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MONOTONICALLY NORMAL SPACES
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R. W. HEATH(l), D. J. LUTZERÍ1), AND P. L. ZENOR

ABSTRACT. This paper begins the study of monotone normality, a common

property of linearly ordered spaces and of Borges' stratifiable spaces.  The con-

cept of monotone normality is used to give necessary and sufficient conditions

for stratifiability of a T. -space, to give a new metrization theorem for p-spaces

with G g-diagonals, and to provide an easy proof of a metrization theorem due to

Treybig.  The paper concludes with a list of examples which relate monotone

normality to certain familiar topological properties.

1. Introduction.  The property of monotone normality first appears, without

name, in Lemma 2.1 of C. R. Borges' paper  Orz stratifiable spaces [5]. In  [29],

P. Zenor named the property and announced results relating monotone normality

to metrizability and stratifiability. Subsequently Heath and Lutzer ([17], [18])

and Borges  [7] announced results complementary to Zenor's original work, show-

ing, in particular, that monotone normality unexpectedly holds in one large class

of spaces—the linearly ordered spaces—but fails to hold in others where it might

be expected.
This paper is a combination of the independent studies conducted by Zenor

and by Heath and Lutzer.  §§2 through 4 are the work of Zenor, with the exception

of Lemma 2.2 which, together with  §§5 through 7, is due to Heath and Lutzer. The

authors would like to thank the editor for suggesting this format.

2. Definitions and preliminary results.  Throughout this paper all spaces are

assumed to be at least  T    and  "mapping" means  "continuous onto function."

The set of natural numbers is denoted by the letter  zV.

2.1. Definition.  A space  X is  monotonically normal if there is a function  G

which assigns to each ordered pair ÍH, K) of disjoint closed subsets of X an

open set   G(/7, K) such that
(a) H C GÍH, K) C G(W, K)~ C x\K;
(b) if  (H , K ) is a pair of disjoint closed sets having  H C H   and  K D K
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482 R. W. HEATH, D. J. LUTZER, AND P. L. ZENOR

then GÍH, K) C G(ß', K').
The function   G is called a  monotone normality operator fot  X.

2.2. Lemma.  Any monotonically normal space has a monotone normality oper-

ator G satisfying  GÍA, B) DGÍB, A) = 0 for any pair (A, B) of disjoint closed
sets.   Furthermore, each of the following properties is equivalent to monotone

normality of a space X:

(a) There is a function G which assigns to each ordered pair (S, T) of sep-

arated^) subsets of X an open set G(S, T) satisfying

(i) S C GÍS, T) C GÍS, T)~ C x\T;
(ii)  if (S , T ) is a pair of separated sets having S C S   and T D T' then

GÍS, T)CGÍS', T').
(b) There is a function H which assigns to each ordered pair (p, C), with  C

closed and p £ X\C, an open set Hip, C) satisfying:

(i) p £ H(p, C) C X\C;
(ii)  if D  is closed and p i C D D then Hip, C) C Hip, D);

(iii)  if p / q are points of X then Hip, \q\) C\ Hiq, \p\) =  0.

Proof.  To prove the first statement, let G   be any monotone normality oper-
ator for X and define  G(/4, B) = G\A, B)\G'iB, A) .  Then  G is a monotone
normality operator for X having  GÍA, B) CtGiB, A) = 0.

Clearly (a)=>(monotone normality)=»(b). We show that (b) implies (a). For

any pair  ÍS, T) of separated sets let

GiS, T)=\J\HÍp, T~)\ pe S].

Clearly  S C GÍS, T); and GÍS, T)~ C X\T since for each  q £ T, the set Hiq, S")
is a neighborhood of q disjoint from  G(S, T). Property (ii) of (a) follows directly

from (ii) of (b).
2.3. Remarks,  (a) The property described in 2.2 (a) was originally called

complete monotone normality  [29].

(b) The equivalence of statement (a) with monotone normality was obtained

independently by Borges [7] who has given several other properties equivalent to

monotone normality in  [8].
(c) Lemma 2.2 makes it clear that monotone normality is a hereditary property.

