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CuartEr IV

Stepsize restrictions for
total-variation-boundedness in
general Runge-Kutta
procedures

The contents of this chapter are equal to: FERRACINA L., SPUKER M.N. (2005):
Stepsize restrictions for total-variation-boundedness in general Runge-Kutta proce-
dures, Appl. Numer. Math. 53, 265-279.

Abstract

In the literature, on the numerical solution of nonlinear time dependent partial
differential equations, much attention has been paid to numerical processes which
have the favourable property of being total variation bounded (TVB). A popular
approach to guaranteeing the TVB property consists in demanding that the process
has the stronger property of being total variation diminishing (TVD).

For Runge-Kutta methods - applied to semi-discrete approximations of partial
differential equations - conditions on the time step were established which guar-
antee the TVD property; see e.g. Shu & Osher (1988), Gottlieb & Shu (1998),
Gottlieb, Shu & Tadmor (2001), Ferracina & Spijker (2004), Higueras (2004), Spi-
teri & Ruuth (2002). These conditions were derived under the assumption that
the simple explicit Euler time stepping process is TVD.

However, for various important semi-discrete approximations, the Euler process
is TVB but not TVD - see e.g. Shu (1987), Cockburn & Shu (1989). Accordingly,
the above stepsize conditions for Runge-Kutta methods are not directly relevant
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to such approximations, and there is a need for stepsize restrictions with a wider
range of applications.

In this paper, we propose a general theory yielding stepsize restrictions which
cover a larger class of semi-discrete approximations than covered thus far in the
literature. In particular, our theory gives stepsize restrictions, for general Runge-
Kutta methods, which guarantee total-variation-boundedness in situations where
the Euler process is TVB but not TVD.

1 Introduction

1.1 The purpose of the paper

In this paper we deal with the numerical solution of initial value problems (IVPs),
for systems of ordinary differential equations (ODEs), which can be written in the
form

(1.1) %U(t) — FU#) (t>0), U0)=uo.

The general Runge-Kutta method, applied to problem (1.1), provides us with
numerical approximations u,, to U(nAt), where At denotes a positive time step
and n = 1,2,3,...; see e.g. Hairer, Norsett & Wanner (1993), Hairer & Wanner
(1996), Butcher (2003), Hundsdorfer & Verwer (2003). The approximations u,, are
defined in terms of u,_1 by the relations

(1.2.a) Yi = Up—1-+ AtzaijF(yj) (1 <i<m),
j=1

(12b) Up = Up—1+ Atz bJF(yJ)
j=1

Here a;; and b; are real parameters, specifying the Runge-Kutta method, and y;
are intermediate approximations needed for computing u,, from u,_;. As usual,
we assume that by +bs + ... +b,, = 1, and we call the Runge-Kutta method ezplicit
if a;; =0 (for j > i). We define the m x m matrix A by A = (a,;) and the column
vector b € R™ by b = (by, b, b3, ..., by )T, so that we can identify the Runge-Kutta
method with its coefficient scheme (A,D).

In order to introduce the questions to be studied in this paper, we assume that
(1.1) results from applying the method of lines (MOL) to a Cauchy problem for a
partial differential equation (PDE) of the form

0] 0

—u(x,t) + — f(u(z,t)) =0 t>0, —oo<x<o00).
S, t) + — f(u(e,1) =0 ( )

Here f stands for a given (possibly nonlinear) scalar function, so that the PDE is
a simple instance of a conservation law. In this situation, the function F' occurring

(1.3)
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in (1.1) can be regarded as a function from
R*® ={y:y=(..,n-1,m0,M,...) with n; e R for j =0,%1,£2,...}

into itself; it depends on the given function f as well as on the process of semi-
discretization being used. Further, ug € R* depends on the initial data of the
original Cauchy problem. The solution U (¢) to (1.1) now stands for a (time depen-
dent) vector in R> with components U;(t) which are to approximate the desired
true solution values u(x;,t) (or cell averages thereof) corresponding to grid points
xz; (j = 0,£1,%£2,...). For detailed explanations of the MOL, see e.g. Laney
(1998), Toro (1999), LeVeque (2002), Hundsdorfer & Verwer (2003).

In the situation just specified, where (1.1) stands for a semi-discrete version of a
conservation law, it is desirable that the corresponding (fully discrete) process (1.2)
has a property which is referred to in the literature as total variation boundedness
(TVB). In discussing this property, we shall use below the total variation seminorm

||.ll7v and the vector space R2;,, which are defined as follows:

—+oo
lyllrv = Z |nj —nj—1| (for y € R* with components 7;),

j=—c0

R>, = {y: y€R* and ||y|lrv < oo}.

Total variation boundedness of process (1.2) means that, for initial vector ug €
R and T > 0, there is a positive constant B and value Aty > 0 such that

TV

(14) Hun”T\/ <B (O < At < Ato, 0 < nAt < T)

For more details and an explanation of the importance of the TVB property in the
numerical solution of nonlinear conservation laws, in particular in the context of
convergence proofs, see e.g. Harten (1984), Shu (1987), Cockburn & Shu (1989),
Kroner (1997), Laney (1998), LeVeque (2002).

