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Abstract We prove that the drift θ(d, β) for excited random walk in dimension d
is monotone in the excitement parameter β ∈ [0, 1], when d is sufficiently large. We
give an explicit criterion for monotonicity involving random walk Green’s functions,
and use rigorous numerical upper bounds provided by Hara (Private communication,
2007) to verify the criterion for d ≥ 9.
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1 Introduction

In this paper, we study excited random walk, where the random walker has a drift
in the direction of the first component each time the walker visits a new site. It was
shown that this process has ballistic behaviour when d ≥ 2 in [4,12,13]. A nontrivial
strong law of large numbers (SLLN) can then be obtained for d ≥ 2 using renewal
techniques (see for example [14,16]). For d = 1, it is known that ERW is recurrent and
diffusive [7] except in the trivial case β = 1. Additional results on one-dimensional
(multi)-excited random walks can be found in [1–3,16].

In [15], a perturbative expansion was introduced and used to prove a weak law of
large numbers and a central limit theorem for excited random walk in dimensions d > 5
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and d > 8 respectively, with sufficiently small excitement parameter. More recently,
[5] explicitly proved a SLLN and established a functional central limit theorem in
dimensions d ≥ 2. Included in [15] is an explicit representation of the drift in terms
of the expansion coefficients. In this paper, we use this representation, together with
explicit simple random walk Green’s function bounds [8,9] to prove that in dimen-
sions d ≥ 9, the drift for excited random walk is (strictly) increasing in the excitement
parameter β.

1.1 Main results

The main result of this paper is the following theorem.

Theorem 1.1 (Monotonicity of the speed) For all d ≥ 9, and β ∈ [0, 1], the drift for
excited random walk in dimension d with excitement parameter β is strictly increasing
in β.

We are also able to show that for d ≥ 8, there exists β0(d) such that the drift for
ERW is strictly increasing in β ∈ [0, β0].

Simulations [5] suggest that the limiting variance of the first coordinate is not mono-
tone in the excitement parameter β in 2 dimensions. We expect that using the approach
introduced in this paper, we can show that the variance is monotone decreasing in β

when the dimension is taken sufficiently high. By [15], the variance of the first coor-
dinate is equal to σ 2

β n(1 + o(1)) for some asymptotic variance σ 2
β , and based on our

methods, we expect that σ 2
β = d−1 −d−2β2 +β2O(d−3), showing that, in sufficiently

high d, β �→ σ 2
β is decreasing.

Although we only consider the once-excited random walk in this paper, the general
multi-excited random walk can be handled with very minor modifications, yielding
a result at least as strong as Theorem 1.1. A large part of the methodology in this
paper can be applied more generally. See [11] for an application of the methods and
results in this paper to the case where the drift on subsequent visits to a site is in the
opposite direction to that induced by the excitement parameter on the first visit. Given
the present context, another natural example is a random walk in an environment that
is random in the first few coordinates only, with the expected drift induced by the
environment denoted by �β. Some progress has been made in this direction [10] mak-
ing use of the fact that a SLLN has been proved for general versions of such random
walks in random environment in [6].

We first introduce some notation. A nearest-neighbour random walk path �η is a
sequence {ηi }∞i=0 for which ηi ∈ Z

d and ηi+1 − ηi is a nearest-neighbour of the
origin for all i ≥ 0. For a general nearest-neighbour path �η with η0 = 0, we write
p�ηi (xi , xi+1) for the conditional probability that the walk steps from ηi = xi to xi+1,
given the history of the path �ηi = (η0, . . . , ηi ). We write, for β ∈ [0, 1],

pβ(x) = 1 + βe1 · x

2d
I{|x |=1}, (1.1)
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where e1 = (1, 0, . . . , 0), and x · y is the inner-product between x and y. Thus, pβ

is the transition probability for a random walk having a drift β when stepping in the
first coordinate. We write �ωn for the n-step path of excited random walk (ERW), and
Q for the law of { �ωn}∞n=0, i.e., for every n-step nearest-neighbour path �ηn ,

Q( �ωn = �ηn) =
n−1∏

i=0

p�ηi (ηi , ηi+1), (1.2)

where p0(0, η1) = pβ(η1) is the probability to jump to η1 in the first step, and

p�ηi (ηi , ηi+1) = p0(ηi+1 − ηi )I{ηi ∈�ηi−1} + pβ(ηi+1 − ηi )[1 − I{ηi ∈�ηi−1}], (1.3)

where I{ηi ∈�ηi−1} denotes the indicator that ηi = η j for some 0 ≤ j ≤ i − 1. In
words, the random walker gets excited each time he/she visits a new site, and when
the random walk is excited, it has a positive drift in the direction of the first coordinate.
For a description in terms of cookies, see [16].