2.4. Definition.  A space  (X, 7) is  semistratifiable  [12] if there is a func-

tion  5:  [closed subsets of X| x N —► J, called a  semistratification of X, such

that:
(a) If  H C K are closed subsets of  X then  S(H, n) C SÍK, n) for each n £ N;
(b) H =C\\S(H, n)\ n £ N\ tot each closed set H C X.

(2) Two subsets H, K of X are separated  ii HC\K~ =0=KDH~.
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MONOTONICALLY NORMAL SPACES 483

If, in addition, the function S satisfies

(c)  H = C\[SÍH, n)~\ n e N\ for each closed set  H C X,
then  X is  stratifiable  [5] and  S is called a  stratification of X.

2.5. Theorem.  A space X  is stratifiable if and only if X  is semistratifiable

and monotonically normal.

Proof.  Suppose  X admits a monotone normality operator G and a semistrati-

fication  T. For each closed set  K C X and  n e N let S(K, n) = GiK, x\t(K, n)).

Then S is a stratification of  X. The converse follows from a result of Borges

[5, Lemma 2.1] and Definition 2.4.

2.6. Theorem.   Suppose f: X —» Y  is a closed mapping.  If X is monotonically

normal, so is  Y.

Proof.   Let G be a monotone normality operator for X. For disjoint closed

subsets  H, K of  Y, let

G'iH, K) = y\/[X\G(/-HH), f~HK))]..
Then  G   is a monotone normality operator for  y.

It follows immediately from (2.6) that if X can be covered by a locally finite

(or even hereditarily closure preserving (A) collection of closed monotonically

normal subspaces, then X is monotonically normal. It might be interesting to know

whether  X must be monotonically normal provided that  X  is dominated  (cf. [5,

Definition 7.1]) by a collection of such subspaces.

3.  Special properties of monotonically normal spaces.  Recall that a space  X

is  collectionwise normal [3] if for each discrete collection(4) K of closed sub-

sets of X there is a disjoint collection X = iD(W)| H e K! of open subsets of X

with the property that  H C D(H) for each  H e M. It is easily seen that 5) may be

taken to be a discrete collection of open sets.

3.1.  Theorem.  Any monotonically normal space is (hereditarily) collection-

wise normal.

Proof.  Let   G be a monotone normality operator for  X  which satisfies

GÍA, B) n GÍB, A) = 0 for each pair (A, B) of disjoint closed sets in  X (cf.
Lemma 2.2).  Let K be a discrete family of closed subsets of X. For each fi eH

define  DÍH) = G{H,  \J[H' £ K| H' / H\). If Hx ¿ H2 are members of K then
D(z7j) C GiHy H2) and D(H2) C G(Hr Hx) so that D(H x) O D(H2) C G(H , H2) n
G(H2, H x) = 0. Therefore  2) = [DiH)\ H £ K\ is the required disjoint collection

(3) A collection  [S-\ i   £ l\ of subsets of X is hereditarily closure preserving if
Cl^uir.l i el\) = U{CIX(7\)| 1 e f| whenever   T.CS. for each  i e I.

(4) A collection   H   of subsets of  X is discrete if each point of X has a neighborhood
which meets at most one member of   K.
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484 R. W. HEATH, D. J. LUTZER, AND P. L. ZENOR

of open sets.  Thus any monotonically normal space is collectionwise normal. He-

reditary collectionwise normality follows from (2.3) (c).

3.2. Notation. For any space   Y, C(V, /) denotes the set of all continuous

functions from  Y to the unit interval / = [0, l].

3.3. Theorem.  Suppose H  is a closed subspace of a monotonically normal

space X.   Then there is a function  Q: C(ß, /) —> C(X, /) such that:

(a) for each f £ C(H, I), Qif) extends f, i.e.,  Qif)ix) = /(x) for each x £ H;
(b) if f, g £ C(H, I) and fix) < g(x) for every x £ H, then  Q(/)(x) < Q(g)(x)

for each x £ X.

