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CHAPTER IV

Step size restric tions for

tota l-v a ria tion-b ou nd ed ness in

g enera l Ru ng e-K u tta

p roced u res

The co n ten ts o f this cha p ter a re eq u a l to : Ferrac in a L ., S p ijk er M .N . (2 0 0 5 ):

S tep size restrictio n s fo r to ta l-v a ria tio n -b o u n d ed n ess in g en era l R u n g e-K u tta p ro ce-

d u res, Appl. N u m er. M a th . 53, 2 6 5 – 2 7 9 .

Abstract

In the litera ture, on the numerica l solution of nonlinea r time d epend ent pa rtia l
d iff erentia l eq ua tions, much a ttention ha s been pa id to numerica l processes which
have the fa voura ble property of being tota l va ria tion bound ed (TV B ). A popula r
a pproa ch to g ua ra nteeing the TV B property consists in d ema nd ing tha t the process
ha s the strong er property of being tota l va ria tion d iminishing (TV D ).

For R ung e-K utta method s - a pplied to semi-d iscrete a pprox ima tions of pa rtia l
d iff erentia l eq ua tions - cond itions on the time step were esta blished which g ua r-
a ntee the TV D property; see e.g . S hu & O sher (1 9 8 8 ), G ottlieb & S hu (1 9 9 8 ),
G ottlieb, S hu & Ta d mor (2 0 0 1 ), Ferra cina & S pijk er (2 0 0 4 ), H ig uera s (2 0 0 4 ), S pi-
teri & R uuth (2 0 0 2 ). These cond itions were d erived und er the a ssumption tha t
the simple ex plicit E uler time stepping process is TV D .

H owever, for va rious importa nt semi-d iscrete a pprox ima tions, the E uler process
is TV B but not TV D - see e.g . S hu (1 9 8 7 ), C ock burn & S hu (1 9 8 9 ). Accord ing ly,
the a bove stepsize cond itions for R ung e-K utta method s a re not d irectly releva nt
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to such approximations, and there is a need for stepsize restrictions with a wider
range of applications.

In this paper, we propose a general theory yielding stepsize restrictions which
cover a larger class of semi-discrete approximations than covered thus far in the
literature. In particular, our theory gives stepsize restrictions, for general Runge-
Kutta methods, which guarantee total-variation-boundedness in situations where
the Euler process is TVB but not TVD.

1 In tro d u c tio n

1.1 Th e p u rp o se o f th e p a p e r

In this paper we deal with the numerical solution of initial value problems (IVP s),
for systems of ordinary differential equations (ODEs), which can be written in the
form

(1.1)
d

dt
U(t) = F (U(t)) (t ≥ 0), U(0) = u0.

The general Runge-Kutta method, applied to problem (1.1), provides us with
numerical approximations un to U(n∆t), where ∆t denotes a positive time step
and n = 1, 2, 3, ...; see e.g. Hairer, N ø rsett & Wanner (1993), Hairer & Wanner
(1996 ), Butcher (2003), Hundsdorfer & Verwer (2003). The approximations un are
defi ned in terms of un−1 by the relations

yi = un−1 + ∆t

m∑

j= 1

aijF (yj) (1 ≤ i ≤ m),(1.2.a)

un = un−1 + ∆t

m∑

j= 1

bjF (yj).(1.2.b)

Here aij and bj are real parameters, specifying the Runge-Kutta method, and yi

are intermediate approximations needed for computing un from un−1. As usual,
we assume that b1 +b2 + ...+bm = 1, and we call the Runge-Kutta method explicit

if aij = 0 (for j ≥ i). We defi ne the m×m matrix A by A = (aij) and the column
vector b ∈ R

m by b = (b1, b2, b3, ..., bm)T , so that we can identify the Runge-Kutta
method with its coeffi cient sch em e (A, b).

In order to introduce the questions to be studied in this paper, we assume that
(1.1) results from applying the method of lines (M OL ) to a Cauchy problem for a
partial differential equation (P DE) of the form

(1.3)
∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (t ≥ 0, − ∞ < x < ∞).

Here f stands for a given (possibly nonlinear) scalar function, so that the P DE is
a simple instance of a conservation law. In this situation, the function F occurring
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in (1.1) can be regarded as a function from

R
∞ = {y : y = (..., η−1, η0, η1, ...) with ηj ∈ R for j = 0,±1,±2, ...}

into itself; it depends on the given function f as well as on the process of semi-
discretization being used. Further, u0 ∈ R

∞ depends on the initial data of the
original Cauchy problem. The solution U(t) to (1.1) now stands for a (time depen-
dent) vector in R

∞ with components Uj(t) which are to approximate the desired
true solution values u(xj , t) (or cell averages thereof) corresponding to grid points
xj (j = 0,±1,±2, ...). For detailed explanations of the MOL, see e.g. Laney
(1998), Toro (1999), LeVeque (2002), Hundsdorfer & Verwer (2003).

In the situation just specified, where (1.1) stands for a semi-discrete version of a
conservation law, it is desirable that the corresponding (fully discrete) process (1.2)
has a property which is referred to in the literature as total variation bou nd ed ness
(T V B ). In discussing this property, we shall use below the total variation seminorm
‖.‖TV and the vector space R

∞

T V
, which are defined as follows:

‖y‖TV =

+∞∑

j=−∞

|ηj − ηj−1| (for y ∈ R
∞ with components ηj),

R
∞

T V
= {y : y ∈ R

∞ and ‖y‖TV < ∞}.

Total variation boundedness of process (1.2) means that, for initial vector u0 ∈
R

∞

T V
and T > 0, there is a positive constant B and value ∆t0 > 0 such that

(1.4) ‖un‖TV ≤ B (0 < ∆t ≤ ∆t0, 0 < n∆t ≤ T ).

For more details and an explanation of the importance of the TVB property in the
numerical solution of nonlinear conservation laws, in particular in the context of
convergence proofs, see e.g. Harten (1984), Shu (1987), Cockburn & Shu (1989),
Kröner (1997), Laney (1998), LeVeque (2002).