2 An overview of the proof and the expansion

In this section, we recall some results and notation from [15]. If �η and �ω are two paths
of length at least j and m respectively and such that η j = ω0, then the concatenation
�η j ◦ �ωm is defined by

(�η j ◦ �ωm)i =
{

ηi when 0 ≤ i ≤ j,
ωi− j when j ≤ i ≤ m + j.

(2.1)

Given �ηm such that Q( �ωm = �ηm) > 0, we define a probability measure Q
�ηm on paths

starting from ηm by specifying its value on particular cylinder sets (in a consistent
manner) as follows

Q
�ηm ( �ωn = �µn) ≡

n−1∏

i=0

p�ηm◦�µi (µi , µi+1), (2.2)

and extending the measure to all finite-dimensional cylinder sets in the natural (con-
sistent) way. Then (2.2) is also Q( �ωm+n = �ηm ◦ �µn| �ωm = �ηm).

In [15], a perturbative expansion was derived for the two-point function cn(x) =
Q(ωn = x), giving rise to a recursion relation of the form

cn+1(x) =
∑

y∈Zd

pβ(y)cn(x − y) +
n+1∑

m=2

∑

y∈Zd

πm(y)cn+1−m(x − y). (2.3)

This expansion was used to prove a law of large numbers and central limit theorem
for ERW. We next discuss the coefficients πm(y) and some results of this expansion.
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The expansion coefficients Let N ≥ 1, and for i ≥ 0, let �ω(i)
ji +1 be a path of length

ji + 1 ∈ Z+, where, by convention, j0 = 0. Then define

�N =
(

p
�ω(N−1)

jN−1+1◦�ω(N )
jN − p

�ω(N )
jN

)
(ω

(N )

jN
, ω

(N )

jN +1), (2.4)

which depends on �ω(N−1)

jN−1+1 and �ω(N )

jN +1 (although this dependence is suppressed in the

notation). The difference (2.4) is identically zero when the histories �ω(N−1)

jN−1+1 ◦ �ω(N )

jN

and �ω(N )

jN
give the same transition probabilities to go from ω

(N )

jN
to ω

(N )

jN +1. For excited

random walk, �N is non-zero precisely when ω
(N )

jN
has already been visited by �ω(N−1)

jN−1+1

but not by �ω(N )

jN −1, so that

|�N | =
∣∣∣∣∣
βe1 · (ω

(N )

jN +1 − ω
(N )

jN
)

2d

[
I{ω(N )

jN
/∈�ω(N−1)

jN−1
◦�ω(N )

jN −1} − I{ω(N )
jN

/∈�ω(N )
jN −1}

]∣∣∣∣∣ (2.5)

≤ β

2d
I{

ω
(N )
jN +1=ω

(N )
jN

±e1

} I{
ω

(N )
jN

∈�ω(N−1)
jN−1

\�ω(N )
jN −1

} ≤ β

2d
I{

ω
(N )
jN +1=ω

(N )
jN

±e1

} I{
ω

(N )
jN

∈�ω(N−1)
jN−1

}.

Define Am,N = {( j1, . . . , jN ) ∈ Z
N+ : ∑N

l=1 jl = m − N − 1}, AN = ∪̇mAm,N and

π(N )

m (x, y) =
∑

�j∈Am,N

∑

�ω(0)
1

∑

�ω(1)
j1+1

· · ·
∑

�ω(N )
jN +1

I{ω(N )
jN

=x,ω
(N )
jN +1=y} pβ(ω

(0)

1 )

×
N∏

n=1

�n

jn−1∏

in=0

p
�ω(n−1)

jn−1+1◦�ω(n)
in

(
ω

(n)

in
, ω

(n)

in+1

)
. (2.6)

Then we define

πm(x, y) =
∞∑

N=1

π(N )

m (x, y), π(N )(x, y) =
∑

m

π(N )

m (x, y), and

πm(y) =
∞∑

N=1

∑

x∈Zd

π(N )

m (x, y). (2.7)

Note that the quantities π
(N )
m are all zero when N + 1 > m, and that all of the above

quantities depend on β. Note further that

∑

y∈Zd

π(N )

m (x, y) = 0, (2.8)

since
∑

ω
(N )
jN +1

�N = 0 (see also [15, (6.10)]).
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Monotonicity for excited random walk in high dimensions 337

The importance of these quantities is given by [15, Proposition 3.1], which states
that if limn→∞

