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Abstract. In this paper we prove monotonicity and symmetry prop-
erties of positive solutions of the equation −div(|Du|p−2Du) = f(u),
1 < p < 2, in a smooth bounded domain Ω satisfying the boundary
condition u = 0 on ∂Ω. We assume f locally Lipschitz continuous only
in (0,∞) and either f ≥ 0 in [0,∞] or f satisfying a growth condition
near zero. In particular we can treat the case of f(s) = sα − c sq,
α > 0, c ≥ 0, q ≥ p − 1. As a consequence we get an extension to
the p–Laplacian case of a symmetry theorem of Serrin for an overde-
termined problem in bounded domains. Finally we apply the results
obtained to the problem of finding the best constants for the classical
isoperimetric inequality and for some Sobolev embeddings.

1. Introduction and statement of the results. The aim of this pa-
per is to improve some monotonicity and symmetry results that we have
recently obtained in [7] as well as to give some applications to an overdeter-
mined problem and to the search of the best constants in the isoperimetric
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and Sobolev inequalities. We consider the problem⎧⎨
⎩

−Δpu = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω

(1.1)

where Δp denotes the p-Laplace operator, Δpu = div (|Du|p−2Du), 1 < p <
2, Ω is a smooth bounded domain in R

N , N ≥ 2 and f is a real function.
We refer the reader to the introduction of [7] for more information about

(1.1) as well as for a discussion of the difficulties arising in the study of that
problem.

To recall our previous results we need some notations. Let ν be a direc-
tion in R

N , i.e., ν ∈ R
N and |ν| = 1. For a real number λ we define

T ν
λ = {x ∈ R

N : x · ν = λ} (1.2)
Ων

λ = {x ∈ Ω : x · ν < λ} (1.3)

xν
λ = Rν

λ(x) = x + 2(λ − x · ν)ν, x ∈ R
N (1.4)

(i.e., Rν
λ is the reflection through the hyperplane T ν

λ )

a(ν) = inf
x∈Ω

x · ν. (1.5)

If λ > a(ν), then Ων
λ is nonempty; thus we set

(Ων
λ)′ = Rν

λ(Ων
λ). (1.6)

If Ω is smooth and λ > a(ν), λ close to a(ν), then the reflected cap (Ων
λ)′

is contained in Ω and will remain in it, at least until one of the following
occurs:

(i) (Ων
λ)′ becomes internally tangent to ∂Ω at some point not on T ν

λ

(ii) T ν
λ is orthogonal to ∂Ω at some point

Let Λ1(ν) be the set of those λ > a(ν) such that for each μ ∈ (a(ν), λ]
neither of the conditions (i) and (ii) holds, and define

λ1(ν) = sup Λ1(ν). (1.7)

Note that λ1(ν) is a lower-semicontinuous function whenever ∂Ω is smooth.
The main result of [7] is the following:
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Theorem 1.1. Let u ∈ C1(Ω) be a weak solution of (1.1) where f satisfies
the hypothesis

(H1) f : [0,+∞) → R is locally Lipschitz continuous.

Then for any direction ν and for λ in the interval (a(ν), λ1(ν)] we have

u(x) ≤ u(xν
λ) ∀ x ∈ Ων

λ. (1.8)

Moreover,

∂u

∂ν
(x) > 0 ∀ x ∈ Ων

λ1(ν) \ Z, (1.9)

where Z = {x ∈ Ω : Du(x) = 0}.

From this theorem we immediately deduced the following:

Corollary 1.1. If, for a direction ν, the domain Ω is symmetric with re-
spect to the hyperplane T ν

0 =
{
x ∈ R

N : x · ν = 0
}

and λ1(ν) = 0, then u is
symmetric; i.e., u(x) = u(xν

0) and nonincreasing in the ν–direction in Ων
0

with ∂u
∂ν (x) > 0 in Ων

0 \ Z.
In particular, if Ω is a ball, then u is radially symmetric and ∂u

∂r < 0,
where ∂u

∂r is the derivative in the radial direction.

These results are obtained under the hypothesis (H1), i.e., requiring f to
be Lipschitz-continuous near zero, but for many relevant nonlinearities this
regularity does not hold, as for example in the case f(u) = uq, p − 1 < q <
p∗ − 1 = Np

N−p − 1, q close to p − 1.
Here we weaken the regularity of f at zero making the hypothesis

(H2) f is locally Lipschitz-continuous in (0,+∞), and either f ≥ 0 in
[0,+∞) or there exist s0 > 0 and a continuous nondecreasing function
β : [0, s0] → R satisfying

β(0) = 0, β(s) > 0 for s > 0,

∫ s0

0
(β(s) s)−

1
p ds = ∞ (1.10)

such that f(s) + β(s) ≥ 0 ∀ s ∈ [0, s0].
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Remark 1.1. A large class of nonlinearities for which (H2) holds is the one
given by the functions f of the type

f(s) = g(s) − c sq (1.11)

with g locally Lipschitz-continuous in (0,+∞), g(s) ≥ 0, c ≥ 0 and q ≥ p−1.
In this case β(s) = c sq, if c > 0.

Remark 1.2. In the case of the ball, Brock [3],[4] proved the radial sym-
metry of the solutions of (1.1) under quite general hypotheses on f , using
the so-called continuous Steiner symmetrization.

Remark 1.3. Note that under hypothesis (H2) any nonnegative solution of
the problem {

−Δpu = f(u) in Ω
u = 0 on ∂Ω

is positive by the maximum principle of Vazquez [11] (see also next section).
Therefore it is not restrictive to consider only the case u > 0.

Let us now state our main result.

Theorem 1.2. Let u ∈ C1(Ω) be a weak solution of (1.1) with f satisfying
(H2). Then for any direction ν and for λ in the interval (a(ν), λ1(ν)) we
have

u(x) < u(xν
λ) ∀ x ∈ Ων

λ. (1.12)

Moreover,

∂u

∂ν
(x) > 0 ∀ x ∈ Ων

λ1(ν) \ Z (1.13)

and u is strictly increasing in the ν–direction in the set Ων
λ1(ν).