A popular approach to guaranteeing the TVB property, consists in demanding
that the total variation be non-increasing as time evolves, so that, at any positive
time level, the total variation of the approximate solution u,, is bounded by the
total variation of the initial vector ug. Following the terminology in the literature,
we will say that process (1.2) is total variation diminishing (TVD) if

(1.5) lunllrv < |lun—-1|lrv, for u, and wu,_; satisfying (1.2).
In the literature, crucial stepsize restrictions of the form
(1.6) 0 < At < Aty

were given ensuring the TVD property (1.5); see e.g. Shu (1988), Shu & Osher
(1988), Gottlieb & Shu (1998), Gottlieb, Shu & Tadmor (2001), Ferracina & Spijker
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(2004), Higueras (2004), Spiteri & Ruuth (2002) and Section 2.2 below. These
stepsize restrictions were derived under the assumption that, for some positive 7,

(L7) F: R}, — RY  satisfies |[v+70F(v)|rv < [[vllrv (v € RY).

Clearly, (1.7) amounts to assuming that the semi-discretization of equation (1.3)
has been performed in such a manner that the simple forward Euler method,
applied to problem (1.1), is TVD for some suitably chosen stepsize 7.

Unfortunately, for important semi-discrete versions (1.1) of (1.3), condition
(1.7) is not fulfilled see e.g. Shu (1987), Cockburn & Shu (1989). Clearly, in such
cases the above stepsize restrictions (1.6), which are relevant to the situation (1.7),
do not allow us to conclude that a Runge-Kutta procedure is TVD (and therefore
TVB).

We note that a notorious weakness, of most TVD schemes, is that their accuracy
degenerates to first order at smooth extrema of the solution - see e.g. Osher &
Chakravarthy (1984). The semi-discretizations just mentioned, proposed by Shu
(1987), Cockburn & Shu (1989) and others, were introduced to overcome this
weakness. Although, for these semi-discretizations, condition (1.7) is violated, the
following weaker condition is fulfilled:

(1.8) F:RY, — R satisfies ||v+70F(v)||rv < (1+aomo)||v|lrv+Boo (vERT).

Here 79 is again positive, and «yg, By are nonnegative constants. Condition (1.8)
can be interpreted, analogously to (1.7), as a bound on the increase of the total
variation, when the explicit Euler time stepping is applied to (1.1) with time
step 79.

In the situation where property (1.8) is present, it is natural to look for an
analogous property in the general Runge-Kutta process (1.2), namely

(1.9) NunllTv < (1 + aAb)||un—1||7v + BAE, for u, and u,_1 satisfying (1.2).

Here «, # denote nonnegative constants.

Suppose (1.9) would hold under a stepsize restriction of the form (1.6). By
applying (1.9) recursively and noting that (1 + aAt)™ < exp(anAt), we then
would obtain

(1.10)  |lunllzv < eTlluollry + g(e“T —1) (0<At<Aty, 0<nAt<T).

Hence, property (1.9) (for 0 < At < Atg) amounts to total variation boundedness,
in that (1.4), is fulfilled with B = e*T|Jug||rv + 2(e®T —1). The last expression
stands for |Jug||7v + BT, in the special case where o = 0.

Since (1.8) and (1.9) reduce to (1.7) and (1.5), respectively, when «y = By =
a = (8 =0, it is natural to look for extensions, to the TVB context, of the results
in the literature pertinent to the TVD property. More specifically, the natural
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question arises of whether stepsize restrictions of the form (1.6) can be established
which guarantee property (1.9) when condition (1.8) is fulfilled.

Partial results related to the last question, but no complete answers, were
indicated, for special explicit Runge-Kutta methods, by Gottlieb, Shu & Tadmor
(2001, Section 2.1), Shu (2002, Section 2).

The purpose of this paper is to propose a general theory by means of which
the above question, as well as related ones, can completely be clarified.

1.2 Outline of the rest of the paper

In Section 2, we recall some concepts which are basic for the rest of the paper, and
we give a short review of relevant results from the literature.

Section 2.1 deals with the concept of irreducibility of Runge-Kutta methods
(A,b) and with Kraaijevanger’s coefficient R(A,b). Theorem 2.3 gives a condition
which is necessary and sufficient in order that R(A,b) is positive. This theorem
will be used later in the Sections 3, 4 and 5.

Theorem 2.4, in Section 2.2, gives a stepsize condition of the form (1.6) which is
known to be necessary and sufficient for the TVD property (1.5) under assumption
(1.7). This condition is also known to be relevant to versions of properties (1.5),
(1.7) which are more general, than the original properties, in that they involve an
arbitrary vector space V with seminorm ||.[[, rather than R2 and ||.|[7y. Theorem
2.4 serves as a preparation and motivation for the material in Section 3.

In Section 3, we propose an extension of the theory reviewed in Section 2.2. Our
extension is applicable in the situation where (a generalized version of) condition
(1.8) is fulfilled.