∑n
m=2

∑
x∈Zd xπm(x) exists and n−1ωn converges in probability

to θ , then

θ(β, d) =
∑

y∈Zd

ypβ(y) +
∞∑

m=2

∑

y∈Zd

yπm(y) = βe1

d
+

∞∑

m=2

∑

y∈Zd

yπm(y). (2.9)

Strategy of the proof of Theorem 1.1 We shall explicitly differentiate the right hand
side of (2.9), and prove that this derivative is positive for all β ∈ [0, 1], when d ≥ 9.
From (2.9) and using (2.7) and (2.8), we have

∑

y∈Zd

yπm(y) =
∑

x,y∈Zd

(y − x)πm(x, y), (2.10)

so that

θ(β, d) = βe1

d
+

∞∑

m=2

∞∑

N=1

∑

x,y∈Zd

(y − x)π(N )

m (x, y). (2.11)

Letting ϕ
(N )
m (x, y) = ∂

∂β
π

(N )
m (x, y) and assuming that the limit can be taken through

the infinite sums, we then have

∂θ

∂β
(β, d) = e1

d
+

∞∑

N=1

∞∑

m=2

∑

x,y∈Zd

(y − x)ϕ(N )

m (x, y). (2.12)

Since ϕ
(N )
m (x, y) ≡ 0 unless |x − y| = 1, we have that

∣∣∣∣
∂θ

∂β
(β, d) − e1

d

∣∣∣∣ ≤
∞∑

N=1

∞∑

m=2

∑

x,y∈Zd

|ϕ(N )

m (x, y)|. (2.13)

We conclude that ∂θ1
∂β

(β, d), which is the first coordinate of ∂θ
∂β

(β, d), is positive for

any β at which
∑∞

N=1
∑∞

m=2
∑

x,y∈Zd |ϕ(N )
m (x, y)| < d−1. This is what we shall prove

in the remainder of this paper, which is organised as follows. In Sect. 3, we start by
proving bounds on π

(N )
m . These bounds will be crucially used to prove bounds on ϕ

(N )
m

in Sect. 4. The results in Sect. 4 are used in Sect. 5 to prove Theorem 1.1.

3 Bound on π

Before proceeding to the proof of Theorem 1.1, we prove a new bound on∑
x,y∈Zd

∑
m |π(N )

m (x, y)|. The proof of this new bound makes use of Lemma 3.1
below.

123



338 R. van der Hofstad, M. Holmes

Let Pd denote the law of simple symmetric random walk in d dimensions, starting
at the origin, and let Dd(x) = I{|x |=1}/(2d) be the simple random walk step distribu-
tion. We will make use of the convolution of functions, which is defined for absolutely
summable functions f, g on Z

d by

( f ∗ g)(x) =
∑

y∈Zd

f (y)g(x − y). (3.1)

Let f ∗k denote the k-fold convolution of f with itself, and let Gd(x) = ∑∞
k=0 D∗k

d (x)

denote the Green’s function for this random walk. We shall sometimes make use of
the representation

G∗i
d (x) =

∞∑

k=0

∑

�mi :m1+···+mi =k

D∗(m1+···+mi )
d (x)

=
∞∑

k=0

(k + i − 1)!
(i − 1)!k! Pd(ωk = x), for i ≥ 1. (3.2)

Note that G∗i
d (x) < ∞ if and only if d > 2i . We shall often abbreviate G∗i

d = G∗i
d (0).

For i ≥ 0, let

Ei (d) = sup
v∈Zd−1

((
d

d − 1

)i+1

G∗(i+1)
d−1 (v) − δ0,v

)
. (3.3)

Lemma 3.1 (Diagrammatic bounds for ERW) For excited random walk, uniformly in
u ∈ Z

d and �ηm, for i ≥ 0,

∞∑

j=0

( j + i)!
j ! Q

�ηm (ω j = u) ≤ i !
(

d

d − 1

)i+1

G∗(i+1)
d−1 , (3.4)

∞∑

j=1

( j + i)!
j ! Q

�ηm (ω j = u) ≤ i !Ei (d). (3.5)

Proof Define an increasing sequence of random variables N j , j ≥ 0, by letting j −N j

be the number of steps that the walk �ω j takes in the first coordinate. Observe that inde-
pendently of �η, N j has a Binomial( j, qd) distribution, where qd = (d − 1)/d. If we
consider �ω j as the initial position and first j steps of an infinite walk �ω, then the
sequence {N j } j≥0 is a random walk on Z+ taking i.i.d. steps that are either +1 or 0
with probability qd and 1 − qd respectively. The random time that such a walk spends
at any level l has a Geometric distribution with parameter qd . Thus, writing P for the
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Monotonicity for excited random walk in high dimensions 339

law of {N j }∞j=0, we obtain that for every i ≥ 0,

( j + i)!
j ! P(N j = l) = ( j + i)!