A popular approach to guaranteeing the TVB property, consists in demanding
that the total variation be non-increasing as time evolves, so that, at any positive
time level, the total variation of the approximate solution un is bounded by the
total variation of the initial vector u0. Following the terminology in the literature,
we will say that process (1.2) is total variation d iminishing (T V D ) if

(1.5 ) ‖un‖TV ≤ ‖un−1‖TV , for un and un−1 satisfying (1.2).

In the literature, crucial stepsize restrictions of the form

(1.6) 0 < ∆t ≤ ∆t0

were given ensuring the TVD property (1.5 ); see e.g. Shu (1988), Shu & Osher
(1988), Gottlieb & Shu (1998), Gottlieb, Shu & Tadmor (2001), Ferracina & Spijker
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(2004), Higueras (2004), Spiteri & Ruuth (2002) and Section 2.2 below. These
stepsize restrictions were derived under the assumption that, for some positive τ0,

(1.7) F : R
∞

T V
−→ R

∞

T V
satisfies ‖v + τ0 F (v)‖TV ≤ ‖v‖TV (v ∈ R

∞

T V
).

Clearly, (1.7) amounts to assuming that the semi-discretization of equation (1.3)
has been performed in such a manner that the simple forward Euler method,
applied to problem (1.1), is TVD for some suitably chosen stepsize τ0.

U nfortunately, for important semi-discrete versions (1.1) of (1.3), condition
(1.7) is not fulfilled see e.g. Shu (1987), Cockburn & Shu (1989). Clearly, in such
cases the above stepsize restrictions (1.6), which are relevant to the situation (1.7),
do not allow us to conclude that a Runge-Kutta procedure is TVD (and therefore
TVB).

We note that a notorious weakness, of most TVD schemes, is that their accuracy
degenerates to first order at smooth extrema of the solution - see e.g. Osher &
Chakravarthy (1984). The semi-discretizations just mentioned, proposed by Shu
(1987), Cockburn & Shu (1989) and others, were introduced to overcome this
weakness. Although, for these semi-discretizations, condition (1.7) is violated, the
following weaker condition is fulfilled:

(1.8) F :R∞

T V
→ R

∞

T V
satisfies ‖v+τ0F (v)‖TV ≤(1+α0τ0)‖v‖TV +β0τ0 (v∈R

∞

T V
).

Here τ0 is again positive, and α0, β0 are nonnegative constants. Condition (1.8)
can be interpreted, analogously to (1.7), as a bound on the increase of the total
variation, when the explicit Euler time stepping is applied to (1.1) with time
step τ0.

In the situation where property (1.8) is present, it is natural to look for an
analogous property in the general Runge-Kutta process (1.2), namely

(1.9) ‖un‖TV ≤ (1 + α∆t)‖un−1‖TV + β∆t, for un and un−1 satisfying (1.2).

Here α, β denote nonnegative constants.
Suppose (1.9) would hold under a stepsize restriction of the form (1.6). By

applying (1.9) recursively and noting that (1 + α∆t)n ≤ exp(α n∆t), we then
would obtain

(1.10) ‖un‖TV ≤ eαT ‖u0‖TV +
β

α
(eαT − 1) (0 < ∆t ≤ ∆t0, 0 < n∆t ≤ T ).

Hence, property (1.9) (for 0 < ∆t ≤ ∆t0) amounts to total variation boundedness,
in that (1.4), is fulfilled with B = eαT ‖u0‖TV + β

α
(eαT − 1). The last expression

stands for ‖u0‖TV + βT , in the special case where α = 0.

Since (1.8) and (1.9) reduce to (1.7) and (1.5), respectively, when α0 = β0 =
α = β = 0, it is natural to look for extensions, to the TVB context, of the results
in the literature pertinent to the TVD property. More specifically, the natural
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question arises of whether stepsize restrictions of the form (1.6) can be established
which guarantee property (1.9) when condition (1.8) is fulfilled.

Partial results related to the last question, but no complete answers, were
indicated, for special explicit Runge-Kutta methods, by Gottlieb, Shu & Tadmor
(2001, Section 2.1), Shu (2002, Section 2).

The purpose of this paper is to propose a general theory by means of which
the above question, as well as related ones, can completely be clarified.

1.2 O utlin e of the rest of the paper

In Section 2, we recall some concepts which are basic for the rest of the paper, and
we give a short review of relevant results from the literature.

Section 2.1 deals with the concept of irreducibility of Runge-Kutta methods
(A, b) and with Kraaijevanger’s coeffi cient R(A, b). Theorem 2.3 gives a condition
which is necessary and suffi cient in order that R(A, b) is positive. This theorem
will be used later in the Sections 3, 4 and 5.

Theorem 2.4, in Section 2.2, gives a stepsize condition of the form (1.6) which is
known to be necessary and suffi cient for the TVD property (1.5) under assumption
(1.7). This condition is also known to be relevant to versions of properties (1.5),
(1.7) which are more general, than the original properties, in that they involve an
arbitrary vector space V with seminorm ‖.‖, rather than R

∞

T V
and ‖.‖TV . Theorem

2.4 serves as a preparation and motivation for the material in Section 3.
In Section 3, we propose an extension of the theory reviewed in Section 2.2. Our

extension is applicable in the situation where (a generalized version of) condition
(1.8) is fulfilled.

In Section 3.1, we consider versions of (1.8), (1.9) in the context of arbitrary
vector spaces V with seminorm ‖.‖. Further, we introduce, for arbitrary Runge-
Kutta methods (A, b), an important characteristic quantity, which we denote by
S(A, b). This quantity will play, together with R(A, b), a prominent part in Section
3.2.