Proof.  The construction is of the type used to prove Urysohn's Lemma.  Let

D be a monotone normality operator for X.  For each / £ CÍH, I) and for each real

number of the form  p/2q, where - 1 < p < 2q and q > 0 are integers, we obtain an

open set  Dfip/2q, ip + l)/29) such that:

(1) /" H[0, p/2q]) C Dfip/2q, ip + l)/2") C D/p/2«, ip + l)/2«)_ C
X\f'liiip + D/2«, 1]);

(2) DfHp - l)/2«, p/2qY C Dfip/2", ip + l)/2*);
(3) if p is odd, then DfHp - l)/2«, ip + l)/2«)~ C Dfip/2q, ip + l)/2«);
(4) if p is even, then  Dfip/2q, ip + l)/2«)" C Dfip/2q, ip + 2)/29); and
(5) if /(x)<g(x) for each   x   in   H,  then   Dfip/2q, ip + l)/29) C

D ip/2q, ip + l)/2q) fot each  p/2q.
To this end, let / denote a member of  C(H, /). For all q > 0, let

Dfi-l/2q, 0) = 0    and    Dfi 1, Í2q + l)/2«) = X.

Let

Hfio, y2) = /- Hloi),    Kfio, y2) = /- HEM, iJ)

and

D/0, ^) = D(H/0, M), K/0, '/0);

uß, i) = /-1([o,H])uD/(o, JO",     k/1^, i) = /-1(U!)

and

z^Ci 1) = D(///(M, D.K/H, D)-

In general let
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197 3] MONOTONICALLY NORMAL SPACES 485

l)/2<*, in + l)/2«r    if n  is odd,JDÍÍn
{Díín - l)/2«, n/2q) ií 72  is even,

Hkn/2«, in + l)/2«) = f ^O. */2"]) u

[ÍD((t2 + l)/2«,Gi + 3)/29) if 72 is odd,"|

[Din/24. ín + 2)/2«) if z2 is evenl

and

0,01/2«, (n + l)/2«) = DÍHfín/2q, ín + l)/2«), K/rz/2«, (« + l)/2«)).

Now, to obtain the function Q, let / e C(W, /). For each x in  X, define

Qif)ix) = glbip/2«: x e D^p - l)/2«, p/2«)}.

It follows from (1) that for each x in  H, Qif)ix) = fix). Also, it is clear from (5)

that if for each  x in  H, fix) < gix), then for each x in X,  Qif)ix) < g(g)(x). It

remains to show that Qif) is in  C(X, /); that is, that each  Qif) is continuous.

Before proceeding, note that it follows from  (2), (3), and (4) that

(6) if q > t and  Dkp/2q, (p + l)/2«) intersects x\Dfis/2l, (s + l)/2'), then
(5 + l)/2'>(p + l)/2<".

Now, let x e X and let e > 0.  Let «7 be an integer such that l/29 < e/2. Let

p be the fitst integer such that x is in  D((p - l)/29, p/2q). It follows from (6)
that  ß(/)(x)> ip-l)/2q.  Let

1/ = D((p - l)^*, p/2«)\cl D((2(p- 1) -l)/29+1, (2(p - l))/2(q + 1)).

U is an open set in X that contains x. Let y e U. Clearly, Qif)iy) < p/2q <

Qif)ix) + e. It follows from (6) that Q(f)iy) > (2(p - l) -l)/2(*+1); and so,
Q(/)(x) - í < p/21- - 1/2« - l/2(« + 1> = (2(p + 1) - l)/2 (q + 1)< Qif)iy). Thus,
lß(/)(y)-e(/)(*>l <«.

Remarks,  (a)  The authors do not know whether the converse of 3.3 is true,

(b) In Theorem 4.3 of  [5],  Borges proved that if H is a closed subspace of a

stratifiable space  X and if C(W) and  C(X) are the real vector spaces of contin-

uous real-valued functions on  H and   X respectively, then there is a linear trans-

formation  Q: CÍH) —* C(X) which satisfies  (a) and (b) of our Theorem 3.3. The

authors do now know whether Borges' result can be proved for monotonically
normal spaces.

4. Products of monotonically normal spaces.  The reader should compare the

techniques and results of this section with those of  [19].