In Section 3.1, we consider versions of (1.8), (1.9) in the context of arbitrary
vector spaces V with seminorm ||.||. Further, we introduce, for arbitrary Runge-
Kutta methods (A,b), an important characteristic quantity, which we denote by
S(A,b). This quantity will play, together with R(A, b), a prominent part in Section
3.2.

The latter section contains our main result, Theorem 3.2. This theorem is
relevant to arbitrary Runge-Kutta methods (not necessarily explicit). It can be
viewed as a convenient variant of Theorem 2.4 adapted to the situation where (1.5)
and (1.7) are replaced by (1.9) and (1.8), respectively. Theorem 3.2 amply answers
the question mentioned above at the end of Section 1.1. The proof of the theorem
requires arguments different from those underlying Theorem 2.4. In fact, our proof
of Theorem 3.2 relies substantially on the use of Lemma 3.6. This lemma, which is
of independent interest, gives general upper bounds for the seminorms of vectors
Un, y; satisfying (1.2). In order not to interrupt the presentation of our results, we
have postponed the proof of the lemma to the last section of the paper.

In Section 4 we shortly present some applications and illustrations of Theorem
3.2 and Lemma 3.6.

In Section 5 we prove Lemma 3.6. Our proof is based on a convenient represen-
tation of general Runge-Kutta methods, which is of a similar type as considered
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recently in Ferracina & Spijker (2005), Higueras (2003).

2 Kraaijevanger’s coefficient and the TVD property

2.1 Irreducible Runge-Kutta methods and the coefficient R(A, b)

The following definition is of fundamental importance in the rest of our paper.

Definition 2.1 (Reducibility and irreducibility).

An m—stage Runge-Kutta scheme (A,b) is called reducible if (at least) one of the
following two statements (i), (it) is true; it is called irreducible if neither (i) nor
(i) is true.

(i) There exist nonempty, disjoint index sets M, N with M UN = {1,2,...,m}
such that b; =0 (for j € N) and a;; =0 (forie M, j € N);

(i) there exist nonempty, pairwise disjoint index sets My, Ma, ..., M,., with 1 <
r<m and My UMy U ..UM, = {1,2,...,m}, such that Zkqu aip =
Zkqu aji whenever 1 <p<r,1<qg<randi,jc M,.

In case the above statement (¢) is true, the vectors y; in (1.2) with j € N
have no influence on u,,, and the Runge-Kutta method is equivalent to a method
with less than m stages. Also in case of (i), the Runge-Kutta method essentially
reduces to a method with less then m stages, see e.g. Dekker & Verwer (1984)
or Hairer & Wanner (1996). Clearly, for all practical purposes, it is enough to
consider only Runge-Kutta schemes which are irreducible.

Next, we turn to a very useful coefficient for arbitrary Runge-Kutta schemes
(A, b) introduced by Kraaijevanger (1991). Following this author, we shall denote
his coefficient by R(A,b), and in defining it, we shall use, for real £, the following
notations:

(21) A(g) = A(I - gA)—l, b(E) = (I - SA)_Tba
(&) = (I—€A)le, (€)= 1+&T(I - €A)te.

Here ~7T stands for transposition after inversion, I denotes the identity matrix of

order m, and e stands for the column vector in R™ all of whose components are

equal to 1. We shall focus on values £ < 0 for which

(2.2) I — £A is invertible, A(€) >0, b(§) >0, e(¢) >0, and (&) > 0.
The first inequality in (2.2) should be interpreted entry-wise; the second and the

third ones component-wise. Similarly, all inequalities for matrices and vectors
occurring below are to be interpreted entry-wise and component-wise, respectively.
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Definition 2.2 (The coefficient R(A, b)).
Let (A,b) be a given Runge-Kutta scheme. In case A >0 and b > 0, we define

R(A,b) = sup{r:r >0 and (2.2) holds for all £ € [-r,0]}.

In case (at least) one of the inequalities A > 0, b > 0 is violated, we define
R(A,b) =0.

Definition 2.2 may suggest that it is difficult to determine R(A,b) for given
Runge-Kutta schemes (4, b). But, Kraaijevanger (1991) showed that it is relatively
simple to decide whether R(A,b) =0 or R(A,b) = oo and to compute numerically
the value of R(A,b) in the intermediate cases - see also Ferracina & Spijker (2004,
2005).

We give below a criterion for positivity of R(A,b) due to Kraaijevanger (1991;
Theorem 4.2). The criterion will be used later in proving Theorem 3.2, Lemma
3.6 and Theorem 4.1. In order to formulate the criterion concisely, we define for
any m x m matrix B = (b;;), the corresponding m x m incidence matriz by

Inc(B) = (Cij), with cij =1 (lf bij #* 0) and cij =0 (lf bij = 0)

Theorem 2.3 (Kraaijevanger’s criterion for positivity of R(A, b)).
Let (A,b) be a given irreducible coefficient scheme. Then R(A,b) > 0 if and only if

(2.3) A>0, b>0 and Inc(A?%) < Inc(A).

2.2 Stepsize restrictions from the literature for the TVD property

In this subsection, we will review a known stepsize restriction, for property (1.5)
and for a generalized version thereof.