The latter section contains our main result, Theorem 3.2. This theorem is
relevant to arbitrary Runge-Kutta methods (not necessarily explicit). It can be
viewed as a convenient variant of Theorem 2.4 adapted to the situation where (1.5)
and (1.7) are replaced by (1.9) and (1.8), respectively. Theorem 3.2 amply answers
the question mentioned above at the end of Section 1.1. The proof of the theorem
requires arguments different from those underlying Theorem 2.4. In fact, our proof
of Theorem 3.2 relies substantially on the use of Lemma 3.6. This lemma, which is
of independent interest, gives general upper bounds for the seminorms of vectors
un, yi satisfying (1.2). In order not to interrupt the presentation of our results, we
have postponed the proof of the lemma to the last section of the paper.

In Section 4 we shortly present some applications and illustrations of Theorem
3.2 and Lemma 3.6.

In Section 5 we prove Lemma 3.6. Our proof is based on a convenient represen-
tation of general Runge-Kutta methods, which is of a similar type as considered
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recently in Ferracina & Spijker (2005), Higueras (2003).

2 K ra a ije v a ng e r’s coe ffi cient a nd th e T V D prope rty

2.1 Irre d u c ib le R u n g e -K u tta m e th o d s a n d th e c o e ffi c ie n t R(A , b)

The followin g defi n ition is of fu n dam en tal im p ortan ce in the rest of ou r p ap er.

Definition 2 .1 (R ed u c ib ility a nd irred u c ib ility).
An m−sta ge Ru nge-K u tta sch em e (A, b) is ca lled redu cible if (a t lea st) o ne o f th e
fo llo w ing tw o sta tem ents (i), (ii) is tru e; it is ca lled irredu cible if neith er (i) no r
(ii) is tru e.

(i) T h ere exist no nem pty , disjo int index sets M,N w ith M ∪ N = {1, 2, ...,m}
su ch th a t bj = 0 (fo r j ∈ N) a nd aij = 0 (fo r i ∈ M, j ∈ N);

(ii) th ere exist no nem pty , pa irw ise disjo int index sets M1,M2, ...,Mr, w ith 1 ≤
r < m a nd M1 ∪ M2 ∪ ... ∪ Mr = {1, 2, ...,m}, su ch th a t

∑
k∈Mq

aik =
∑

k∈Mq

ajk w h enever 1 ≤ p ≤ r, 1 ≤ q ≤ r a nd i, j ∈ Mp.

In case the above statem en t (i) is tru e, the vectors yj in (1.2) with j ∈ N

have n o in fl u en ce on un, an d the R u n g e-K u tta m ethod is eq u ivalen t to a m ethod
with less than m stag es. A lso in case of (ii), the R u n g e-K u tta m ethod essen tially
redu ces to a m ethod with less then m stag es, see e.g . D ek k er & Verwer (19 8 4 )
or H airer & Wan n er (19 9 6 ). C learly, for all p ractical p u rp oses, it is en ou g h to
con sider on ly R u n g e-K u tta schem es which are irredu c ible.

N ex t, we tu rn to a very u sefu l coeffi c ien t for arbitrary R u n g e-K u tta schem es
(A, b) in trodu ced by K raaijevan g er (19 9 1). Followin g this au thor, we shall den ote
his coeffi c ien t by R(A, b), an d in defi n in g it, we shall u se, for real ξ, the followin g
n otation s:

A(ξ) = A(I − ξA)−1, b(ξ) = (I − ξA)−T b,

e(ξ) = (I − ξA)−1e, ϕ(ξ) = 1 + ξbT (I − ξA)−1e.
(2.1)

H ere −T stan ds for tran sp osition after in version , I den otes the iden tity m atrix of
order m, an d e stan ds for the colu m n vector in R

m all of whose com p on en ts are
eq u al to 1. We shall foc u s on valu es ξ ≤ 0 for which

I − ξA is in vertible, A(ξ) ≥ 0, b(ξ) ≥ 0, e(ξ) ≥ 0, an d ϕ(ξ) ≥ 0.(2.2)

The fi rst in eq u ality in (2.2) shou ld be in terp reted en try-wise; the secon d an d the
third on es com p on en t-wise. S im ilarly, all in eq u alities for m atrices an d vectors
oc c u rrin g below are to be in terp reted en try-wise an d com p on en t-wise, resp ectively.
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Definition 2.2 (T h e coeffi cient R(A , b)).
Let (A, b) be a given Runge-Kutta scheme. In case A ≥ 0 and b ≥ 0, we defi ne

R(A, b) = sup{r : r ≥ 0 an d (2.2) holds for all ξ ∈ [−r, 0]}.

In case (at least) one of the inequalities A ≥ 0, b ≥ 0 is violated, we defi ne
R(A, b) = 0.

Definition 2.2 may suggest that it is difficult to determine R(A, b) for given
Runge-Kutta schemes (A, b). B ut, Kraaijevanger (1991) showed that it is relatively
simple to decide whether R(A, b) = 0 or R(A, b) = ∞ and to compute numerically
the value of R(A, b) in the intermediate cases - see also Ferracina & Spijker (2004,
2005 ).

We give below a criterion for positivity of R(A, b) due to Kraaijevanger (1991;
Theorem 4.2). The criterion will be used later in proving Theorem 3 .2, L emma
3 .6 and Theorem 4.1. In order to formulate the criterion concisely, we define for
any m × m matrix B = (bij), the corresponding m × m incidence matrix by

Inc(B) = (cij), with cij = 1 (if bij 6= 0) and cij = 0 (if bij = 0).

T h eorem 2.3 (K raaijev ang er’s criterion for positiv ity of R(A , b)).
Let (A, b) be a given irreducible coeffi cient scheme. Then R(A, b) > 0 if and only if

A ≥ 0, b > 0 and Inc(A2) ≤ Inc(A).(2.3 )

2.2 S tep size restrictions from the literature for the T V D p rop erty

In this subsection, we will review a known stepsize restriction, for property (1.5 )
and for a generalized version thereof.