Consequently we get:

Corollary 1.2. If, for a direction ν, the domain Ω is symmetric with respect
to the hyperplane T ν

0 and λ1(ν) = 0, then u(x) = u(xν
0) for any x ∈ Ω.

Moreover u is strictly increasing in the ν–direction in the set Ων
0 with ∂u

∂ν (x) >
0 in Ων

0 \ Z. In particular if Ω is a ball, then u is radially symmetric and
∂u
∂r < 0.
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As compared with Theorem 1.1 and Corollary 1.1, besides substituting
condition (H1) with (H2) we also get stronger information on the behaviour
of the solution, namely (1.12) which implies the strict monotonicity of u in
the set Ων

λ1(ν) in the ν–direction. This is a consequence of Proposition 3.1
which asserts that the solution u cannot be constant on any segment parallel
to ν contained in Ων

λ1(ν).
The method used in this paper is the well-known Alexandrov–Serrin

moving plane method ([9]) which led to the classical result of Gidas, Ni
and Nirenberg [8] about the symmetry of solutions of problem (1.1) in the
case p = 2.

As in [7] we will use the idea of simultaneously moving hyperplanes or-
thogonal to directions close to a fixed direction ν0. To ensure continuity
(with respect to the directions) in this procedure we assume, as in [7], Ω
smooth.

As we mentioned above, with the assumption (H2) we do not require
the Lipschitz-continuity of f at zero any more. To overcome this lack of
regularity we use Hopf’s lemma at ∂Ω, where u = 0, while in the interior we
proceed as in [7].

When used in 1971 by Serrin, the moving plane method led to a beau-
tiful result about the spherical symmetry of domains where certain overde-
termined problems have solutions. Once we have Theorem 1.2 (or Theorem
1.1) it is easy to get the analogous result for the p–Laplacian. More precisely
let us consider the following class of nonlinearities:

(H3) f : [0,∞) → R is a continuous function such that in an interval [0, s0],
s0 > 0, f = f1 +f2, with f1 Lipschitz-continuous and f2 nondecreasing

Theorem 1.3. Let u ∈ C1(Ω) be a weak solution of (1.1) with f satisfying
(H1) or (H2)–(H3). If the following condition holds:

−∂u

∂n
= a on ∂Ω, (1.14)

where n is the outer normal derivative and a is a positive constant, then Ω
is a ball.

Let us remark that, using again the continuous Steiner symmetrization,
Brock has also obtained a similar result ([5]).

Finally if we take f(u) = uq, q < p∗ − 1 = Np
N−p − 1, from Corollary 1.2

we get that all solutions of (1.1) in the ball are radially symmetric and
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strictly radially decreasing. In particular, this happens for the functions
which minimize the energy functional

Jp
q (v) =

∫
Ω |∇v|p(∫
Ω |v|q

) p
q

. As explained in Section 4 this allows us to restrict our attention to ra-
dial (and radially decreasing) functions while looking for the “best” Sobolev
constant for the embedding W 1,p

0 (Ω) ↪→ Lp∗(Ω). In particular, letting p → 1
one can find the absolute isoperimetric constant. In the existing literature
the reduction to radial functions is usually made through the Schwarz sym-
metrization which, in turn, relies on the isoperimetric inequality.

Having proved the symmetry of the solutions of (1.1) with f(u) = uq, q <
p∗−1, we are able to prove the isoperimetric inequality with the best constant
independent of the Schwarz symmetrization, but rather as a consequence of
comparison principles for elliptic operators.

The paper is organized as follows. In Section 2 we present some prelim-
inary results, while Section 3 is devoted to the proof of Theorem 1.2. The
applications are described in Section 4.

2. Preliminary results. As is well known, the moving plane method
relies on comparison results. In [7] we used some weak and strong com-
parison theorems obtained in [6]. As originally stated they apply to the
case of Lipschitz-continuous nonlinearities f . Since we will work under the
hypothesis (H2) we need to modify them in a suitable way.

Let Ω be a domain in R
N , N ≥ 2, and u, v ∈ C1(Ω) be weak solutions of{

−Δpu ≤ f(u) in Ω
−Δpv ≥ f(v) in Ω.

(2.1)

For any set A ⊆ Ω we define

MA = MA(u, v) = sup
A

(|Du| + |Dv|) . (2.2)

Theorem 2.1. Suppose that Ω is bounded, 1 < p < 2 and there exist d1,
d2 > 0 such that the sets u(Ω+), v(Ω+) are contained in [d1, d2], where
Ω+ = {x ∈ Ω : u(x) ≥ v(x)}. If the function f satisfies

f(s) = f1(s) + c1 s, s ∈ [d1, d2] for some c1 ≥ 0 (2.3)

with f1 nonincreasing1, then there exist α, M > 0, depending on p, |Ω|, MΩ,
1This is the case of any function locally Lipschitz continuous in (0,∞).
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c1, d1, d2 such that for any open set Ω′ ⊆ Ω with Ω′ = A1∪A2, |A1∩A2| = 0,
|A1| < α, MA2 < M , then u ≤ v on ∂Ω′ implies u ≤ v in Ω′.

Proof. The proof is the same as that of Theorem 1.2 in [6], case 1 < p < 2.
Note only that the condition |A1 ∩ A2| = 0 is not necessary, since we can
always substitute A1 with A1 \ A2.

Before stating the strong comparison theorem we need to recall a “Harnack-
type” inequality derived in [6].

Lemma 2.1. Let D be an open set in R
N , N ≥ 2, and u, v ∈ C1(D) be

weak solutions of

−Δpu + c2 u ≤ −Δpv + c2 v , u ≤ v in D (2.4)

with 1 < p < ∞ and c2 ∈ R. Suppose B(x, 5δ) ⊆ D for some δ > 0 and, if
p �= 2, infD (|Du| + |Dv|) > 0. Then, for any positive number s < N

N−2 we
have

‖v − u‖Ls(B(x,2δ)) ≤ c δ
N
s inf

B(x,δ)
(v − u) (2.5)

where c is a constant depending on N , p, s, c2, δ and, if p �= 2, also on
m = infB(x,5δ) (|Du| + |Dv|) and MB(x,5δ) (defined as in (2.2)).