In order to formulate this generalized version, we consider an arbitrary real
vector space V with seminorm ||| (i.e. |lu+v| < |ul + ||v|| and |[Av|| = [A] - ||v]|
for all real A and u,v € V). In this general setting, the following property (2.4)
replaces (1.5):

(2.4) llunll < lJun—1]|, for u, and wu,_; satisfying (1.2).

The above property (2.4) is important, also with seminorms ||.|| different from
|-ll7v, and also when solving certain differential equations different from conser-
vation laws. In the recent literature, property (2.4) was studied extensively and
referred to as strong stability or monotonicity, see e.g. Gottlieb, Shu & Tadmor
(2001), Spiteri & Ruuth (2002), Ferracina & Spijker (2004), Hundsdorfer, Ruuth
& Spiteri (2003), Hundsdorfer & Verwer (2003).

The following theorem gives a stepsize condition guaranteeing (1.5) under the
assumption (1.7), as well as a stepsize condition for property (2.4) under the as-
sumption that, for 79 > 0,

(2.5) F: V—YV satisfies |v+70F©)| < |v|] (vevV).



96 Chapter IV. TVB Runge-Kutta procedures

The theorem deals with stepsize restrictions of the form
(2.6) 0< At <p- 79,

where p denotes a positive factor. The following condition will play a prominent
part:

(2.7) p < R(A,b).

Theorem 2.4.
Consider an arbitrary irreducible Runge-Kutta method (A, b), and let p be any given
positive factor. Then each of the following statements (1) and (ii) is equivalent

to (2.7).

(i) The stepsize restriction (2.6) implies property (2.4), whenever V is real vector
space, with seminorm ||.||, and F' satisfies (2.5).

(ii) The stepsize restriction (2.6) implies the TVD property (1.5) whenever F
satisfies (1.7).

The above theorem is an immediate consequence of Ferracina & Spijker (2004,
Theorem 2.5).

Clearly, (i) is a-priori a stronger statement that (ii). Accordingly, the essence of
Theorem 2.4 is that the (algebraic) property (2.7) implies the (strong) statement
(i), whereas already the (weaker) statement (ii) implies (2.7).

3 TVB Runge-Kutta processes

3.1 Preliminaries

In the present Section 3 we shall focus on stepsize conditions for property (1.9)
and for a generalized version thereof.

In formulating this generalized version, we deal, similarly as in Section 2.2, with
an arbitrary real vector space V with seminorm ||.||. In this setting, the following
property (3.1) corresponds to the TVB property (1.9):

(3.1) lunll < (14 aAb)||up—1|| + BAE for u, and u,_; satisfying (1.2).

Here a and 3 denote again nonnegative constants.
The following condition (3.2) amounts to a natural generalization of (1.8) to
the situation at hand:

(32) F:V—YV satisfies |v+70F)| <1+ aom)|v]+Bomo (veV).

Here 7y is again positive, and «q, By are nonnegative constants. This condition
was also considered recently in Hundsdorfer & Ruuth (2004), in connection to
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boundedness properties of linear multistep methods. Clearly, (3.1) and (3.2) reduce
to (2.4) and (2.5), respectively, in case a = = ag = Gy = 0.

The above Theorem 2.4 shows that, in the situations (i) and (ii) of the theorem,
the crucial stepsize restriction is of the form (2.6), with p satisfying (2.7). In the
situation, where (3.2) or (1.8) is in force, the crucial stepsize restriction for property
(3.1) or (1.9), respectively, will turn out to be less simple. In fact, not only the
coefficient R(A,b) will play a role, but also the quantity S(A,b) defined below.

Definition 3.1 (The coefficient S(A, b)).
Let (A, D) be a given Runge-Kutta scheme. Then

S(A,b) =sup{r : r>0 and I — EA is invertible for all £ € [0,r]}.

We note that the quantity S(A,b) allows of a simple interpretation by looking at
the special function F'(v) = agv, with ag > 0: for this function, the system (1.2.a)
has a proper solution, when 0 < At < Atg, if and only if the product agAtg is
smaller than the above value S(A4,b).

3.2 Formulation and proof of the main result

The following Theorem 3.2 constitutes the main result of this paper. It can be
viewed as a convenient variant of Theorem 2.4 which is applicable in the situa-
tions (1.8), (3.2), which were not yet covered by the latter theorem. Theorem
3.2 gives stepsize restrictions guaranteeing (1.9) and (3.1), respectively, under the
assumptions (1.8) and (3.2). These restrictions are of the form

(3.3) 0 < At <min{p- 79, 0/},

where p and o are positive factors and 79, ag are as in (1.8), (3.2). Note that, in
case ag = 0, condition (3.3) neatly reduces to (2.6). The following conditions on
p and o will play a crucial role:

(3.4) p < R(A,b) and o < S(A,b).

Theorem 3.2 (Main Theorem).

Consider an arbitrary irreducible Runge-Kutta method (A,b), and let p, o be any
given positive values. Then each of the following statements (I) and (II) is equiv-
alent to (3.4).

(I) There exists a finite v such that the stepsize restriction (3.3) implies prop-
erty (3.1) with « = yag, 8 = By, whenever V is a real vector space with
seminorm ||.|| and F satisfies (3.2).