In order to formulate this generalized version, we consider an arbitrary real
vector space V with seminorm ‖.‖ (i.e. ‖u + v‖ ≤ ‖u‖ + ‖v‖ and ‖λv‖ = |λ| · ‖v‖
for all real λ and u, v ∈ V). In this general setting, the following property (2.4)
replaces (1.5 ):

(2.4) ‖un‖ ≤ ‖un−1‖, for un and un−1 satisfying (1.2).

The above property (2.4) is important, also with seminorms ‖.‖ diff erent from
‖.‖TV , and also when solving certain diff erential equations diff erent from conser-
vation laws. In the recent literature, property (2.4) was studied extensively and
referred to as strong stability or monotonicity, see e.g. G ottlieb, Shu & Tadmor
(2001), Spiteri & Ruuth (2002), Ferracina & Spijker (2004), Hundsdorfer, Ruuth
& Spiteri (2003 ), Hundsdorfer & Verwer (2003 ).

The following theorem gives a stepsize condition guaranteeing (1.5 ) under the
assumption (1.7 ), as well as a stepsize condition for property (2.4) under the as-
sumption that, for τ0 > 0,

(2.5 ) F : V −→ V satisfies ‖v + τ0 F (v)‖ ≤ ‖v‖ (v ∈ V).
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The theorem deals with stepsize restrictions of the form

(2.6) 0 < ∆t ≤ ρ · τ0,

where ρ denotes a positive factor. The following condition will play a prominent
part:

(2.7) ρ ≤ R(A, b).

Theorem 2.4 .
Consider an arbitrary irreducible Runge-Kutta method (A, b), and let ρ be any given
positive factor. Then each of the following statements (i) and (ii) is equivalent
to (2.7).

(i) The stepsize restriction (2.6) implies property (2.4), whenever V is real vector
space, with seminorm ‖.‖, and F satisfies (2.5).

(ii) The stepsize restriction (2.6) implies the TV D property (1.5) whenever F

satisfies (1.7).

The above theorem is an immediate consequence of Ferracina & Spijker (2004,
Theorem 2.5).

Clearly, (i) is a-priori a stronger statement that (ii). Accordingly, the essence of
Theorem 2.4 is that the (algebraic) property (2.7) implies the (strong) statement
(i), whereas already the (weaker) statement (ii) implies (2.7).

3 T V B R u n g e-K u tta processes

3.1 P reliminaries

In the present Section 3 we shall focus on stepsize conditions for property (1.9)
and for a generalized version thereof.

In formulating this generalized version, we deal, similarly as in Section 2.2, with
an arbitrary real vector space V with seminorm ‖.‖. In this setting, the following
property (3.1) corresponds to the TVB property (1.9):

(3.1) ‖un‖ ≤ (1 + α∆t)‖un−1‖ + β∆t for un and un−1 satisfying (1.2).

Here α and β denote again nonnegative constants.
The following condition (3.2) amounts to a natural generalization of (1.8) to

the situation at hand:

(3.2) F : V −→ V satisfies ‖v + τ0F (v)‖ ≤ (1 + α0τ0)‖v‖ + β0τ0 (v ∈ V).

Here τ0 is again positive, and α0, β0 are nonnegative constants. This condition
was also considered recently in Hundsdorfer & Ruuth (2004), in connection to
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boundedness properties of linear multistep methods. Clearly, (3.1) and (3.2) reduce
to (2.4) and (2.5), respectively, in case α = β = α0 = β0 = 0.

The above Theorem 2.4 shows that, in the situations (i) and (ii) of the theorem,
the crucial stepsize restriction is of the form (2.6), with ρ satisfying (2.7). In the
situation, where (3.2) or (1.8) is in force, the crucial stepsize restriction for property
(3.1) or (1.9), respectively, will turn out to be less simple. In fact, not only the
coefficient R(A, b) will play a role, but also the quantity S(A, b) defined below.

Definition 3.1 (The coefficient S(A, b)).
Let (A, b) be a given Runge-Kutta scheme. Then

S(A, b) = sup{r : r > 0 and I − ξA is invertible for all ξ ∈ [0, r]}.

We note that the quantity S(A, b) allows of a simple interpretation by looking at
the special function F (v) = α0v, with α0 > 0: for this function, the system (1.2.a)
has a proper solution, when 0 < ∆t ≤ ∆t0, if and only if the product α0∆t0 is
smaller than the above value S(A, b).

3.2 Formulation and proof of the main result

The following Theorem 3.2 constitutes the main result of this paper. It can be
viewed as a convenient variant of Theorem 2.4 which is applicable in the situa-
tions (1.8), (3.2), which were not yet covered by the latter theorem. Theorem
3.2 gives stepsize restrictions guaranteeing (1.9) and (3.1), respectively, under the
assumptions (1.8) and (3.2). These restrictions are of the form

(3.3) 0 < ∆t ≤ min{ρ · τ0, σ/ α0},

where ρ and σ are positive factors and τ0, α0 are as in (1.8), (3.2). Note that, in
case α0 = 0, condition (3.3) neatly reduces to (2.6). The following conditions on
ρ and σ will play a crucial role:

(3.4) ρ ≤ R(A, b) and σ < S(A, b).

Theorem 3.2 (M ain Theorem).
Consider an arbitrary irreducible Runge-Kutta method (A, b), and let ρ, σ be any
given positive values. Then each of the following statements (I) and (II) is equiv-
alent to (3.4).

(I) There exists a finite γ such that the stepsize restriction (3.3) implies prop-
erty (3.1) with α = γα0, β = γβ0, whenever V is a real vector space with
seminorm ‖.‖ and F satisfies (3.2).

(II) There exists a finite γ such that the stepsize restriction (3.3) implies the TVB
property (1.9) with α = γα0, β = γβ0, whenever F satisfies (1.8).
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The proof of Theorem 3.2 will be given at the end of this section, by using the
important Lemma 3.6 to be formulated below.