Theorem 2.2. Let u, v ∈ C1(Ω) be weak solutions of (2.1) with 1 < p < ∞,
0 < u ≤ v in Ω and f be locally Lipschitz-continuous in (0,∞). Define

Zu
v = {x ∈ Ω : |Du| = |Dv| = 0} (Zu

v = ∅ for p = 2)

If there exists x0 ∈ Ω \ Zu
v such that u(x0) = v(x0), then u ≡ v in the

connected component of Ω \ Zu
v containing x0.

Proof. The result follows from Lemma 2.1. Let C be the connected com-
ponent of Ω \ Zu

v containing x0. It suffices to prove that the set O =
{x ∈ C : u(x) = v(x)} is open. Let x belong to O and consider a ball D =
B(x, 10δ) such that D ⊂ O. If s1 = infD u and s2 = supD v, by the
Lipschitz-continuity of f in [s1, s2], there exists a number c2 ≥ 0 such that
f2(s) = f(s) + c2 s is nondecreasing in [s1, s2]. By (2.1), since u ≤ v, we get

−Δpu + c2u ≤ −Δpv + c2v.
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Moreover, infB(x,5δ) (|Du| + |Dv|) = m > 0 so that we can apply Lemma
2.1, obtaining ∫

B(x,2δ)
(v − u) dx ≤ 0.

This implies u ≡ v in B(x, 2δ), and hence B(x, 2δ) ⊆ O which means that
O is open.

Next we recall the following version of the strong maximum principle and
Hopf’s lemma, due to Vazquez [11].

Theorem 2.3. Let Ω be a domain in R
N and u ∈ C1(Ω), u ≥ 0 in Ω, a

weak solution of

−Δpu + β(u) = g ≥ 0 in Ω

where g ∈ L2
loc(Ω) and β : [0,∞) → R is continuous, nondecreasing. If there

exists s0 > 0 such that either β ≡ 0 in [0, s0] or β(s) > 0 in [0, s0] and∫ s0

0 [β(s) s]−
1
p = ∞, then either u ≡ 0 in Ω or u > 0 in Ω.

In this latter case if the interior sphere condition is satisfied at x0 ∈ ∂Ω,
u ∈ C1 (Ω ∪ {x0}) and u(x0) = 0, then ∂u

∂n(x0) > 0 for any inward directional
derivative (this means that if y approaches x0 in a ball B ⊂ Ω that has x0

on its boundary, then limy→x0

u(y)−u(x0)
|y−x0| > 0).

Let us define, using the same notations as in Section 1,

uν
λ(x) = u(xν

λ) (2.6)
Zν

λ = Zν
λ(u) = {x ∈ Ων

λ : Du(x) = Duν
λ(x) = 0} (2.7)

Z = Z(u) = {x ∈ Ω : Du(x) = 0} (2.8)
Λ0(ν) =

{
λ ∈ (a(ν), λ1(ν) ] : u ≤ uν

μ in Ων
μ, ∀μ ∈ (a(ν), λ ]

}
and, if this set is nonempty,

λ0(ν) = sup Λ0(ν) (2.9)

If ν0 is a direction and δ > 0 is a real number we set

Iδ(ν0) =
{
ν ∈ SN−1 : |ν − ν0| < δ

}
,

where SN−1 is the unit sphere in R
N .

We show now a useful property of the set Z of the critical points of a
solution of (1.1).
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Proposition 2.1. Let u ∈ C1(Ω) be a weak solution of (1.1) with f satisfy-
ing (H2). For any direction ν the cap Ων

λ0(ν) does not contain any subset Γ
of Z on which u is constant and whose projection on the hyperplane T ν

λ0(ν)

contains an open subset of T ν
λ0(ν) (relative to the induced topology).

Proof. The proof is identical to the one of Proposition 3.1 of [7], where it
was stated for functions f satisfying (H1). In fact, supposing the existence
of such a set Γ we would have u ≡ m > 0 in Γ, and f is Lipschitz continuous
in [m2 , 2m] so that the proof in [7] (which is based on Hopf’s lemma in small
balls touching the set Γ ) goes through.

The proof of Theorem 1.2 is based upon the following two lemmas. The
first deals with the behaviour of the solution u near the boundary and ex-
ploits the Hopf’s lemma, while the second gives conditions for continuing
the moving plane procedure with respect to small variations of hyperplanes.

Lemma 2.2. (i) There exists ζ0 > 0 such that for any direction ν we
have

u(x) < uν
λ(x) ∀x ∈ Ων

λ , a(ν) < λ < a(ν) + ζ0. (2.10)

(ii) For any direction ν0 and any μ with a(ν0) < μ < λ1(ν0), there exist
δ0 > 0, ε0 > 0 and a neighborhood I of ∂Ω such that

u < uν
λ in Ων

λ ∩ I ∀λ ∈ (μ − ε0, μ + ε0) , ν ∈ Iδ0(ν0). (2.11)

Proof. (i) Suppose the contrary. Then there exist sequences {νn}, {λn},
{xn} with {νn} directions, a(νn) < λn < a(νn) + 1

n and xn ∈ Ωνn
λn

such that
u(xn) ≥ uνn

λn
(xn) = u((xn)νn

λn
). Hence for some points ξn in the segments

connecting xn to (xn)νn
λn

we have ∂u
∂νn

(ξn) ≤ 0.
On the other hand, up to a subsequence, νn → ν0, xn → x0, where

x0 ∈ ∂Ω and ν0 is a direction with x0 · ν0 = a(ν0). As a consequence
∂u
∂ν0

(x0) ≤ 0, which contradicts Hopf’s lemma (Theorem 2.3).
(ii) As in (i) we proceed by contradiction, supposing that there exist se-

quences {νn}, {λn} and {xn} ⊂ Ωνn
λn

such that νn → ν0, λn → μ, dist(xn, ∂Ω)
→ 0 and u(xn) ≥ uνn

λn
(xn). Up to a subsequence xn converges to a point

x0 ∈ Ων0
μ ∩ ∂Ω.