(IT) There exists a finite v such that the stepsize restriction (3.3) implies the TVB
property (1.9) with a« = yao, = 0o, whenever F satisfies (1.8).
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The proof of Theorem 3.2 will be given at the end of this section, by using the
important Lemma 3.6 to be formulated below.

Remark 3.3. Clearly, (I) is a-priori a stronger statement than (IT). The essence of
Theorem 3.2 thus lies in the fact that the (algebraic) property (3.4) implies the
(strong) statement (I), whereas already the (weaker) statement (II) implies (3.4).
The fact that (3.4) implies (II) answers the natural question that was considered
at the end of Section 1.1: we see that condition (1.6) with Aty = min{R(A,b) -
To, 0/ap}, 0 < o < S(A,b), guarantees property (1.9) whenever condition (1.8) is
fulfilled. <&

Remark 3.4. The coefficient v in (I) and (II), whose existence under condition (3.4)
is insured by Theorem 3.2, can be chosen independently of p. In fact, an explicit
value for ~y is given in the proof of the theorem; see (3.7). This value depends only
on the Runge-Kutta method (4,b) and on o. &

Remark 3.5. Consider an arbitrary irreducible Runge-Kutta method (A, b) that is
explicit. We then have S(A,b) = oo, so that (3.4) is equivalent to (2.7). Condition
(3.3), with p = R(A,b) and o/ > p - 19, reduces to

(3.5) 0 < At < R(A,b) - 7.

According to Theorem 3.2, condition (3.5) guarantees the TVB property (1.9),
with @ = yag, f = 0o, for F satisfying (1.8). Moreover, it can be seen (from
Theorem 2.4) that (3.5) is an optimal stepsize restriction in that property (1.9)
can no longer be guaranteed, in the same fashion, if the factor R(A,b) in (3.5)
would be replaced by any factor p > R(A,b). &

The following lemma gives upper bounds for ||y;|| and |luy,], in the situation
where the basic assumptions (3.2), (3.3), (3.4), occurring in Theorem 3.2, are
fulfilled. In order not to interrupt our presentation, we postpone the proof of the
lemma to Section 5.

Lemma 3.6.
Consider an arbitrary irreducible Runge-Kutta method (A,b) and let p, o € (0, +00)
satisfy (3.4). Then, for any vector space V with seminorm ||.||, the conditions (3.2),
(3.3) imply
(3.6.a) Nlwill]l < e(aoAt)|[un_1]| + BoAt(I — agAtA) ™! Ae,

apAt) —1
B6D) el S (a0t + iy HOEI

whenever un,_1, u, and y; are related to each other as in (1.2). Here [|ly;|]] =
Uy lls ly2lls o lym DT belongs to R™, and e(€), w(€) are defined in (2.1). Further,
the right-hand member of (3.6.b) stands for ||u,_1|| + BoAt in case ag = 0.
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Remark 3.7. Consider the linear scalar function F(v) = agv+ Fy (for v € R), with
ap > 0, Bp > 0. Clearly, this function satisfies (3.2) with V.= R and |.|| = |.|
Further, it is easy to verify that, for this simple F, the upper bounds (3.6) of
Lemma 3.6 are sharp, in that the vectors e(agAt), BoAt(I — agAtA)~!Ae and the
scalars p(apAt), Bo ‘P(O“’TAO“_I in (3.6) cannot be replaced by any smaller quantities.
Lemma 3.6 tells us that - in the situation (3.3), (3.4) - the upper bounds which
are best possible for the above simple F', are also literally valid for any nonlinear
vector-valued F satisfying (3.2).

We note that upper bounds, closely related to (3.6.b), were given earlier in
Spijker (1983; Theorem 3.3) for the special case where F' is a linear operator from
V to V (satisfying (3.2) with Gy = 0). &

Proof of Theorem 3.2.

The proof will be given by showing that the following three implications are valid:
(3.4) = (I); (I) = (II) and (IT) = (3.4). The first implication will be proved in
step 1; the second implication is trivial; the third one will be proved in step 2.

Step 1. Assume (3.4). For proving statement (I), it is (in view of Lemma 3.6)
sufficient to specify a suitable factor v such that

p(apAt) <1+ vapAt  (for all At satisfying (3.3)).
We define

-1
(3.7) = sup &
0<z<o X
Since p(z) is a differentiable for 0 < z < o with ¢’(0) = ¢(0) = 1, we see that
v € [1,00) is as required. This proves (I).

Step 2. Assume (II); we shall prove (3.4).

In order to obtain the inequality p < R(A,b), we consider an arbitrary function
F satisfying (1.7), i.e. (1.8) with ag = Bo = 0. From (II) it follows that, for
0 < At < p- 79, property (1.9) is present with a = § = 0, which is the same
as (1.5). An application of Theorem 2.4 (statement (ii) implies (2.7)) shows that
p < R(A,D).

The second inequality in (3.4) will be proved by reductio ad absurdum. With
no loss of generality, we assume S(A,b) < oo, 0 < p < R(A,b) and we suppose
o> S(A).