4.1. Theorem.   If X x Y  is monotonically normal then either no countable sub-
set of X bas a limit point or Y    is stratifiable.
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Proof. Suppose that M   = \m  | n £ N\ is a countable subset of X having a

limit point  p.  We may assume that p i M . Let M = M   u \p}. Since X x Y is

monotonically normal, so is the subspace  M x Y (cf. 2.3(c)).  Let   G   be a mono-

tone normality operator for M x Y as described in  2.2(a).   (Thus G(S, T)   is de-

fined for pairs of separated subsets of M x Y.) For each closed set F C Y, the

sets HF = |(x, y) £ M x Y\ y £ F and x / p} and   Kp = |(p, y) e M x Y\ y i F\
are separated subsets of M x Y.  For each  re £ N let  T(F, re) = |y £ Y\ (zzz , y) e

GÍHp, KA\. It is easily seen that  T is a stratification for  Y.

4.2. Corollary.   The following properties of a space X are equivalent:

(a) X  is stratifiable;
(b) X x M   is monotonically normal for every metric space M;

(c) // M. = |0| u |l/w| re £ N\ has its usual topology, then  X x zVL   is mono-

tonically normal;

(à) X     , the product of countably many copies of X, is monotonically normal.

Proof.  Clearly  (a) => (b) =» (c) and  (a) => (d).  We show that (d) =» (c) =>
(a). If X has at least two points, then  X       contains a sequence converging to a

limit point, i.e.  X contains a copy of MQ.  Then   X x MQ  is a subspace of X x X

= X       so that  X x MQ is monotonically normal.  Thus  (d) => (c). That (c) =» (a)

follows directly from Theorem 4.1.
Example 7.6 shows that there is a nonstratifiable space  X such that X", the

product of re copies of X, is monotonically normal for each  n £ N.

4.3. Definition  [l]. A completely regular space  X is a p-space if there is a

sequence   (li(re))  of covers of  X by open subsets of  ßX such that   fllSt(x, (J(re))|

re e A/| C X for each  x £ X.(5)

The definition of p-spaces will be needed in a later section.  The definitions

of M-spaces and  t^A-spaces can be found in  [25] and   [6] respectively.

4.4. Corollary.   A space  X  is metrizable if and only if X2 = X x X  is mono-

tonically normal and X satisfies one of the following conditions:

(a) X  is a p-space;

(b) X is an M-space;

(c) X  is a w/S-space.

Proof.  If X is discrete then  X is metrizable.  If X has a limit point and

satisfies (a), (b) or (c), then some countable subset of  X has a limit point. Ac-

cording to (4.1),  X is stratifiable. It is shown in  [12] that a semistratifiable

p-space is a Moore space (see also  [9]); thus  X is metrizable. Any  M-space is

a iM-space and it was proved in  [6] that a stratifiable zM-space is metrizable.

(5) If H is a collection of subsets of X and if p e X, then  St(p, II) = u\U e ll| peí/}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MONOTONICALLY NORMAL SPACES
V

Recall that a completely regular space X is Cech-complete if X is a Gg-

subset of ßX [13] and that a metrizable space is completely metrizable if and

only if it is Cech-complete   [10].

4.5. Corollary.  A space  X  is completely metrizable if and only if X  is Lech

complete and X x X  is monotonically normal.

4.6. Corollary.   // X  is locally countably compact space such that X   = X x

X is monotonically normal, then X  is metrizable.

Proof.  If  X is not discrete then some countable subset of  X has a limit

point.  Thus  X is stratifiable. Since a stratifiable countably compact space is
V

compact ([14], [12]), X  is locally compact; hence   X is Cech-complete.  Thus   X

is metrizable.

5.  Monotone normality in ordered spaces.

5.1. Definition.  Let  (X, <) be a linearly ordered set. A subset  C C X is con-

vex if  [x e X| a < x < b] is a subset of  C whenever a, b are points of  C.  Let S

be any subset of  X.  A  convex component of S is a subset   CC S which is maxi-

mal with respect to the property  "C C S and  C is convex."

Clearly, any subset of X can be uniquely expressed as a union of its convex

components and distinct convex components of a set are disjoint.