If x0 ∈ ∂Ων0
μ \T ν0

μ , by continuity we get u(x0) ≥ uν0
μ (x0), which is impos-

sible since u(x0) = 0 while uν0
μ (x0) > 0 because (x0)ν0

μ ∈ Ω by the condition
μ < λ1(ν0) and the definition of λ1(ν0).
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If instead x0 ∈ ∂Ων0
μ ∩T ν0

μ , proceeding as in (i) we get ∂u
∂ν0

(x0) ≤ 0, which
contradicts Hopf’s lemma (Theorem 2.3) since, again by the definition of
λ1(ν0), the direction ν0 is an inner direction with respect to ∂Ω.

In the sequel we will use the following notation:

Mν
λ (B) = sup

B
(|Du| + |Duν

λ|) .

Lemma 2.3. Suppose that ν0 is a direction and a(ν0) < μ < λ1(ν0). There
exist α, M , δ0, ε0 > 0, depending on μ, ν0 (and on the other data of the
problem) such that the following holds:

Claim. If ν ′ ∈ Iδ0(ν0), μ − ε0 < λ′ < μ + ε0 and there exist open subsets
A, B of Ων′

λ′, such that

u < uν′
λ′ in Ων′

λ′ \ (A ∪ B) , |A| <
α

2
, Mν′

λ′ (B) <
M

2
, (2.12)

then there exist in turn δ, ε, with 0 < δ < δ0 − |ν ′ − ν0|, 0 < ε <
ε0 − |λ′ − λ0|, such that

u ≤ uν
λ in Ων

λ for |λ − λ′| < ε , |ν − ν ′| < δ. (2.13)

Proof. Choose δ0, ε0 > 0 and a closed neighborhood I of ∂Ω as in Lemma
2.2 so that (2.11) holds, i.e.,

u < uν
λ in Ων

λ ∩ I ∀λ ∈ (μ − ε0, μ + ε0) , ν ∈ Iδ0(ν0),

and set d1 = infΩ\I u, d2 = supΩ u. Since f is locally Lipschitz-continuous
in (0,∞) there exists c1 ≥ 0 such that (2.3) holds in [d1, d2]. We take then
α, M > 0 as in Theorem 2.1. They depend on d1 and d2, so they depend on
I, which in turn depends on μ and ν0, as well as on the other data of the
problem. With these choices of α, M , δ0, ε0 the assertion is true.

In fact, suppose that ν ′ ∈ Iδ0(ν0), μ− ε0 < λ′ < μ + ε0 and (2.12) holds.
By (2.11) we have to prove only that (2.13) is satisfied in Ω̃ν

λ = Ων
λ \ I and

we can assume that A ∪ B ⊆ Ω̃ν′
λ′ = Ων′

λ′ \ I.

Choose then a compact K ⊂ Ω̃ν′
λ′ such that |Ω̃ν′

λ′ \K| < α
4 . In the compact

K \ (A ∪ B) we have uν′
λ′ − u ≥ m > 0. By continuity there exist δ, ε, with



monotonicity and symmetry results for p-laplace equations 1189

0 < δ < δ0 − |ν ′ − ν0|, 0 < ε < λ0 − |λ′ − λ0| such that if |λ − λ′| < ε,
|ν − ν ′| < δ, we have

uν
λ − u ≥ m

2
in K \ (A ∪ B) , |Ω̃ν

λ \ K| <
α

2
, Mν

λ (B) < M. (2.14)

For these values of λ and ν, by (2.11) and (2.14) the inequality u < uν
λ

holds in Ων
λ ∩ I and in K \ (A ∪ B). So it suffices to show that u ≤ uν

λ in
Ω̃ν

λ \ (K \ (A ∪ B)) = Oν
λ. This follows from the weak comparison principle

(Theorem 2.1) because u ≤ uν
λ on ∂Oν

λ and Oν
λ is the union of (Ω̃ν

λ\K)∪(K∩
A), whose measure is less than α, and of K∩B, where |Du|+|Duν

λ| < M .
As in [7], in order to get the full monotonicity and symmetry theorem,

we first prove a preliminary result, which is an extension of Theorem 1.5
of [6].

Proposition 2.2. Let u ∈ C1(Ω) be a weak solution of (1.1) with f satisfy-
ing (H2). For any direction ν we have that Λ0(ν) �= ∅ and, if λ0(ν) < λ1(ν),
then there exists at least one connected component Cν of Ων

λ0(ν) \Zν
λ0(ν) such

that u ≡ uν
λ0(ν) in Cν . For any such component we also get

Du(x) �= 0 ∀x ∈ Cν (2.15)
Du(x) = 0 ∀x ∈ ∂Cν \ T ν

λ0(ν). (2.16)

Moreover, for any λ with a(ν) < λ < λ0(ν), we have

u < uν
λ in Ων

λ \ Zν
λ (2.17)

and finally

∂u

∂ν
(x) > 0 ∀x ∈ Ων

λ0(ν) \ Z. (2.18)

Proof. By Lemma 2.2 (i) we immediately get that Λ0(ν) �= ∅. Suppose that
λ0(ν) < λ1(ν) and u does not coincide with uν

λ0(ν) in any connected compo-
nent of Ων

λ0(ν) \ Zν
λ0(ν). Then by the strong comparison principle (Theorem

2.2) we have that u < uν
λ0(ν) in Ων

λ0(ν) \ Zν
λ0(ν).

By Lemma 2.3 (with A = ∅, μ = λ0(ν) = λ′, ν0 = ν = ν ′, B a neighbor-
hood of Zν

λ0(ν)) there exists ε > 0 such that the inequality u ≤ uν
λ holds in

Ων
λ for λ ∈ (λ0(ν), λ0(ν) + ε), contradicting the definition of λ0(ν).
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To get (2.15) we observe that if u ≡ uν
λ0(ν), then Du = Duν

λ0(ν) in Cν , and
hence Du �= 0 in Cν , since |Du|+ |Duν

λ0(ν)| > 0 in Cν by the very definition
of Zν

λ0(ν). Moreover, from (ii) of Lemma 2.2 we deduce that ∂Cν ∩ ∂Ω = ∅,
so that ∂Cν ⊂ T ν

λ0(ν) ∪ Zν
λ0(ν) and (2.16) follows immediately.