In proving that this supposition leads to a contradiction, we will make use of
a vector © = (&1,&2, ..., &m)T € R™ satisfying

(3.8.a) (I —o09A)x =0, with og=5S(A4,b)> 0,

In order to prove the existence of such an x, we note that Ag = 1/0¢ is a eigenvalue
of A and, by definition of S(A,bd), there is no real eigenvalue A > Ag. Theorem
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2.3 shows that A > 0 and b > 0. From the Perron-Frobenius theory (see e.g.
Lancaster & Tismenetsky (1985), p.543), it thus follows that there exists a vector
x € R™, with (Ao — A)x = 0,z > 0, z # 0. Consequently, (3.8.a) holds, and
because all b; > 0, we also have (3.8.b)

Let ap > 0 be given, and let the linear function F, from R2’ into itself,
be defined by F(v) = apv. It satisfies condition (1.8) with Sy = 0 and any
positive 79. We choose 79 = 0o/ (agp), so that the stepsize At = o¢/ag satisfies
condition (3.3). Let w € RS, , with [|w||7yv > 0. From (3.8), it follows immediately
that, for the above F' and At, the Runge-Kutta relations (1.2) are fulfilled, with
Up_1 = 0, y; = &w and u, = oo(bT x)w, so that

[tn—1ll7v =0, |[unllry = oob” z|jw|| v > 0.

Statement (II) implies that there exists a finite 7 such that ||u,|ry <
(1 + yoo)||lun—1llTv + vooBo/cw. Since |up—1|lrvy = Bo = 0, it follows that
||ter |7 = 0, which is impossible. |

4 Applications and illustrations of Theorem 3.2 and
Lemma 3.6

4.1 TVB preserving Runge-Kutta methods

Consider an arbitrary Runge-Kutta method (A,b). If there exist positive factors
p, o for which Statement (IT) (of Theorem 3.2) is valid, the Runge-Kutta method
will be said to be TVB preserving. Clearly, in this situation the TVB property of
the explicit Euler method, (1.8), is carried over to the Runge-Kutta method (see
(1.9)) for At > 0 sufficiently small. The following theorem gives a characterization
of TVB preserving Runge-Kutta methods.

Theorem 4.1 (Criterion for TVB preserving Runge-Kutta methods).
Let (A,b) specify an arbitrary irreducible Runge-Kutta method. Then the method
is TVB preserving if and only if (2.3) holds.

Proof of Theorem 4.1.
From Theorem 3.2 we see that the method (A,b) is TVB preserving if and only
it R(A,b) > 0 and S(A,b) > 0. In view of Definition 3.1, we have S(A,b) > 0.
Moreover, by Theorem 2.3 the inequality R(A,b) > 0 is equivalent to (2.3). |
We note that a characterization related to the one in Theorem 4.1 was given in
Ferracina & Spijker (2004, Theorem 3.6). In that paper the same class of Runge-
Kutta methods satisfying (2.3) was found in a search for so-called strong stability
preserving Runge-Kutta methods.
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4.2 Two examples

In the following we will give two simple examples, illustrating the theory of Section
3.2 with an implicit and an explicit Runge-Kutta method, respectively.

Example 4.2 (An implicit Runge-Kutta method).

Consider the 1-stage second order Runge-Kutta method given by A = (1/2) and
b = (1) (implicit midpoint rule). A simple calculation shows that R(A,b) =
S(A,b) =2.

Let 0 < 0 < 2. Then, according to Theorem 3.2 and Remark 3.4, there is a
factor 7 such that (1.9) holds with o = yag, 5 = 75, whenever F satisfies (1.8)
and 0 < At < min{27y, o/ag}. Using formula (3.7), we arrive at the following
actual value for ~:

_2
2-o)

Example 4.3 (An explicit Runge-Kutta method).

’y:

Consider the explicit Runge-Kutta method, with 3 stages, specified by

0 0 0
A= 1 0 0 and b7 =(1/6,1/6,2/3).
1/4 1/4 0

This method was studied earlier, notably in Shu & Osher (1988), Kraaijevanger
(1991), Gottlieb & Shu (1998), Gottlieb, Shu & Tadmor (2001), Spiteri & Ruuth
(2002), Ferracina & Spijker (2004). In Kraaijevanger (1991, Theorem 9.4) it was
proved that this method is of third order, with R(A,b) = 1, whereas there exists
no other explicit third order method with m = 3 and R(A,b) > 1. Obviously, for
the above method, S(A,b) = .

Choosing p = R(A,b) =1and 0 < 0 < S(A,b) = oo, condition (3.4) is fulfilled,
and the stepsize restriction (3.3) reduces to

(4.1) 0 < At < min{7g, 0/agp}.