5.2. Definition.  A   linearly ordered topological space (abbreviated   LOTS) is

a triple   (X, i, <) where  < is a linear ordering of the set  X and where 3 is the

usual open-interval topology of  <.

5.3. Theorem.  Any LOTS is monotonically normal.

Proof.  We verify that  X admits a function  Gip, C) as in (2.2) (b).  Let  W be

any well-ordering of the set  X.  (The order  W need not have any relation to the

linear ordering which defines the topology of  X.) For any pair  ip, C) where   C is

closed and   p £ X\C, let  lip, C) be the convex component of  X\C which contains

tains   p.

If  l_(p, C)= \y € lip, C)\y < p\ ¿0   let   x(p, C) be the W-first point of I Jp, C)
and let yip, C) be the W-first point of I+ip, C) = jy 6 lip, C)\ y > p\ if /+(p, C)/ 0. Now define

Gip, C) =

\]xip, C), yip, C)[ if I_(p, C)/0/ l+ip, C);
|[p,y(p,C)[ if /_(p, c) = 0//+(p, C);
]xip,C),p] if I_íp, O¿0¿ l¿p,C);
\p\ if /_(p,C) = 0 = /+(p,C).

In any case,  Gip, C) is an open subset of  X and it is clear that  Gip, C) satisfies

the three conditions of (2.2)(b).
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Combining  (5.3), (2.3)(c) and (3.1) we obtain an easy proof of the following:

5.4. Corollary [27]- Any  LOTS  is hereditarily collectionwise normal.

5.5. Definition.  A generalized ordered space  is a triple   (X, J , <) where   J

is a topology on  X and  < is a linear ordering of  X such that

(a) §i<) C J   where  §i<) denotes the usual open-interval topology of <;

(b) each point of  X has a local J-neighborhood base consisting of convex

sets.

It is known that a space X can be topologically embedded in some LOTS if

and only if there is a linear ordering of X making X a generalized ordered space

([10], [20]). See Examples 7.1, 7.2, and 7.6.

5.6. Corollary.   Any generalized ordered space is monotonically normal.

5.7. Questions,  (a)  There are several well-known proofs that any  LOTS  is

normal  ([4], [22], [27]), all of which invoke the axiom of choice.  In  [4], Birkhoff
asks whether one can prove that any  LOTS is normal without the axiom of choice.

As far as the authors know, that question is still open (except, of course, for

LOTS which are order-complete and order-bounded).

(b) What is the relation between monotone normality and   K„-full normality

[22] (another property of any  LOTS which implies collectionwise normality)?

Let us conclude this section with a simplified proof of a metrization theorem

due to Treybig  [28].

5.8. Corollary.   Let  X and Y be infinite Hausdorff spaces and suppose that

X x Y  is a continuous image of a compact  LOTS  L.   Then  X and Y are metriz-

able.

Proof.  Let f: L —► X x Y be continuous and onto. Since   L is compact, / is

a closed map. According to (2.6),  X x Y is monotonically normal.  Furthermore

X x V is compact; thus  X and   Y each contain a countably infinite set with a

limit point.  According to  (4.1), both  X and   Y are stratifiable.   Being stratifiable

and compact,   X and   Y ate metrizable.

6.  Metrization of p-spaces.

6.1.  Definition.  A space  X has a  G^-diagonal  if the set  A„ = |(x, x): x e X}

is a Gg-subset of  X x X.
It is known that   X has a Gg-diagonal if and only if there is a sequence (y(w))

of open covers of  X such that  HlStOc, §(re)): re £ N\ = |x} for each x £ X.(6)

In proving our metrization theorem we use two results, one due to Bing and

the other obtained by Creede.

(6) See footnote (5), p. 486.
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6.2. Theorem, (a) A regular space X is metrizable if and only if X is col-

lectionwise normal and developable (= there is a sequence (§(rz)) of open covers of

X such that, for each x e X,  |St (x, §(«)): n £ N\ is a local base at x) [3];

(b)  a completely regular space  X  is developable if and only if X  is a p-

space (cf. 4.3) and for each point x e X there is a sequence  (g (x)) of open

neighborhoods of x such that if (x  )    z's a sequence in X  and if y e g  ix  ) for

each n, then (x ) converges to y, i.e.,  X  is developable if and only if X  is a

semistratifiable p-space  [12, Theorem 1.2].