Finally, the proofs of (2.17) and (2.18) are the same as those of the
analogous inequalities deduced in Theorem 3.1 of [7].

3. Proof of Theorem 1.2. Now we proceed to prove Theorem 1.2.
Though the proof is similar to that of Theorem 1.1 of [7], in view of the
hypothesis (H2) we need to make some changes. In doing that we also
simplify a little the procedure contained in [7].

Let us first recall the following simple topological result, whose proof can
be found in [7, Corollary 4.1].

Lemma 3.1. Let A, B be open connected sets in a topological space and
assume that A ∩ B �= ∅, A �≡ B. Then (∂A ∩ B) ∪ (∂B ∩ A) �= ∅.

As usual let ν be a direction and define Fν as the collection of the con-
nected components Cν of Ων

λ0(ν) \Zν
λ0(ν) such that u ≡ uν

λ0(ν) in Cν , Du �= 0
in Cν , Du = 0 on ∂Cν \ (T ν

λ0(ν)).
If λ0(ν) < λ1(ν), then Fν �= ∅ by Proposition 2.2. If this is the case

and Cν ∈ Fν there are two alternatives: either Du(x) = 0 for all x ∈ ∂Cν ,
in which case we define C̃ν = C, or there are points x ∈ ∂Cν ∩ T ν

λ0(ν) such

that Du(x) �= 0. In this latter case we define C̃ν = Cν ∪ Cν
1 ∪ Cν

2 where
Cν

1 = Rν
λ0(ν)(C

ν), Cν
2 = {x ∈ ∂Cν ∩ T ν

λ0(ν) : Du(x) �= 0}. It is easy to check

that C̃ν is open and connected, with Du �= 0 in C̃ν , Du = 0 on ∂C̃ν .
Let us finally define the collection F̃ν = {C̃ν : Cν ∈ Fν}.

Remark 3.1. An important remark for the sequel is the following: if ν1,
ν2 are directions and Cν1 ∈ Fν1 , Cν2 ∈ Fν2 , then either C̃ν1 ∩ C̃ν2 = ∅ or
C̃ν1 ≡ C̃ν2 . In fact if C̃ν1 ∩ C̃ν2 �= ∅ and C̃ν1 �≡ C̃ν2 , then by Lemma 3.1
either ∂C̃ν1 ∩ C̃ν2 or ∂C̃ν2 ∩ C̃ν1 is nonempty, and this is not possible since
Du �= 0 in C̃νi , Du = 0 on ∂C̃νi , i = 1, 2.

Proof of Theorem 1.2. As in [7] the idea of the proof is to get a contra-
diction by showing that if for a direction ν0 we have λ0(ν0) < λ1(ν0), then
it is possible to construct a set Γ as in Proposition 2.1.
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Suppose now that λ0(ν0) < λ1(ν0) for a direction ν0. By Proposition 2.2
Fν0 �= ∅, and obviously it contains at most countably many components that
we denote by Fν0 = {Cν0

i , i ∈ I ⊆ N}.
We fix then α, M , ε0, δ0 as in Lemma 2.3 (with μ = λ0(ν0)), a compact

K ⊂ Ων0

λ0(ν0) and an open neighborhood B of Zν0

λ0(ν0) such that

|Ων0

λ0(ν0) \ K| <
α

4
, Mν0

λ0(ν0)(B) <
M

4
.

Let us define the compact set S0 = ((K \ B) \ ∪i∈ICν0
i ) and observe that

uν0

λ0(ν0) − u ≥ m > 0 in S0.

By continuity, taking eventually ε0 and δ0 smaller, we have that for λ ∈
(λ0(ν0) − ε0, λ0(ν0) + ε0) , ν ∈ Iδ0(ν0):

K ⊂ Ων
λ (3.1)

|Ων
λ \ K| <

α

2
(3.2)

Mν
λ (B) <

M

2
(3.3)

uν
λ − u ≥ m

2
> 0 in S0, (3.4)

and since the function λ1(ν) is lower semicontinuous with respect to ν also

λ0(ν0) + ε0 < λ1(ν). (3.5)

We now proceed in several steps in order to show that there exist i ∈ I and
a direction ν1 ∈ Iδ0(ν0) such that C̃ν0

i ∈ F̃ν for any direction in a suitable
neighbourhood Iδ(ν1) of ν1, and ∂Cν0

i contains a set Γ as in Proposition 3.1
(with respect to the direction ν1).

In what follows we implicitly assume that ε > 0 means 0 < ε ≤ ε0, δ > 0
means 0 < δ ≤ δ0.

Step 1. The function λ0(ν) is continuous; i.e., for each ε > 0 there
exists δ = δ(ε) > 0 such that if ν ∈ Iδ(ν0), then

λ0(ν0) − ε < λ0(ν) < λ0(ν0) + ε. (3.6)
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Proof of Step 1. Let ε > 0 be fixed. By the definition of λ0(ν0) there exist
λ ∈ (λ0(ν0), λ0(ν0) + ε) and x ∈ Ων0

λ such that u(x) > uν0
λ (x). By continuity

there exists δ1 > 0 such that, for every ν ∈ Iδ1(ν0), x belongs to Ων
λ and

u(x) > uν
λ(x). This implies that for all ν ∈ Iδ1(ν0), we have

λ0(ν) < λ < λ0(ν0) + ε.

Next we show that there exists δ2 > 0 such that λ0(ν) > λ0(ν0) − ε for
any ν ∈ Iδ2(ν0). Suppose the contrary; then there exists a sequence {νn} of
directions such that νn → ν0 and λ0(νn) ≤ λ0(ν0) − ε. By Lemma 2.2 we
have that λ0(νn) ≥ a(νn) + ζ0. Up to a subsequence we have that λ0(νn)
converges to a number λ′ ∈ [a(ν0) + ζ0, λ0(ν0) − ε].

By (2.17), we have that

u < uν0
λ′ in Ων0

λ′ \ Zν0
λ′ ,

so by Lemma 2.3 (with μ = λ′, ν0 = ν ′, A = ∅, B a neighborhood of
Zν0

λ′ ) there exist δ, ε > 0 such that the inequality u ≤ uν
λ holds in Ων

λ for
|λ− λ′| < ε, |ν − ν0| < δ. This in particular holds for ν = νn, λ = λ0(ν) + η
for n sufficiently large and η sufficiently small, contradicting the definition
of λ0(νn).