Remark 3.3. Clearly, (I) is a-priori a stronger statement than (II). The essence of
Theorem 3.2 thus lies in the fact that the (algebraic) property (3.4) implies the
(strong) statement (I), whereas already the (weaker) statement (II) implies (3.4).
The fact that (3.4) implies (II) answers the natural question that was considered
at the end of Section 1.1: we see that condition (1.6) with ∆t0 = min{R(A, b) ·
τ0, σ/α0}, 0 < σ < S(A, b), guarantees property (1.9) whenever condition (1.8) is
fulfilled. 3

Remark 3.4. The coefficient γ in (I) and (II), whose existence under condition (3.4)
is insured by Theorem 3.2, can be chosen independently of ρ. In fact, an explicit
value for γ is given in the proof of the theorem; see (3.7). This value depends only
on the Runge-Kutta method (A, b) and on σ. 3

Remark 3.5 . Consider an arbitrary irreducible Runge-Kutta method (A, b) that is
explicit. We then have S(A, b) = ∞, so that (3.4) is equivalent to (2.7). Condition
(3.3), with ρ = R(A, b) and σ/α0 ≥ ρ · τ0, reduces to

(3.5) 0 < ∆t ≤ R(A, b) · τ0.

According to Theorem 3.2, condition (3.5) guarantees the TVB property (1.9),
with α = γα0, β = γβ0, for F satisfying (1.8). M oreover, it can be seen (from
Theorem 2.4) that (3.5) is an optimal stepsize restriction in that property (1.9)
can no longer be guaranteed, in the same fashion, if the factor R(A, b) in (3.5)
would be replaced by any factor ρ > R(A, b). 3

The following lemma gives upper bounds for ‖yi‖ and ‖un‖, in the situation
where the basic assumptions (3.2), (3.3), (3.4), occurring in Theorem 3.2, are
fulfilled. In order not to interrupt our presentation, we postpone the proof of the
lemma to Section 5.

L emma 3.6 .
Consider an arbitrary irreducible Runge-Kutta method (A, b) and let ρ, σ ∈ (0,+∞)
satisfy (3.4). Then, for any vector space V with seminorm ‖.‖, the conditions (3.2),
(3.3) imply

[‖yi‖] ≤ e(α0∆t)‖un−1‖ + β0∆t(I − α0∆tA)−1Ae,(3.6.a)

‖un‖ ≤ ϕ(α0∆t)‖un−1‖ + β0

ϕ(α0∆t) − 1

α0

,(3.6.b)

whenever un−1, un and yi are related to each other as in (1.2). H ere [‖yi‖] =
(‖y1‖, ‖y2‖, ..., ‖ym‖)T belongs to R

m, and e(ξ), ϕ(ξ) are defined in (2.1). Further,
the right-hand member of (3.6.b) stands for ‖un−1‖ + β0∆t in case α0 = 0.
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Remark 3.7 . Consider the linear scalar function F (v) = α0v+β0 (for v ∈ R), with
α0 ≥ 0, β0 ≥ 0. Clearly, this function satisfies (3.2) with V = R and ‖.‖ = |.|.
Further, it is easy to verify that, for this simple F , the upper bounds (3.6) of
Lemma 3.6 are sharp, in that the vectors e(α0∆t), β0∆t(I −α0∆tA)−1Ae and the

scalars ϕ(α0∆t), β0
ϕ(α0∆t)−1

α0

in (3.6) cannot be replaced by any smaller quantities.
Lemma 3.6 tells us that - in the situation (3.3), (3.4) - the upper bounds which
are best possible for the above simple F , are also literally valid for any nonlinear
vector-valued F satisfying (3.2).

We note that upper bounds, closely related to (3.6.b), were given earlier in
Spijker (1983; Theorem 3.3) for the special case where F is a linear operator from
V to V (satisfying (3.2) with β0 = 0). 3

P roof of Theorem 3 .2 .
The proof will be given by showing that the following three implications are valid:
(3.4) ⇒ (I); (I) ⇒ (II) and (II) ⇒ (3.4). The first implication will be proved in
step 1; the second implication is trivial; the third one will be proved in step 2.

S tep 1 . Assume (3.4). For proving statement (I), it is (in view of Lemma 3.6)
sufficient to specify a suitable factor γ such that

ϕ(α0∆t) ≤ 1 + γα0∆t (for all ∆t satisfying (3.3)).

We define

(3.7) γ = sup
0< x ≤σ

ϕ(x) − 1

x
.

Since ϕ(x) is a differentiable for 0 ≤ x ≤ σ with ϕ′(0) = ϕ(0) = 1, we see that
γ ∈ [1,∞) is as required. This proves (I).

S tep 2 . Assume (II); we shall prove (3.4).
In order to obtain the inequality ρ ≤ R(A, b), we consider an arbitrary function

F satisfying (1.7), i.e. (1.8) with α0 = β0 = 0. From (II) it follows that, for
0 < ∆t ≤ ρ · τ0, property (1.9) is present with α = β = 0, which is the same
as (1.5). An application of Theorem 2.4 (statement (ii) implies (2.7)) shows that
ρ ≤ R(A, b).

The second inequality in (3.4) will be proved by reductio ad absurdum. With
no loss of generality, we assume S(A, b) < ∞, 0 < ρ ≤ R(A, b) and we suppose
σ ≥ S(A, b).