6.3. Theorem.  A space X  is metrizable if and only if X  is a monotonically

normal p-space with a G^-diagonal.

Conventions.  In the following proof all closures are taken in  ßX.  H is

assumed to be a function as described in Lemma 2.2(b) and if p jt q are points of

X we shall write   Hip, q) instead of  Hip, [q\).
Proof.  According to Theorem 3.1, a monotonically normal space is collec-

tionwise normal. Therefore, according to Theorem 6.2(a), it suffices to show that

X is developable. To accomplish this we use statement (b) of Theorem 6.2.

Because  X is a p-space with a Gg-diagonal, there is a sequence (iKrz)) of

covers of  X by open subsets of  ßX such that   UÍn + 1) refines   liin) for each

72 £ N and such that if x £ X, then HiSt (x, 11(m)): n £ N\ = [x\. For each y e X
and  n e N, let  D  (y) be an open subset of X such that (i) y e D (y) and (ii)

Dniy)    is a subset of some member of ll(zz). Define g (y) = Híy, X\D (y)).

Suppose (x  ) is a sequence in  X such that y £ g   ix  ) fot each  n e N. To

show that (x  ) converges to y, it suffices to show that any subsequence (x    )   of

(xn), no term of which is y, has  y as its unique cluster point.  Fix  k.  Because

x      / y, there is an integer  j,   such that if  / > /',, then  x       4 St (y, 1i(r2.)) 0

*-*» .(*   .)•  If there were an integer  j > j,   such that  x      4 D     (x     ), then it would
";     nj •»'-'* Tiy Tifc     Tifc

follow that
e    (x    ) = tf(x    ,X\D    ix    ))CHix    ,x     ) C X\HÍx     ,x    )
6"j     nj nj »j     "j »j       "k "k       n,

CX\H(x     ,X\D    ix    ))=X\g    (x    ),
nk "k    nk nk   "k

contradicting  y £ g    ix    ) n g     ix     ). Therefore,  x      £ D     ix     ) whenever
"j    ni nk    nk nj "k    nk

Because  ßX is compact, the sequence   (x    ) has a cluster point, say z,

in  ßX.  For each  k£ N,z £ \x    : />/,!" CD    (x    )" C St (y, 11(72,)), the last
inclusion being justified by conditions  (i) and  (ii) above, plus the fact that

y e DnkKJ- Therefore,

z£f)\Stiy,Mink)):k£N\ = [y\,
as required.
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6.4. Remarks, (a) Theorem 6.3 generalizes a theorem in  [2], attributed to

E. Michael, which states that a stratifiable p-space is metrizable.

(b) Each of the hypotheses of Theorem 6.3 is necessary as can be seen

from Examples 7.1 and 7.5.
(c) R. Gittings pointed out to the authors that the hypothesis of (6.3) that

X is a p-space can be replaced by the hypothesis that  X is an M-space   [25], a

zzzA-space   [6], or even a quasi-complete space in the sense of G. Creede   [12].

7. Examples.
7.1. Example. There is a monotonically normal space  S which is heredit-

arily separable and hereditarily Lindeltff (whence perfectly normal), which has a

Gg-diagonal and which is not metrizable.  Furthermore, the space   S x S is not

even normal.  The space   S is the familiar  Sorgenfrey line obtained by topologiz-

ing the set of real numbers so that sets of the form  [a, b[ ate basic open sets.

That  S has the indicated properties follows from Corollary 5.6, since  S is clearly

a generalized ordered space, and from the results of   [26] and   [20].

7.2. Example.  There is a hereditarily paracompact, monotonically normal

space  M which has a Gg-diagonal, and whose product with the usual space of

irrationals is not normal.  The space   M  is the  Michael line, obtained by topolo-

gizing the set of real numbers by taking all sets of the form U U V to be open,

where   U is open in the usual topology of the real numbers, and where   V is any

set of irrational numbers. Clearly M  is a generalized ordered space; according

to Corollary 5.6, zM is monotonically normal. The other properties of M  listed

above are established in   [23].