Observe that, since we implicitly assume that ε ≤ ε0 and δ ≤ δ0, by (3.5)
and (3.6) we have that λ0(ν) < λ1(ν) ∀ ν ∈ Iδ(ε0)(ν0), and (3.1)–(3.4) hold
for ν ∈ Iδ(ε0)(ν0), λ = λ0(ν).

Step 2. There exists a direction ν1 near ν0 , δ1 > 0 and i1 ∈ I such
that the set C̃ν0

i1
∈ F̃ν for any ν in Iδ1(ν1) .

Proof of Step 2. Let us recall that for every ν ∈ Iδ(ε0)(ν0) we have

uν
λ0(ν) − u ≥ m

2
> 0 in S0 = ((K \ B) \ ∪i∈IC

ν0
i ) . (3.7)

Let us set, for i ∈ I, Si = (K \B)∩Cν0
i and observe that since ∂Cν0

i \T ν0

λ0(ν0)

⊂ B, each Si is a compact subset of Cν0
i and we have

K \ B = S0 ∪ (∪i∈ISi) . (3.8)

Let us take ν ′ ∈ Iδ (ε0) (ν0) and i ∈ I. If there exists x ∈ Si such that
u(x) = u(xν′

λ0(ν′)), since |Du(x)|+|Duν′
λ0(ν′)(x)| > 0, by the strong comparison
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principle (Theorem 2.2) we get that u ≡ uν′
λ0(ν′) in some component Cν′

of

Ων′
λ0(ν′) \ Zν

λ0(ν), and since x ∈ Cν′ ∩ Cν0
i , by Remark 3.1 we get

C̃ν′
= C̃ν0

i ∈ F̃ν0 ∩ F̃ν′ ,

and in particular u ≡ uν′
λ0(ν′) in Si. The other possibility is that u < uν′

λ0(ν′)
in Si, in which case, by the compactness of Si, we have that for every ν in
a neighbourhood of ν ′ we have the same inequality u < uν

λ0(ν) in Si.
Take now i = 1. If u ≡ uν

λ0(ν) in S1 for all ν ∈ Iδ(ε0)(ν0), then as

remarked C̃ν0
1 ∈ F̃ν for all ν ∈ Iδ(ε0)(ν0), and the assertion is proved with

ν1 = ν0.
If not, there exists ν1 ∈ Iδ(ε0)(ν0) such that u < uν1

λ0(ν1) in S1 and Cν0
1 �∈

Fν1 ; i.e., u > uν1

λ0(ν1) in Si. By the continuity with respect to ν , u < uν
λ0(ν)

in S1 and C̃ν0
1 �∈ F̃ν for all ν ∈ Iδ1(ν1) for some δ1 < δ(ε0)−|ν1−ν0|. Now if

u ≡ uν
λ0(ν) in S2, i.e., C̃ν0

2 ∈ Fν , for all ν ∈ Iδ1(ν1) the assertion is proved.
If not, we find a direction ν2 ∈ Iδ1(ν1) and a neighbourhood Iδ2(ν2) with

δ2 < δ1−|ν2−ν1|, such that u <ν
λ0(ν) in S2 and Cν0

2 �∈ Fν for all ν ∈ Iδ2(ν2).
Proceeding in this way,

(i) either we stop after k iterations, i.e., C̃ν0
k ∈ F̃ν ∀ ν ∈ Iδk

(νk) and Step
2 is proved,

(ii) or the iterations are infinite.

Now we claim that (ii) cannot arise. In case (ii), we construct a sequence
of compact sets {Iδi

(νi)}i∈I which have the finite intersection property (since
they are nested). Then by Cantor’s intersection theorem ∩i∈IIδi

(νi) is
nonempty and contains a direction ν ′ for which Cν0

i �∈ Fν′ and u < uν′
λ0(ν′)

in Si for all i ∈ I. Thus by (3.7) and (3.8) we get u < uν′
λ0(ν′) in K \B. But

then using Lemma 2.3 (with A = Ων′
λ0(ν′) \ K ) we get that the inequality

u < uν′
λ holds in Ων′

λ for some λ > λ0(ν ′), contradicting the maximality of
λ0(ν ′). Hence only i) is possible and Step 2 is proved.

Step 3. Let ν1, i1, δ1 be as in Step 2 and set C = Cν0
i1

. The set
∂C∩Ων1

λ0(ν1) contains a subset Γ on which u is constant and whose projection
on the hyperplane T ν1

λ0(ν1) contains an open subset of the hyperplane. Since
Du = 0 on ∂C ∩ Ων1

λ0(ν1) this gives a contradiction with Proposition 2.1 and
shows that λ0(ν) = λ1(ν) for every direction ν.
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Proof of Step 3. It is exactly the same as in [7].
Having proved that λ0(ν) = λ1(ν) for every direction ν, (1.13) follows

from (2.18).
To prove the strict inequality (1.12) let us observe that if it does not

hold, then the cap Ων
λ0(ν) must contain a segment parallel to the direction

ν on which u is constant. In fact if there exists a direction ν ′ such that
u(x) = u((x)ν′

λ′) = m for some x ∈ Ων′
λ′ and λ′ < λ1(ν ′), then, taking any

λ ∈ (λ′, λ1(ν ′)) we would have that (x)ν′
λ′ = (x̃)ν′

λ for some x̃ ∈ Ων′
λ . Hence

by the monotonicity of u in the set Ων′
λ we would deduce m = u(x) ≤ u(x̃) ≤

u((x̃)ν′
λ ) = u((x)ν′

λ′) = m so that u ≡ m on the segment connecting x with x̃.
This is not possible as Proposition 3.1 below shows.

Finally the strict monotonicity of u in the ν–direction in the cap Ων
λ0(ν)

is an immediate consequence of (1.12).

Proof of Corollary 1.2. The first part is an obvious consequence of The-
orem 1.2, while the inequality ∂u

∂r < 0 when Ω is a ball follows from Hopf’s
lemma as in [7].

