulations, the remaining optimality gap is significantly
lower when formulation MINLP-A is used (see columns 2, 3 of Table 10). On
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Ex. MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A
w/Mo w/Mo,Fix w/BT w/Mo,BT

ref – 148 100 119 10 7

adis1 393 – 118 153 31 19

adis2 – – 558 217 31 9

adis3 – – 61 64 16 16

apos1 392 – – 123 19 17

apos2 – 91 53 34 5 5

con1 346 19 47 95 6 5

con2 – – 61 180 31 47

con3 1539 125 216 – 21 12

pur1 – – 920 514 60 35

pur2 – – 2285 151 24 13

pur3 1526 623 110 – 55 14

comp1 18 4 5 4 1 1

comp2 49 48 133 96 8 5

comp3 – 111 219 – 28 24

comp4 327 – 417 – 22 16

Table 9: Branch-and-Bound nodes needed in 1000 for solving the problem
using the SCIP framework. Label “–” means that the problem was not solved
during the time limit of 24 hours. The lowest number of nodes needed for
every instance is highlighted.

average, the running time is reduced to 51.3% as shown in row 2 of Table 11.
These observations suggest an advantageous behavior of formulation MINLP-A

during the solving process. However, we need to mention that applying the
reformulation alone does not always lead to an improvement, since three of
our test instances are solved by using formulation MINLP-O but not by using
formulation MINLP-A.

Next, we discuss the influence of adding the redundant monotonicity con-
straints (w/Mo) to our model formulations by examining the differences be-
tween columns 3 and 4 of Tables 8 and 9. For five of our test instances, the
influence is negative for both running time and number of nodes needed in
the solving process, while the opposite holds for ten instances. Only instance
apos1 is not solved by formulation MINLP-A w/Mo, but still the remaining op-
timality gap is lower than the one obtained by using formulation MINLP-A.
The average running time is reduced to 42% by using MINLP-A w/Mo instead
of MINLP-A (row 3 in Table 11). Thus we can conclude that the positive influ-
ence of the additional constraints for a wide subset of our instances dominates
the negative influences. A similar result can be obtained by comparing the
columns 6 and 7 of Tables 8 and 9. All but two instances have a lower running
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Ex. MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A
w/Mo w/Mo,Fix w/BT w/Mo,BT

ref 18.36 – – – – –

adis1 – 0.33 – – – –

adis2 13.02 8.15 – – – –

adis3 13.44 0.26 – – – –

apos1 – 0.27 0.02 – – –

apos2 18.25 – – – – –

con1 – – – – – –

con2 6.11 0.11 – – – –

con3 – – – 0.33 – –

pur1 11.07 0.10 – – – –

pur2 20.97 7.9 – – – –

pur3 – – – 1.17 – –

comp1 – – – – – –

comp2 – – – – – –

comp3 22.62 – – 0.03 – –

comp4 – 0.02 – 0.03 – –

Table 10: Relative gap given in percentage after 24 hours using the SCIP

framework. Label “–” means that the problem was solved with a gap lower
than 0.01%.

relative MINLP-O MINLP-A MINLP-A MINLP-A MINLP-A MINLP-A
to w/Mo w/Mo,Fix w/BT w/Mo,BT

-O 100% 51.3% 21.7% 27.1% 2.9% 1.9%

-A – 100% 42.3% – 5.6% –

w/BT – – – – 100% 66.2%

w/Mo – – 100% 125.0% – 8.8%

Table 11: Geometric mean of the running times relative to selected reference
formulations using the SCIP framework.

time and all but three instances have a lower amount of nodes needed when
the additional monotonicity constraints are added. The average running time
is reduced to 66% in this case (row 4 in Table 11).

Now we analyze the influence of the fixed point equations (w/Fix). For this,
we consider the columns 3 and 4 in the Table 8. For two instances (apos1,
pur2 ), this influence is significantly positive while in four other cases (con3,
pur3, comp3, comp4 ), the respective instances could not be solved in the time
limit. For all other instances, the influence on running time and nodes needed
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(Table 9) is very mixed and differences are not as significant. The average
running time by adding the fixed point strategy is increased to 125% (row 5
in Table 11). We conclude an overall small, but rather negative influence of
this solving strategy, with a huge impact in some special cases.