In proving that this supposition leads to a contradiction, we will make use of
a vector x = (ξ1, ξ2, ..., ξm)T ∈ R

m satisfying

(I − σ0A)x = 0, with σ0 = S(A, b) > 0,(3.8.a)

b1ξ1 + b2ξ2 + ... + bmξm > 0.(3.8.b)

In order to prove the existence of such an x, we note that λ0 = 1/σ0 is a eigenvalue
of A and, by definition of S(A, b), there is no real eigenvalue λ > λ0. Theorem
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2.3 shows that A ≥ 0 an d b > 0. From the Perron -Froben iu s theory (see e.g .
L an caster & T ism en etsk y (1 9 8 5 ), p.5 4 3 ), it thu s follows that there ex ists a vector
x ∈ R

m, with (λ0I − A)x = 0, x ≥ 0, x 6= 0. C on seq u en tly, (3 .8 .a) holds, an d
becau se all bi > 0, we also have (3 .8 .b)

L et α0 > 0 be g iven , an d let the lin ear fu n ction F , from R
∞

T V
in to itself,

be defi n ed by F (v) = α0v . It satisfi es con dition (1 .8 ) with β0 = 0 an d an y
positive τ0. We choose τ0 = σ0/(α0ρ), so that the stepsize ∆t = σ0/α0 satisfi es
con dition (3 .3 ). L et w ∈ R

∞

T V
, with ‖w‖TV > 0. From (3 .8 ), it follows im m ediately

that, for the above F an d ∆t, the R u n g e-K u tta relation s (1 .2 ) are fu lfi lled, with
un−1 = 0, yi = ξiw an d un = σ0(b

T x)w, so that

‖un−1‖TV = 0, ‖un‖TV = σ0b
T x‖w‖TV > 0.

S tatem en t (II) im plies that there ex ists a fi n ite γ su ch that ‖un‖TV ≤
(1 + γσ0)‖un−1‖TV + γσ0β0/α0. S in ce ‖un−1‖TV = β0 = 0, it follows that
‖un‖TV = 0, which is im possible. ¥

4 A p p lic a tio n s a n d illu stra tio n s o f T h e o re m 3 .2 a n d

L e m m a 3 .6

4.1 T V B p re se rv in g R u n g e -K u tta m e th o d s

C on sider an arbitrary R u n g e-K u tta m ethod (A, b). If there ex ist positive factors
ρ, σ for which S tatem en t (II) (of T heorem 3 .2 ) is valid, the R u n g e-K u tta m ethod
will be said to be TVB p reservin g . C learly, in this situ ation the T V B property of
the ex plicit E u ler m ethod, (1 .8 ), is carried over to the R u n g e-K u tta m ethod (see
(1 .9 )) for ∆t > 0 su ffi cien tly sm all. T he followin g theorem g ives a characterization
of T V B preservin g R u n g e-K u tta m ethods.

Theorem 4 .1 (C riterion for TV B p reserv in g R u n g e-K u tta method s).
Let (A, b) specify a n a rbitra ry irredu cible Ru n ge-K u tta m eth od. Th en th e m eth od

is TVB p reservin g if a n d on ly if (2 .3 ) h olds.

P roof of Th eorem 4 .1 .

From T heorem 3 .2 we see that the m ethod (A, b) is T V B preservin g if an d on ly
if R(A, b) > 0 an d S(A, b) > 0. In view of D efi n ition 3 .1 , we have S(A, b) > 0.
M oreover, by T heorem 2 .3 the in eq u ality R(A, b) > 0 is eq u ivalen t to (2 .3 ). ¥

We n ote that a characterization related to the on e in T heorem 4 .1 was g iven in
Ferracin a & S pijk er (2 004 , T heorem 3 .6 ). In that paper the sam e class of R u n g e-
K u tta m ethods satisfyin g (2 .3 ) was fou n d in a search for so-called stron g sta bility

p reservin g R u n g e-K u tta m ethods.
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4.2 Tw o ex amples

In the following we will give two simple examples, illustrating the theory of Section
3.2 with an implicit and an explicit Runge-Kutta method, respectively.

Example 4.2 (A n implic it Runge-Kutta method).

Consider the 1-stage second order Runge-Kutta method given by A = (1/2) and
b = (1) (implicit midpoint rule). A simple calculation shows that R(A, b) =
S(A, b) = 2.

Let 0 < σ < 2. Then, according to Theorem 3.2 and Remark 3.4, there is a
factor γ such that (1.9) holds with α = γα0, β = γβ0, whenever F satisfies (1.8)
and 0 < ∆t ≤ min{2τ0, σ/α0}. U sing formula (3.7 ), we arrive at the following
actual value for γ:

γ =
2

(2 − σ)
.

Example 4.3 (A n explic it Runge-Kutta method).

Consider the explicit Runge-Kutta method, with 3 stages, specified by

A =





0 0 0
1 0 0
1/4 1/4 0



 and bT = (1/6, 1/6, 2/3).

This method was studied earlier, notably in Shu & O sher (1988), Kraaijevanger
(1991), G ottlieb & Shu (1998), G ottlieb, Shu & Tadmor (2001), Spiteri & Ruuth
(2002), Ferracina & Spijker (2004). In Kraaijevanger (1991, Theorem 9.4) it was
proved that this method is of third order, with R(A, b) = 1, whereas there exists
no other explicit third order method with m = 3 and R(A, b) ≥ 1. O bviously, for
the above method, S(A, b) = ∞.

Choosing ρ = R(A, b) = 1 and 0 < σ < S(A, b) = ∞, condition (3.4) is fulfilled,
and the stepsize restriction (3.3) reduces to

(4.1) 0 < ∆t ≤ min{τ0, σ/α0}.

According to Theorem 3.2, there is a factor γ such that (1.8), (4.1) imply (1.9)
with α = γα0, β = γβ0. In view of Remark 3.4, we can apply (3.7 ) so as to arrive
at the value

γ = 1 +
σ

2
+

σ2

6
.(4.2)

Moreover, using Lemma 3.6 directly, we can get a bound on ‖un‖TV which
is more complicated than (1.9) but more refined. For the Runge-Kutta method
under consideration, relation (3.6.b), with ‖.‖ = ‖.‖TV , reduces to

‖un‖TV ≤ [1 + α0∆t +
1

2
(α0∆t)2 +

1

6
(α0∆t)3]‖un‖TV +(4.3)

+[1 +
1

2
α0∆t +

1

6
(α0∆t)2]β0∆t.
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From Lemma 3.6 it can be seen that (4.3) is valid, whenever F satisfies (1.8)
and 0 < ∆t ≤ τ0.