According to Theorem 3.2, there is a factor v such that (1.8), (4.1) imply (1.9)
with o = vay, 8 = v0o. In view of Remark 3.4, we can apply (3.7) so as to arrive
at the value

2

g g
4.2 =1+ =4+ —.
(4.2) T=l+5+ 5

Moreover, using Lemma 3.6 directly, we can get a bound on ||u,|7v which
is more complicated than (1.9) but more refined. For the Runge-Kutta method

under consideration, relation (3.6.b), with ||.|| = ||.||7v, reduces to
1 1
(4.3) lunllry < [1+ aAt + S (a0At)* + g(aoﬁt)?’]HUnHTv +

1 1
+[1+ SC0AL+ g(aoAt)Q}ﬂoAt.
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From Lemma 3.6 it can be seen that (4.3) is valid, whenever F' satisfies (1.8)
and 0 < At < 7.

4.3 A special semi-discretization given by Shu (1987)

Applying the special semi-discretization devised by Shu (1987) to equation (1.3),
we obtain a semi-discrete system of equations which can be modeled as %U(t) =
F(U(t)) where

(44) F: RY, — R satisfies [[v+70F(v)||lrv < |lvl|lrv + B0 (v € RY)).

Here 79 > 0 and By > 0. The basic assumption (1.7) of the TVD theory, reviewed
in Section 2.2, is not fulfilled here. On the other hand, the above situation (4.4) is
nicely covered by Theorem 3.2 and Lemma 3.6 (with ag = 0).

We consider the application of an arbitrary irreducible Runge-Kutta method
(A,b), in the situation (4.4), with a stepsize At satisfying

(4.5) 0 < At < R(A,b) -7

Using Theorem 3.2 or Lemma 3.6 (with ag = 0), one sees that (4.4), (4.5) imply
(4.6) lunllry < |tn—1llTv + BoAt, for w, and w,_; satisfying (1.2).
Hence, in the situation (4.4), the Runge-Kutta approximations u, satisfy (1.4),
with B = ||ug||7v + BoT and Aty = R(A,b) - 7o.

It is worthwhile to note that the last value Aty is positive if and only if the
Runge-Kutta method (A, b) satisfies (2.3) - this is evident from Theorem 2.3.

5 The proof of Lemma 3.6

In our following proof of Lemma 3.6, we shall make use of the subsequent Lemmas
5.1 and 5.2.
Lemma 5.1 deals with the situation where

(5.1.a) B >0,
(5.1.b) I —tB is invertible for ty <t < tq,
(5.1.c) (I —teB)~' >0.

Here B stands for an m x m matrix and I denotes the m x m identity matrix.

Lemma 5.1.
The assumptions (5.1) imply that

(5.2) (I—tB)™'>0 for ty<t<t.
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Proof of Lemma 5.1.

Assume (5.1) and suppose (5.2) is not true. Let T be the greatest lower bound of
the values t € [to,t1] where the inequality (I —¢tB)~! > 0 is violated. One easily
sees (by continuity arguments) that (I — TB)~! > 0 and tg < T < t;. For all
sufficient small € > 0, we have

I—-(T+e)B=I-TB—-eB=(I-TB)(I~ (I -TB) 'eB),

so that
(o)
[I— (T +¢)B] ™! = {Z[e([ — TB)—lB]k} (I-TB)™'>o.
k=0
This contradicts the definition of T. Hence (5.2) must be true. [ |

In the actual proof of Lemma 3.6, the Runge-Kutta process (1.2) will be rep-
resented in the following form:

Nij | w1+ Y igys + At i Flyy)] (1 <d<m),
1 j=1

(5.3.a) y;=|1-—

m
j:

(53b) Up = 1-— Z )\m+1,j Up—1 + Z P‘m—&-l,j yj + At - Mm+1,jF(yj)]~

Jj=1 Jj=1

Here \A;; and pi;; denote real parameters. We define corresponding matrices L, M
by:

)\11 e >\1m
L

(54.a) L= (L(l)> , Lo= : : o Li= (Amg1,1s o Amt1,m),
/\ml . )\mm
Hi1 --- Him

(5.4b) M= Mo\ app=| : M, =

e = M, )’ 0= : : y 1= (Mm+1,1,---,um+1,m)-

Hm1 -+ Umm

Lemma 5.2, to be given below, gives a condition under which the processes
(1.2) and (5.3) are equivalent.
In the lemma the following relation will play a crucial role:

(5.5) Mo =A—LyA, M, =b" — L A.
Further, the following hypothesis will be used:
(5.6) I — Ly is invertible.
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Lemma 5.2.

Let (A,b) specify an arbitrary Runge-Kutta method (1.2). Let L = ()\;;) be any
parameter matriz satisfying (5.4.a) and (5.6). Consider the corresponding matriz
M defined by (5.4.b), (5.5). Then the Runge-Kutta relations (1.2) are equivalent
to (5.3).

This lemma was proved in Ferracina & Spijker (2005, Theorem 2.2), Higueras
(2003, Section 2). The proof is easy and involves only simple algebraic manipula-
tions. Therefore, we do not repeat it here but refer to the papers just mentioned
for details.

For matrices L and M of the form (5.4), we define the coefficient ¢(L, M) by:

(5.7) ¢(L,M) = min{¢;;: 1<i<m+1, 1<j<m},
Nij/pij if pig > 0 and i # 7,

o0 if p;; > 0 and ¢ = 7,

0 if pi; <O0.