At last we focus on our main contribution in terms of algorithmic impact,
which is the problem specific bound tightening strategy (w/BT). Note that the
two solving strategies using this method (columns 6 and 7 in Tables 8 and 9)
are the only ones able to solve all our instances to global optimality during
the given time limit. Furthermore, one of these two strategies is always the
best in terms of both, running time and Branch-and-Bound nodes needed. By
comparing the columns 3 and 6 in Table 8, we can see a huge improvement
in running time by applying the bound tightening strategy to the aggregated
model formulation. On average, the running time is reduced to 5.6% (row 3
of Table 11). A similar result is obtained by analyzing the influence of the
bound tightening on the model formulation already using the monotonicity
constraints (columns 4 and 7 in Table 8). The average running time in this
case is reduced to 8.8% (row 5 of Table 11). These results show a signifi-
cant performance improvement by applying our developed bound tightening
strategy during the optimization process of ideal multi-component distillation
columns.

To summarize the analysis, three of our four proposed solution strategies
have a positive influence on the performance of SCIP on our test set. These
strategies are the aggregated reformulation, the monotonicity constraints and
especially the bound tightening. If we add all three strategies and compare
them to the original model formulation (columns 2 and 7 in Table 8) we can
derive an average reduction of the running time to 1.9% (row 2 of Table 11).

6.4 Results using GAMS:BARON

We finally investigate the computational behavior of another global optimiza-
tion solver on our MINLP formulations. For this, we chose the standard solver
BARON 16.3.4 [24] as provided within the modeling system GAMS 24.7.1[10]. The
solver is used with default settings, CPLEX as LP-subsolver and CONOPT as
NLP-subsolver. We remark that our focus is on the question how the solver
works as a black box on the different model formulations rather than on com-
paring the performance with SCIP.

In the following, we consider the model formulations MINLP-O, MINLP-A,
MINLP-A w/Mo and MINLP-A w/Mo,Fix as defined in Subsection 6.2. We do not
see a way to implement the bound-tightening strategy in the closed-source en-
vironment GAMS, so that this strategy is excluded from further considerations.

Table 12 displays the running time in CPU minutes and Table 13 displays
the number of Branch-and-Bound nodes needed for the solving process. The
single instance that has not been solved during the time limit using formulation
MINLP-O is indicated by the symbol “–” and has a remaining optimality gap
of 19, 46% after 24 hours. Table 14 shows the geometric mean of the running
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times relative to MINLP-O, MINLP-A and MINLP-A w/Mo respectively. Again we
will analyze the influence of the different formulations and solving strategies
one by one.

Instance MINLP-O MINLP-A MINLP-A MINLP-A
w/Mo w/Mo,Fix

ref 240 201 51 80

adis1 46 103 59 95

adis2 – 307 131 160

adis3 110 220 114 103

apos1 46 68 36 53

apos2 131 29 83 41

con1 117 55 41 242

con2 43 185 23 34

con3 232 174 163 121

pur1 376 559 88 78

pur2 332 126 190 178

pur3 392 172 36 53

comp1 0.8 0.7 0.7 0.4

comp2 4 14 22 15

comp3 596 156 304 234

comp4 56 182 355 590

Table 12: Running time in CPU minutes using GAMS:BARON. Label “–”
means that the problem was not solved during the time limit of 24 hours.
The lowest running time for every instance is highlighted.

Using the reformulation MINLP-A instead of MINLP-O has a rather insignif-
icant influence on the solution time of our test instances. Nine of the sixteen
instances are solved faster while the other seven are solved slower (columns 2
and 3 in Table 12). On average, the running time is reduced to 91.4% as shown
in row 2 of Table 14. However, it is important to note that all instances are
solved by using MINLP-A, and that all but one instance needed a lower amount
of Branch-and-Bound nodes.