4.3 A spec ial semi-discretization given by S hu (19 8 7 )

Applying the special semi-discretization devised by Shu (1987) to equation (1.3),
we obtain a semi-discrete system of equations which can be modeled as d

dt
U(t) =

F (U(t)) where

(4.4) F : R
∞

T V
−→ R

∞

T V
satisfies ‖v + τ0F (v)‖TV ≤ ‖v‖TV + β0τ0 (v ∈ R

∞

T V
).

H ere τ0 > 0 and β0 > 0. The basic assumption (1.7) of the TVD theory, reviewed
in Section 2.2, is not fulfilled here. On the other hand, the above situation (4.4) is
nicely covered by Theorem 3.2 and Lemma 3.6 (with α0 = 0).

We consider the application of an arbitrary irreducible Runge-Kutta method
(A, b), in the situation (4.4), with a stepsize ∆t satisfying

(4.5) 0 < ∆t ≤ R(A, b) · τ0

Using Theorem 3.2 or Lemma 3.6 (with α0 = 0), one sees that (4.4), (4.5) imply

(4.6) ‖un‖TV ≤ ‖un−1‖TV + β0∆t, for un and un−1 satisfying (1.2).

H ence, in the situation (4.4), the Runge-Kutta approximations un satisfy (1.4),
with B = ‖u0‖TV + β0T and ∆t0 = R(A, b) · τ0.

It is worthwhile to note that the last value ∆t0 is positive if and only if the
Runge-Kutta method (A, b) satisfies (2.3) - this is evident from Theorem 2.3.

5 The proof of Lemma 3.6

In our following proof of Lemma 3.6, we shall make use of the subsequent Lemmas
5.1 and 5.2.

Lemma 5.1 deals with the situation where

B ≥ 0,(5.1.a)

I − tB is invertible for t0 ≤ t ≤ t1,(5.1.b)

(I − t0B)−1 ≥ 0.(5.1.c)

H ere B stands for an m × m matrix and I denotes the m × m identity matrix.

Lemma 5 .1.
The assumptions (5.1) imply that

(I − tB)−1 ≥ 0 for t0 ≤ t ≤ t1.(5.2)
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Proof of Lemma 5 .1.

Assume (5.1) and suppose (5.2) is not true. Let T be the greatest lower bound of
the values t ∈ [t0, t1] where the inequality (I − tB)−1 ≥ 0 is violated. One easily
sees (by continuity arguments) that (I − TB)−1 ≥ 0 and t0 ≤ T < t1. For all
sufficient small ε > 0, we have

I − (T + ε)B = I − TB − εB = (I − TB)(I − (I − TB)−1εB),

so that

[I − (T + ε)B]−1 =

{

∞
∑

k= 0

[ε(I − TB)−1B]k

}

(I − TB)−1 ≥ 0.

This contradicts the definition of T. Hence (5.2) must be true. ¥

In the actual proof of Lemma 3.6, the Runge-Kutta process (1.2) will be rep-
resented in the following form:

yi =



1 −

m
∑

j= 1

λij



 un−1 +

m
∑

j= 1

[λij yj + ∆t · µijF (yj)] (1 ≤ i ≤ m),(5.3.a)

un =



1 −

m
∑

j= 1

λm+ 1,j



 un−1 +

m
∑

j= 1

[λm+ 1,j yj + ∆t · µm+ 1,jF (yj)].(5.3.b)

Here λij and µij denote real parameters. We define corresponding matrices L, M
by:

L =

(

L0

L1

)

, L0 =







λ11 . . . λ1m

...
...

λm1 . . . λmm






, L1 = (λm+ 1,1, ..., λm+ 1,m),(5.4.a)

M =

(

M0

M1

)

, M0 =







µ11 . . . µ1m

...
...

µm1 . . . µmm






, M1 = (µm+ 1,1, ..., µm+ 1,m).(5.4.b)

Lemma 5.2, to be given below, gives a condition under which the processes
(1.2) and (5.3) are equivalent.

In the lemma the following relation will play a crucial role:

(5.5) M0 = A − L0A, M1 = bT − L1A.

Further, the following hypothesis will be used:

(5.6) I − L0 is invertible.
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Lemma 5.2.
Let (A, b) specify an arbitrary Runge-Kutta method (1.2). Let L = (λij) be any

parameter matrix satisfying (5.4.a) and (5.6). C onsider the corresponding matrix

M defi ned by (5.4.b), (5.5). Then the Runge-Kutta relations (1.2) are equivalent

to (5.3).

This lemma was proved in Ferracina & Spijker (2005, Theorem 2.2), Higueras
(2003, Section 2). The proof is easy and involves only simple algebraic manipula-
tions. Therefore, we do not repeat it here but refer to the papers just mentioned
for details.

For matrices L and M of the form (5.4), we define the coefficient c(L,M) by:

c(L,M) = min{cij : 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m},(5.7)

cij =















λij/µij if µij > 0 and i 6= j,
∞ if µij > 0 and i = j,
∞ if µij = 0,
0 if µij < 0.

The actual proof of Lemma 3.6, to be given below, consists of two parts. In
the first part we shall consider the situation where

(5.8) λij ≥ 0 and

m
∑

k=1

λik ≤ 1 (for 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m),

and

(5.9) 0 < ∆t ≤ c(L,M) · τ0.

It will be shown that (3.2), (5.3), (5.8), (5.9) imply

(I − L0 − α0∆tM0) [‖yi‖] ≤ ‖un−1‖(I − L0)e + β0∆tM0 e,(5.10.a)

‖un‖ ≤ (1 − L1e)‖un−1‖ + (L1 + α0∆tM1)[‖yi‖] + β0∆tM1e.(5.10.b)

The above relation (5.10.a) stands for an inequality between two vectors in R
m,

which should be interpreted component-wise. Further, we denote again by e the
vector in R

m all of whose components are equal to 1.
In the second part of the actual proof, we shall choose a special parameter

matrix L and define M by (5.4.b), (5.5). It will be seen that I −L0 is invertible so
that, by Lemma 5.2, the process (5.3) under consideration is equivalent to (1.2).
Moreover, the conditions (5.8) are fulfilled and c(L,M) = R(A, b). The proof of
Lemma 3.6 will be completed by showing that, in the situation (5.5), (3.3), (3.4),
the inequalities (5.10) imply (3.6).