Let us now prove the property of the solutions of (1.1) that was used in
the proof of Theorem 1.2 to get (1.12).

Proposition 3.1. Let u ∈ C1(Ω) be a weak solution of (1.1) and let ν0 be a
direction. There cannot exist in the cap Ων0

λ1(ν0) any segment parallel to the
ν–direction on which u is constant.

Proof. For simplicity we assume that ν0 = e1 = (1, . . . , 0) and omit the
dependence on ν0 in all notations (e.g. Ων0

λ1(ν0) will be denoted simply by
Ωλ1).

Arguing by contradiction we suppose that there exists a point x′ ∈ R
N−1

such that the segment I = {(t, x′) : t ∈ (a, b)}, a < b < λ1(e1), is contained
in Ωλ1 and u ≡ m > 0 on I.

Let us first consider the case f(m) ≤ 0.
Since λ1(ν) is lower semicontinuous with respect to ν there exists δ > 0

such that for any direction ν with |ν − e1| < δ the point P = (b, x′) lies in
Ων

λ1(ν). Let K be the open cone made up of the segments parallel to these
directions connecting P with ∂Ω, and let O be the part of that cone where
u > m

2 . Since there are points on ∂O where u = m
2 , it cannot be that u ≡ m

in O, and by the monotonicity of the solutions in the caps Ων
λ1(ν) we have

that u ≤ m in O. On the other hand since f is locally Lipschitz-continuous
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and f(m) ≤ 0 we have

−Δp(u − m) + Λ(u − m) = f(u) + Λu − Λm

≤ f(u) + Λu − (f(m) + Λm) ≤ 0 in O,
(3.9)

where Λ ≥ 0 is such that the function f(s) + Λs is nondecreasing in
[

m
2 , m

]
.

Hence by the strong maximum principle (Theorem 2.3) we get u < m in O
which is a contradiction since the segment I is contained in O and u ≡ m
on I.

In the case f(m) > 0 we argue in the same way and consider the open
cone O′ made up of segments parallel to the directions ν, for ν in a neigh-
borhood of e1, and connecting Q = (a, x′) with T ν

λ1(ν). In this case m is the
minimum of u in O′. If Λ′ is a Lipschitz constant of f in [m, ‖u‖∞] we get

−Δp(u − m) + Λ′(u − m) > 0 in O′,

and u is not constant in the cone because f(m) > 0. So we reach again
a contradiction using the strong maximum principle, because u ≡ m on
I ⊂ O′.

4. Applications. We start by proving Theorem 1.3.
Proof of Theorem 1.3. The procedure is the same as in [9]. Under
hypothesis (H1) Theorem 1.1 holds while under (H2) Theorem 1.2 is true.
In both situations we have that, for any direction ν,

u(x) ≤ uν
λ1(ν)(x) = u(xν

λ1(ν)) ∀ x ∈ Ων
λ1(ν), (4.1)

λ1(ν) being defined in (1.7). Thus, by the strong comparison principle (The-
orem 2.2) in any connected component of Ων

λ1(ν) \Zν
λ1(ν) either u < uν

λ1(ν) or
u ≡ uν

λ1(ν). Since, by (1.14) |Du| �= 0 in a connected neighborhood I of ∂Ω,
one of the previous two alternatives must hold in I ∩ Ων

λ1(ν).
It is obvious that if

u ≡ uν
λ1(ν) in I ∩ Ων

λ1(ν), (4.2)

then Ω must be symmetric about the hyperplane T ν
λ1(ν), so that changing

arbitrarily the direction ν, we get that Ω is a ball.
To prove (4.2) we assume, for the sake of contradiction, that

u < uν
λ1(ν) in I ∩ Ων

λ1(ν). (4.3)
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Since Du(x) �= 0 for any x ∈ I ∩ Ω, by standard results we have that
u ∈ C2(I ∩ Ω) and the difference uν

λ1(ν) − u satisfies in Ων
λ1(ν) ∩ I either

L(uν
λ1(ν) − u) = 0 (4.4)

in the hypothesis (H1), or

L(uν
λ1(ν) − u) = f2(uν

λ1(ν)) − f2(u) ≥ 0 (4.5)

in the hypothesis (H3), where L is some linear uniformly elliptic operator
and f2 is nondecreasing (see [9]). Moreover, by definition, at λ1(ν) either
condition (i) or (ii) of Section 1 holds.

In the first case (Ων
λ1(ν))

′ becomes internally tangent to ∂Ω at some point

P ′ not on T ν
λ1(ν). Thus, at the reflected point P ∈ ∂Ω ∩ Ων

λ1(ν) we have
uν

λ1(ν)(P ) − u(P ) = 0, and hence, by (4.3) and (4.4) or (4.5), applying the
usual form of Hopf’s lemma we obtain

∂u

∂n
(P ) >

∂

∂n
uν

λ1(ν)(P ),

getting a contradiction with (1.14).
In the second case, i.e., when T ν

λ1(ν) is orthogonal to ∂Ω at some point, a
contradiction arises using the version of the Hopf’s lemma at “corners” due
to Serrin. Since, using (4.4) or (4.5) there are not changes with respect to
the proof of [9], we refer the reader to this paper for the details.

Now we would like to show how, as a consequence of the symmetry
of the solutions of (1.1), one can find the exact value S1 of the absolute
isoperimetric constant in R

N .
It is well known that S1 is actually the best constant for the Sobolev

embedding of the space W 1,1(RN ) in the space L
N

N−1 (RN ), and it is achieved
in the space BV (RN ) (which is also embedded in the space in L

N
N−1 (RN )

with the same best constant ) by the characteristic functions of balls.
Let us also consider the best constants Sp for the embedding of W 1,p(RN )

into Lp∗(RN ), where p∗ = Np
N−p , 1 < p < N . Another well-known fact is that

Sp is also the best constant for the embedding of W 1,p
0 (Ω) into Lp∗(Ω) where

Ω is any bounded domain, and hence its value does not depend on Ω. Let
us then fix the ball B in R

N with |B| = 1. Hence,

Sp = inf
{ ∫

B |∇u|p(∫
B |u|p∗

) p
p∗

: u ∈ W 1,p
0 (B) , u �≡ 0

}
. (4.6)
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Let us recall that the above infimum is never achieved because of the lack
of compactness of the previous embedding.