7.3. Example.  There is a countable regular space which is not monotoni-

cally normal.  In   [15] it is proved that there is a countable regular space   X which

is not stratifiable.  (In fact, it was announced in  [16] that  X can be taken to be

an NQ-space in the sense of  [24].) Since any countable regular space is semi-

stratifiable, it follows from Theorem 2.5 that  X  is not monotonically normal.

7.4. Example.  There are compact Hausdorff spaces which are not mono-

tonically normal.  Let  X be the countable regular space of Example 7.3. Since

X is not monotonically normal, neither is   Y = ßX (cf. (2.3)(c)).

F. G. Slaughter, Jr., pointed out to the authors that any separable compact

Hausdorff space is a continuous closed image of ßN, the Stone-Cech compact-

ification of the usual space of natural numbers.  (Argument: Let   Y be separable,

compact and Hausdorff.  Let f: N —> V be any function whose image is a count-

able dense subset of   Y.  Then  ßf: ßN —> Y is necessarily a closed continuous

onto map.)  In particular, the space   Y = ßX above is a continuous closed image

of  ßN.  Since   Y is not monotonically normal it follows from Proposition 2.7 that
ßN cannot be monotonically normal.   From this fact one can deduce that there is
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no nondegenerate space   Z such that  Z     \s monotonically normal for every card-

inal number  m (or even for  m = 2     ).
7-5. Example. There is a compact homogeneous space'X which is first

countable, hereditarily separable, perfectly normal and monotonically normal and

yet which does not have a Gg-diagonal and is not metrizable.  Let X =

([0, l] x |0, 1 })\{(0, 0), (1, 1)} have the usual open interval topology induced by

the lexicographic order.  It is easily seen that  X is a compact, homogeneous,

nonmetrizable   LOTS.   Monotone normality of  X follows from Theorem 5-3 and

the other listed properties of  X follow from the results of  [21 ] since it is easily

verified that  X is separable.

7.6. Example. There is a space   X such that  X" (the product of re copies

of  X) is monotonically normal for each  re £ N and yet  X       is not monotonically

normal. The points of the space  X are the ordinals which are less than or equal

to the first uncountable ordinal co.. We topologize  X in such a way that all

countable ordinals are isolated points and basic neighborhoods of oj,  are sets

of the form ]a, a>A. Since  X is clearly a generalized ordered space,  X is mono-

tonically normal according to (5.6). (It is interesting to note that, using a differ-

ent order on X, X is actually a  LOTS.)
Fix  re > 1 and let  Z = X".  For 1 <i<» and  z £ Z let  z. denote the z'th

coordinate of z. Let  E = (z e Z\ z. = ojj  for some   ¿j and for z £ E let E(z) =

\i\ 1 < z < re and z . = oj.}.

We verify that Z admits a function  Gíp, C) as described in (2.2)(b).   Let

C C Z be closed and let p £ z\c.  If p 4 E then let  Gíp, C) = |p|. If p e E
then there exist ordinals   u satisfying

(a) újj > a > max|p.| i 4 E(p)|  (where we adopt the convention that

max (r/>) = 0);

(b) \z £ Z\ z. = p. if  i 4 Eip) and   u < z . < a> {  if   i £ Eíp)\ is a subset of
z\c.

(The sets described in (b) are simply basic neighborhoods of p  in the prod-

uct topology of  Z.) Define   u(p, C) to be the first  ordinal satisfying both (a)

and  (b) and let

Gíp, C) = \z£Z\ z. = p. if ijéEÍp) and a(p, C) <z.<a>l  it i £ EÍp)\.

That Gíp, C) satisfies conditions (i) and (ii) of Lemma 2.2(b) is immediate and

it is a routine but tedious verification that condition (iii) is also satisfied. Thus

Z is monotonically normal.
CO Q

It follows from Theorem 4.2 that the space X is not monotonically normal

because X is not stratifiable: the singleton \ojA is a closed subset of X which

is not a  Gg.
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