Cij =

The actual proof of Lemma 3.6, to be given below, consists of two parts. In
the first part we shall consider the situation where

(58) Ay =0 and > Ap<1 (for1<i<m+1, 1<j<m),
k=1

and
(5.9) 0 <At <c(L,M)-1p.
It will be shown that (3.2), (5.3), (5.8), (5.9) imply

(510.8) (I — Lo — aoAtMo) [[willl < lun—1]I(T = Lo)e + BoAtMye,
(510b> ||un|| S (1 — Lle)||un,1\| + (Ll + aOAtMl)[HyiH] + ﬁoAtMle.

The above relation (5.10.a) stands for an inequality between two vectors in R™,
which should be interpreted component-wise. Further, we denote again by e the
vector in R™ all of whose components are equal to 1.

In the second part of the actual proof, we shall choose a special parameter
matrix L and define M by (5.4.b), (5.5). It will be seen that I — Lg is invertible so
that, by Lemma 5.2, the process (5.3) under consideration is equivalent to (1.2).
Moreover, the conditions (5.8) are fulfilled and ¢(L, M) = R(A,b). The proof of
Lemma 3.6 will be completed by showing that, in the situation (5.5), (3.3), (3.4),
the inequalities (5.10) imply (3.6).

The actual proof of Lemma 3.6.
Part 1. Assume (3.2), (5.3), (5.8), (5.9). We sall prove (5.10).
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Condition (5.9) implies that, for all i, j,
0<cy<oo and 0< py; <oo.

From (5.3.a), we obtain for 1 <i<m

(5.11) lys — Atpss Pyl < (1= Nij) || + Nilla | +
1

j:
D Aigllys + Ate F(y)ll,
J#i

where c;jl stands for 0 in case ¢;; = oo.

Using the relation (144 At/70)y: = (yi—Atpii F(yi))+ (i At /10) (yi+70 F (y:))
we obtain (14 At /70)||yill < [lyi —Atpsi F(yi) [ +{(1+ao7o) yill+BoTo i At /0.
Hence
(5.12) (1 — pizco At)[Jyill — Bopsi At < |ly; — Atpuyi F(ys)]-

Similarly, by using the relation

y; + Ate Fy;) = (1= At(roci;) ™)y + At(roci;) ™ (y; + 10 F (1)),

we see that
(5.13) ly; + Atey Fyy)|l < {1+ aotey; Hiysll + BoAte;;'

Combining the inequalities (5.11), (5.12) and (5.13), we obtain a bound for ||y;|| (1 <
i <'m) which can be written compactly in the form (5.10.a).
In order to prove (5.10.b), we note that (5.3.b) implies

m m
lunll < (1= Xonrag | luneall Y Al + At ey ;Fw))ll-
j=1 j=1

Applying (5.13) with ¢ = m + 1, we obtain (5.10.b).

Part 2. Assume (3.2), (1.2), (3.3), (3.4). We shall prove (3.6).

In case 0 < R(A,b) < oo, we know from Kraaijevanger (1991, Lemma 4.4) that
the matrix (I+nA), with n = R(A,b), is invertible. Moreover, in case R(A,b) = oo,
it follows from Kraaijevanger (1991, Theorem 4.7) that the inverse A~ exists, and
that the diagonal elements of this inverse are positive. Therefore, we can define a
matrix L of the form (5.4.a) in the following way:

(5.14.a) Lo =nA(I +nA)~t, Ly =nb"(I+nA)~",  where n = R(A,b)
(if 0< R(A,b) < 00),

(5.14b) Lo=1I—-nP, Ly =b"P, 1= (maxp;) ', where P = (p;;)=A""
(if R(A,b) = 0).
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Similar matrices were introduced and analysed earlier in Ferracina & Spijker
(2005), Higueras (2003). One easily sees that condition (5.6) is fulfilled. We
define M by (5.4.b), (5.5), so that, according to Lemma 5.2, the relations (1.2)
imply (5.3).

For the matrices L, M under consideration, it is known that (5.8) holds and
that ¢(L, M) = R(A,b) - see Ferracina & Spijker (2005, Theorem 3.4), Higueras
(2003, Section 2). Therefore, our assumptions (3.3), (3.4) imply (5.9) and, accord-
ing to the above Part 1, we can conclude that (5.10) holds. Below, we shall prove
(3.6) by using (5.10), (5.5), (3.3), (3.4).

Using the equality I — Ly — agAtM = (I — Lo)(I — apAtA), one sees that
(5.10.a) implies (3.6.a), provided the inverses (I — Lg)™%, (I — apAtA)~! exist and
have only nonnegative entries. The existence of (I — Lg)~! was proved above, and
its nonnegativity follows from an application of Lemma 5.1, with B = Lo, o = 0,
t1 = 1 (note that, in view of (5.8), the eigenvalues of I — tLo are different from
zero, for 0 < t < 1). The existence of (I — apgAtA)~! is a consequence of (3.3),
(3.4), and its nonnegativity follows by applying Theorem 2.3 and Lemma 5.1, with
B = A, ty =0, t; = apAt. Finally, (3.6.b) follows by straightforward calculations
using (3.6.a), (5.5). |
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