The actual proof of Lemma 3 .6 .

Part 1. Assume (3.2), (5.3), (5.8), (5.9). We sall prove (5.10).
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Condition (5.9) implies that, for all i, j,

0 < cij ≤ ∞ and 0 ≤ µij < ∞.

From (5.3.a), we obtain for 1 ≤ i ≤ m

‖yi − ∆tµiiF (yi)‖ ≤ (1 −
m

∑

j=1

λij)‖un−1‖ + λii‖yi‖ +(5.11)

+
∑

j 6=i

λij‖yj + ∆tc−1

ij F (yj)‖,

where c−1

ij stands for 0 in case cij = ∞.
Using the relation (1+µii∆t/τ0)yi = (yi−∆tµiiF (yi))+(µii∆t/τ0)(yi+τ0F (yi))

we obtain (1+µii∆t/τ0)‖yi‖ ≤ ‖yi−∆tµiiF (yi)‖+{(1+α0τ0)‖yi‖+β0τ0}µii∆t/τ0.
Hence

(5.12) (1 − µiiα0∆t)‖yi‖ − β0µii∆t ≤ ‖yi − ∆tµiiF (yi)‖.

Similarly, by using the relation

yj + ∆tc−1

ij F (yj) = (1 − ∆t(τ0cij)
−1)yj + ∆t(τ0cij)

−1(yj + τ0F (yj)),

we see that

(5.13) ‖yj + ∆tc−1

ij F (yj)‖ ≤ {1 + α0∆tc−1

ij }‖yj‖ + β0∆tc−1

ij .

Combining the inequalities (5.11), (5.12) and (5.13), we obtain a bound for ‖yi‖ (1 ≤
i ≤ m) which can be written compactly in the form (5.10.a).

In order to prove (5.10.b), we note that (5.3.b) implies

‖un‖ ≤



1 −

m
∑

j=1

λm+1,j



 ‖un−1‖ +

m
∑

j=1

λm+1,j‖yj + ∆t · c−1

m+1,jF (yj)‖.

Applying (5.13) with i = m + 1, we obtain (5.10.b).

Part 2 . Assume (3.2), (1.2), (3.3), (3.4). We shall prove (3.6).
In case 0 ≤ R(A, b) < ∞, we know from Kraaijevanger (1991, Lemma 4.4) that

the matrix (I+ηA), with η = R(A, b), is invertible. Moreover, in case R(A, b) = ∞,
it follows from Kraaijevanger (1991, Theorem 4.7) that the inverse A−1 exists, and
that the diagonal elements of this inverse are positive. Therefore, we can define a
matrix L of the form (5.4.a) in the following way:

L0 = ηA(I + ηA)−1, L1 = ηbT (I + ηA)−1, where η = R(A, b)(5.14.a)

(if 0 ≤ R(A, b) < ∞),

L0 = I − ηP, L1 = bT P, η = (max
i

pii)
−1, where P = (pij) = A−1(5.14.b)

(if R(A, b) = ∞).
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Similar matrices were introduced and analysed earlier in Ferracina & Spijker
(2005), Higueras (2003). One easily sees that condition (5.6) is fulfilled. We
define M by (5.4.b), (5.5), so that, according to Lemma 5.2, the relations (1.2)
imply (5.3).

For the matrices L, M under consideration, it is known that (5.8) holds and
that c(L,M) = R(A, b) - see Ferracina & Spijker (2005, Theorem 3.4), Higueras
(2003, Section 2). Therefore, our assumptions (3.3), (3.4) imply (5.9) and, accord-
ing to the above Part 1, we can conclude that (5.10) holds. Below, we shall prove
(3.6) by using (5.10), (5.5), (3.3), (3.4).

Using the equality I − L0 − α0∆tM = (I − L0)(I − α0∆tA), one sees that
(5.10.a) implies (3.6.a), provided the inverses (I −L0)

−1, (I −α0∆tA)−1 exist and
have only nonnegative entries. The existence of (I −L0)

−1 was proved above, and
its nonnegativity follows from an application of Lemma 5.1, with B = L0, t0 = 0,
t1 = 1 (note that, in view of (5.8), the eigenvalues of I − tL0 are diff erent from
zero, for 0 ≤ t < 1). The existence of (I − α0∆tA)−1 is a consequence of (3.3),
(3.4), and its nonnegativity follows by applying Theorem 2.3 and Lemma 5.1, with
B = A, t0 = 0, t1 = α0∆t. Finally, (3.6.b) follows by straightforward calculations
using (3.6.a), (5.5). ¥
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Informática, Universidad Pública de Navarra.

[12] Hig ueras I. (2004): On strong stability preserving time discretization meth-
ods. J. Sci. Comput., 21 No. 2, 193–223.

[13] Hundsdorf er W., Ruuth S. J. (2004): On monotonicity and bounded-
ness properties of linear multistep methods. Tech. rep., MAS-E0404, CWI-
Centrum voor Wiskunde en Informatica (Amsterdam).

[14] Hundsdorf er W., Ruuth S. J., Spiteri R. J. (2003): Monotonicity-
preserving linear multistep methods. SIAM J. Numer. Anal., 41 605–623.

[15] Hundsdorf er W., Verwer J. G. (2003): Numerical solution of time-

dependent advection-diffusion-reaction equations, vol. 33 of Springer Series

in Computational Mathematics. Springer (Berlin).

[16] Kraaijevang er J. F. B. M. (1991): Contractivity of Runge-Kutta methods.
BIT, 31 No. 3, 482–528.
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