Now we consider the problems

⎧⎨
⎩

−Δpu = uq∗− 1
n in B

u > 0 in B
u = 0 on ∂B

(4.7)

n ∈ N, 1 < p < 2, q∗ = p∗ − 1 = Np
N−p − 1, N ≥ 2. By virtue of Theorem 1.2

all solutions of (4.7) are radial and strictly radially decreasing. In particular
this is true for the functions vp

n which minimize the functional

Jp
n(u) =

∫
B |∇u|p(∫

B |u|p∗− 1
n

) p

p∗− 1
n

. (4.8)

Note that such solutions exist because the embedding of W 1,p
0 (B) into

Lp∗− 1
n (B) is compact. Let us set

Sp
n = inf

W 1,p
0 (B)\{0}

Jp
n(u) = Jp

n(vp
n). (4.9)

We have:

Lemma 4.1. For n sufficiently large we have that Sp
n ≥ Sp

n+1 for every
p ∈ [1, 2].

Proof. For any p ∈ [1, 2], p∗ is greater than 1, so that for n sufficiently large
pn = p∗ − 1

n > 1 . If 1 < r < s < p∗, using Hölder’s inequality we get

( ∫
B
|u|r

) p
r ≤ |B| p

r
− p

s

( ∫
B
|u|s

) p
s

for any u ∈ W 1,p
0 (B). Since |B| = 1, from the previous inequality we get the

assertion, taking r = pn, s = pn+1 .

Lemma 4.2.

lim
n→∞

Sp
n = Sp (4.10)
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Proof. Fixing ε > 0 we have that there exists vε ∈ W 1,p
0 (B) such that

Jp
p∗(vε) =

∫
B |∇vε|p(∫

B |vε|p∗
) p

p∗
< Sp + ε.

Since Jp
n(vε) → Jp

p∗(vε) as n → ∞, we get Sp
n < Sp + 2ε for n sufficiently

large. This, together with Lemma 4.1, gives (4.10).

In the same way it is easy to show that Sp
n and Sp are continuous functions

of p. Hence if we consider a sequence pn → 1 we get that Spn
n → S1, and the

functions vpn
n ∈ C1(B) give a minimizing sequence for S1, i.e.,

∫
B |∇vpn

n |(∫
B |vpn

n |
N

N−1

)N−1
N

→ S1 as n → ∞. (4.11)

As remarked before the functions vpn
n are radial and strictly radially decreas-

ing because they solve (4.7) for p = pn. Thus (4.11) allows us to restrict our
attention to radial functions to determine the value of S1. But for radial
functions an elementary argument gives the best constant for the imbedding
of W 1,1(RN ) into L

N
N−1 (RN ) as shown in the following proposition.

Proposition 4.1. For any u ∈ W 1,1(RN ), with u(x) = U(|x|), we have

( ∫
RN

|u(x)|
N

N−1 dx
)N−1

N ≤ 1

Nω
1
N
N

∫
RN

|Du(x)| dx, (4.12)

where ωN is |B|.

From (4.11), (4.12) we get S1 ≥ Nω
1
N
N , and using the characteristic

function of B, which belongs to BV (RN ), we deduce that S1 = Nω
1
N
N .

Proof of Proposition 4.1. It suffices to show (4.12) for radial functions
u ∈ C1

c (RN ). Let us set q = N
N−1 so that q′ = N (1

q + 1
q′ = 1). We

have, for ρ ≥ 0, U(ρ) = −
∫ ∞
0 U ′(ρ + r) dr = −

∫ ∞
ρ U ′(s) ds; hence |U(ρ)| ≤∫ ∞

ρ |U ′(s)| ds. Integrating with respect to the measure ρN−1dρ and using
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Hölder’s inequality and Fubini’s Theorem we get∫ ∞

0
|U(ρ)|qρN−1 dρ ≤

∫ ∞

0
ρN−1

(∫ ∞

ρ
|U ′(s)| ds

)q

dρ =∫ ∞

0
ρN−1

(∫ ∞

ρ

[
|U ′(s)|

1
q s

1−N
q′

] [
|U ′(s)|

1
q′ s

N−1
q′

]
ds

)q

dρ ≤
∫ ∞

0
ρN−1

(∫ ∞

ρ
|U ′(s)|s(1−N)(q−1) ds

) (∫ ∞

0
|U ′(s)|sN−1 ds

)q−1

dρ =

(∫ ∞

0
|U ′(s)|sN−1 ds

)q−1 (∫ ∞

0
|U ′(s)|s(1−N)(q−1)

[∫ s

0
ρN−1dρ

]
ds

)
=

1
N

(∫ ∞

0
|U ′(s)|sN−1 ds

)q−1 (∫ ∞

0
|U ′(s)|sN−(N−1)(q−1) ds

)
.

Since q = N
N−1 we have that q − 1 = 1

N−1 and N − (N − 1)(q − 1) = N − 1,
so that we have∫ ∞

0
|U(ρ)|q ρN−1 dρ ≤ 1

N

(∫ ∞

0
|U ′(s)| sN−1 ds

)q

, (4.13)

i.e.,

1
NωN

∫
RN

|u(x)|q dx ≤ 1
N

(
1

NωN

)q (∫
RN

|Du(x)| dx

)q

, (4.14)

which is the same as (4.12) because 1 − 1
q = 1

N .
The previous procedure allows us to assert that to determine also the

other best constants Sp (1 < p < 2) we can consider only radial and strictly
radially decreasing functions. In fact, the sequence {vp

n} is a minimizing
sequence for Sp. Then to find the exact value of Sp one can use an inequality
due to Bliss [2], as done in [1] or [10].

REFERENCES

[1] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampere equations, Springer
Verlag, Berlin (1982).

[2] G.A. Bliss, An integral inequality, J. London Math Soc., 5 (1930), 40–46.
[3] F. Brock, Radial symmetry for nonnegative solutions of semilinear elliptic

problems involving the p-Laplacian, to appear in Calculus of variations, ap-
plications and computations, Proceedings of a conference in Pont-á-Mousson,
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