Next we analyze the effect of adding the monotonicity constraints (w/Mo)
to our model formulation (columns 3 and 4 in Table 12). Although there are six
instances with a higher running time using this solution strategy, the overall
influence is very positive. On average, the running time is reduced to 66%
(row 3 in Table 14)

Further, adding the fixed point equations (w/Mo,Fix) to this formulation
has a small negative influence on the performance of the solver on our test
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Instance MINLP-O MINLP-A MINLP-A MINLP-A
w/Mo w/Mo,Fix

ref 47 11 6 7

adis1 20 13 12 13

adis2 – 37 28 24

adis3 22 11 5 13

apos1 9 7 7 8

apos2 3 0.2 14 3

con1 24 15 8 19

con2 18 30 3 5

con3 53 16 28 5

pur1 25 14 5 1

pur2 35 7 19 17

pur3 46 3 5 0.3

comp1 1 0.3 2 0.1

comp2 3 3 17 5

comp3 18 5 9 8

comp4 12 9 17 12

Table 13: Branch-and-Bound nodes needed in 1000 for solving the problem
using GAMS:BARON. Label “–” means that the problem was not solved dur-
ing the time limit of 24 hours. The lowest number of nodes needed for every
instance is highlighted.

relative MINLP-O MINLP-A MINLP-A MINLP-A
to w/Mo w/Mo,Fix

-O 100% 91.4% 60.4% 69.2%

-A – 100% 66.1% –

w/Mo – – 100% 114.5%

Table 14: Geometric mean of the running times relative to selected reference
formulations using GAMS:BARON.

set. Half of the instances perform better and the other half performs worse in
terms on running time (columns 4 and 5 in Table 14). On average, the running
time is increased to 114.5% (row 4 in Table 14).

The differences between the performance of our problem formulations are
considerably smaller using GAMS: BARON as a solver instead of SCIP. Neverthe-
less, we can detect the same general tendencies. The aggregated formulation
has a small positive influence and the monotonicity constraints a significantly
higher one. The fixed point equations tend to reduce the performance of the
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solvers. Unfortunately, we are not able to compare the influence of the bound
tightening strategy on the solver GAMS:BARON.

We observe that some of our instances benefit a lot from our solution
strategies while others are rather disturbed. We assume that this holds for
the following reason. Adding additional constraints on the one hand tightens
the model formulation, but on the other hand increases the problem size. The
respective trade off in terms of solver performance varies among the instances
and leads to the observed behaviour.

7 Conclusion

This article introduced a reformulation of the variables used for mole frac-
tions of ideal multi-component distillation column models. The reformulated
variables turned out to be monotonic, which allowed us to design a bound
tightening strategy and to apply it within deterministic global optimization
software. It was shown that a reduction in running time is already given by
using the reformulated model. Further significant reduction was achieved with
the proposed problem-specific bound tightening strategy. Focus in the present
paper was on simple column configurations and ideal thermodynamics. Future
work will focus on global optimization of more complex column configurations,
including hybrid separation processes as well as non-ideal thermodynamics.
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A Proof of Corollary 3

Consider System (29) with parameters α1 ≥ α2 ≥ · · · ≥ αn > 0 and variables (Y, νr).
We show that applying the transformation rules (30) to (Y, νr) and α1, . . . , αn leads to

System (31) with parameters α̂1 ≥ α̂2 ≥ · · · ≥ α̂n > 0 and with variables X̂, ν̂s whose
feasible solutions satisfy the conditions of Theorem 1 (and Corollary 2). Note that feasible
solutions to System (29) are in one-to-one correspondence to solutions feasible to (31) via
the transformation rules (30). As we obtain from Corollary 2 that, for every feasible solution

(X̂, ν̂s), the sequences {X̂
k,l̂s

}û+1

l̂s=1
with k = 1, . . . , n are non-decreasing, the corresponding

sequences {Yk,lr}
u+1
lr=1, k = 1, . . . , n are non-increasing.

The first part of System (29) is given as a combination of the mass balance equations (14)
and the inverted phase equilibrium equations (28).

Yk,lr+1 = νr Xk,lr + (1− νr)Yk,1 and Xk,lr =

∑k
j=1 α

−1
j (Yj,lr − Yj−1,lr )

∑n
j=1 α

−1
j (Yj,lr − Yj−1,lr )

,

for k = 1, . . . , n and lr = 1, . . . , u. We apply the transformation rules (30) to each constraint,
separately. Recap that after the transformation, the components appear in reverse order. To
indicate that, we introduce a new index m := n− k.

For all k = 1, . . . , n and all l = 1, . . . , u, we obtain

Yk,l+1 = νrXk,l + (1− νr)Yk,1 ⇔ (1− Yk,l+1) = 1−
(

νrXk,l + (1− νr)Yk,1

)

⇔ (1− Yk,l+1) = νr(1−Xk,l) + (1− νr)(1− Yk,1).

Thus, the transformation rules (30) yield

X̂k,l+1 = ν̂sŶk,l + (1− ν̂s)X̂k,1, m = 0, . . . , n, l = 1, . . . , u. (35)

For the inverted phase equilibrium equations, we further derive that

Ŷn−k,l = 1−Xk,l = 1−

∑k
j=1 α

−1
j (Yj,l − Yj−1,l)

∑n
j=1 α

−1
j (Yj,l − Yj−1,l)

=

∑n
j=k+1 α

−1
j (Yj,l − Yj−1,l)

∑n
j=1 α

−1
j (Yj,l − Yj−1,l)

=

∑n
j=k+1 α

−1
j (1− X̂n−j,l −

(

1− X̂n−(j−1),l)
)

∑n
j=1 α

−1
j (1− X̂n−j,l −

(

1− X̂n−(j−1),l)
)

=

∑n
j=k+1 α

−1
j (X̂n−(j−1),l − X̂n−j,l)

∑n
j=1 α

−1
j (X̂n−(j−1),l − X̂n−j,ls )

=

∑n
j=k+1 α̂n+1−j(X̂n+1−j,l − X̂n−j,l)

∑n
j=1 α̂n+1−j(X̂n+1−j,l − X̂n−j,l)

holds for every k = 1, . . . , n and for every l = 1, . . . , u. By an index shift p := n+ 1− j, we
derive the equivalence to the non-inverted phase equilibrium equations (16).

Ŷn−k,l =

∑n−k
p=1 βp(X̂p,l − X̂p−1,l)

∑n
p=1 βp(X̂p,l − X̂p−1,l)

, n = 0, . . . , n

l = 1, . . . , u+ 1

⇔ Ŷm,l =

∑m
p=1 βp(X̂p,l − X̂p−1,l)

∑n+1
p=1 βp(X̂p,l − X̂p−1,l)

, m = 0, . . . , n

l = 1, . . . , u+ 1

(36)

Combining the equations (35) and (36), we obtain the first line from System (31).
The second line of System (31) results from the following relation.

Yk+1,l ≥ Yk,l, k = 0, . . . , n− 1 ⇔ X̂m−1,l ≤ X̂m,l, m = 1, . . . , n.
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The third line of System (31) trivially holds.
It remains to argue that the transformed constant relative volatilities α̂m = α−1

(n+1)−m
,

m = 1, . . . , n, are strictly positive and monotonically non-decreasing in the new ordering of
the components. This, however, holds as α1 ≥ · · · ≥ αn > 0 implies that

0 < α−1
1 ≡ α̂n ≤ · · · ≤ α−1

n ≡ α̂1.

Now, we can conclude that any feasible solution to System (31) satisfies the conditions
of Theorem 1 and Corollary 2. ⊓⊔

B Proof of Lemma 6 and Lemma 7

We only give a proof for Lemma 6 dealing with the stripping section. The correctness of
Lemma 7 can be shown in a similar way.

In what follows, superscript “strip” is omitted, again.

Proof (Lemma 6)
We interpret the aggregated phase equilibrium equations (16)

Yk,ls (X) =

∑k
j=1 αj(Xj,ls −Xj−1,ls )

∑n
j=1 αj(Xj,ls −Xj−1,ls )

as functions in the liquid phase concentration variables. For all k, q = 1, . . . , n and for all
ls = 1, . . . , u+1, we consider the partial derivatives ∂Yk,ls

(X)/∂Xq,ls
where we distiguish the

three cases q ≤ k − 1, q = k and q ≥ k + 1. To keep notation short, we introduce constant
αn+1 := 0.

For q ≤ k − 1, we obtain

∂Yk,ls (X)

∂Xq,ls

=
(αq − αq+1)

∑n
j=1 αj(Xj,ls −Xj−1,ls )

(
∑n

j=1 αj(Xj,ls −Xj−1,ls )
)2

−

∑k
j=1 αj(Xj,ls −Xj−1,ls )(αq − αq+1)
(
∑n

j=1 αj(Xj,ls −Xj−1,ls )
)2

=
(αq − αq+1)

∑n
j=k+1 αj(Xj,ls −Xj−1,ls )

(
∑n

j=1 αj(Xj,ls −Xj−1,ls )
)2

.

As (αq − αq+1) ≥ 0 holds, this derivative is non-negative for all k = 1, . . . , n and all
ls = 1, . . . , u+ 1.

For q = k we obtain

∂Yq,ls (X)

∂Xq,ls

=
αq

∑n
j=1 αj(Xj,ls −Xj−1,ls )−

∑q
j=1 αj(Xj,ls −Xj−1,ls )(αq − αq+1)

(
∑n

j=1 αj(Xj,ls −Xj−1,ls )
)2

=
αq

∑n
j=q+1 αj(Xj,ls −Xj−1,ls ) + αq+1

∑q
j=1 αj(Xj,ls −Xj−1,ls )

(
∑n

j=1 αj(Xj,ls −Xj−1,ls )
)2

,

(37)

which is also non-negative for all q = 1, . . . , n and all ls = 1, . . . , u+ 1.
For q ≥ k + 1 we obtain

∂Yk,ls (X)

∂Xq,ls

=
−

∑k
j=1 αj(Xj,ls −Xj−1,ls )(αq − αq+1)
(
∑n

j=1 αj(Xj,ls −Xj−1,ls )
)2

, (38)

which is non-positive for all k = 1, . . . , n and all ls = 1, . . . , u+ 1 due to (αq − αq+1) ≥ 0.
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This shows that the phase equilibrium equations are component-wise monotonic. There-
fore, we can apply simple interval arithmetic, again, leading to following lower and upper
bounds on the vapor phase concentration variables Yk,ls+1.

Y lo
k,ls

=

∑k
j=1 αj(X

ak
j,ls

−X
ak
j−1,ls

)
∑n

j=1 αj(X
ak
j,ls

−X
ak
j−1,ls

)
and Y up

k,ls
=

∑k
j=1 αj(X

bk
j,ls

−X
bk
j−1,ls

)
∑n

j=1 αj(X
bk
j,ls

−X
bk
j−1,ls

)
,

where for j = 1, . . . , n

X
ak
j,ls

:=

{

Xlo
j,ls

, if j ≤ k,

Xup
j,ls

, if j > k,
and X

bk
j,ls

=

{

Xup
j,ls

, if j ≤ k,

Xlo
j,ls

, if j > k,
(39)

We remark that the upper bound Y up
k,ls

on Yk,ls is not tight when Xup
k,ls

> Xlo
k′,ls

holds for

some k′ > k. In those cases, we can compute an improved upper bound on Yk,ls by finding
the maximum of

Yk,ls (X) =

∑k
j=1 αj(Xj,ls −Xj−1,ls )

∑n
j=1 αj(Xj,ls −Xj−1,ls )

restricted toXlo
k′,ls

≤ Xk,ls ≤ Xk′,ls ≤ Xup
k,ls

. As ∂Yk,ls
(X)/∂Xk,ls

≥ 0 and ∂Yk,ls
(X)/∂Xk′,ls

≤

0, it follows that Xk,ls = Xk′,ls must hold for a solution on that the maximum is attained.
A comparison of the equations (37) and (38) gives rise to the following relation.

∂Yk,ls (X)

∂Xk,ls

+
n
∑

j=k+1

∂Yk,ls (X)

∂Xj,ls

≥ 0.

This shows that the maximum is attained when Xk,ls = Xk′,ls = Xup
k,ls

. Hence, we can

replace the definition of X
bk
j,ls

in the equations (39) by

X
bk
j,ls

=

{

Xup
j,ls

, if j ≤ k,

max
{

Xup
k,ls

, X lo
j,ls

}

, if j > k.

This completes the proof. ⊓⊔
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