j !
j !

l!( j − l)!q
l
d(1 − qd) j−l

= q−i
d

(l + i)!
l! P(N j+i = l + i),

so that, for m ≤ l,

∞∑

j=m

( j + i)!
j ! P(N j = l) = q−(i+1)

d
(l + i)!

l! . (3.6)

Given u = (u1, . . . , ud) ∈ Z
d , we write u− := (u2, u3, . . . , ud) ∈ Z

d−1. To prove
(3.4), note that

∞∑

j=0

( j + i)!
j ! Q

�ηm (ω j = u) =
∞∑

j=0

( j + i)!
j !

j∑

l=0

Q
�ηm (ω j = u|N j = l)P(N j = l)

≤
∞∑

l=0

Pd−1(ωl = u− − η−
m )

∞∑

j=l

( j + i)!
j ! P(N j = l)

≤ q−(i+1)
d sup

v∈Zd−1

∞∑

l=0

Pd−1(ωl = v)
(l + i)!

l! . (3.7)

By (3.2), (3.7) is equal to i !q−(i+1)
d supv∈Zd−1 G∗(i+1)

d−1 (v). By [9, Lemma B.3], the

supremum occurs at v = 0. Since q−1
d = d/(d − 1), this proves (3.4).

The bound (3.5) is proved similarly. Indeed, for i ≥ 0, we can write

∞∑

j=1

( j + i)!
j ! Q

�ηm (ω j = u) ≤ sup
v∈Zd−1

∞∑

l=0

Pd−1(ωl = v)

∞∑

j=l∨1

( j + i)!
j ! P(N j = l)

= sup
v∈Zd−1

⎛

⎝
∞∑

l=0

Pd−1(ωl = v)

⎡

⎣
∞∑

j=l

( j + i)!
j ! P(N j = l) − δ0,l i !P(N0 = 0)

⎤

⎦

⎞

⎠

= sup
v∈Zd−1

(
q−(i+1)

d

∞∑

l=0

(l + i)!
l! Pd−1(ωl = v) − i !δ0,v

)

= i ! sup
v∈Zd−1

(
q−(i+1)

d G∗(i+1)
d−1 (v) − δ0,v

)
, (3.8)

since P(N0 = 0) = 1 and
∑∞

l=0 Pd−1(ωl = v)δ0,l = δ0,v , and following the steps in
(3.7) above. �
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Define

ad = d

(d − 1)2 G∗2
d−1. (3.9)

Proposition 3.2 (Bounds on the expansion coefficients for ERW) For N = 1,∑
x,y∈Zd

∑
m |π(1)

m (x, y)| ≤ βd−1E0(d), and, for N ≥ 2,

∑

x,y∈Zd

∑

m

|π(N )

m (x, y)| ≤ βN d−1(d − 1)−1Gd−1E1(d)aN−2
d . (3.10)

Given �ηm and �z j+1, define

�(�z j+1) =
(

p�ηm◦�z j
(
z j , z j+1

) − p�z j
(
z j , z j+1

))
I{z0=ηm }. (3.11)

We will use the following lemma to prove Proposition 3.2.

Lemma 3.3 (Ingredients for bounds on lace expansion coefficients) For any �ηs ,

∞∑

j=0

∑

�z j+1

|�(�z j+1)|
j−1∏

i=0

p�ηs◦�zi (zi , zi+1) ≤ sβ
Gd−1

d − 1
, (3.12)

∞∑

j=0

( j + 1)
∑

�z j+1

|�(�z j+1)|
j−1∏

i=0

p�ηs◦�zi (zi , zi+1) ≤ sβad , (3.13)

∞∑

j=1

∑

�z j+1

|�(�z j+1)|
j−1∏

i=0

p�ηs◦�zi (zi , zi+1) ≤ sβ
E0(d)

d
, (3.14)

∞∑

j=1

( j + 1)
∑

�z j+1

|�(�z j+1)|
j−1∏

i=0

p�ηs◦�zi (zi , zi+1) ≤ sβ
E1(d)

d
. (3.15)

Proof As in (2.5), the left hand side of (3.12) is bounded above by

∞∑

j=0

∑

�z j

⎛

⎝
j−1∏

i=0

p�ηs◦�zi (zi , zi+1)

⎞

⎠ I{z j ∈�ηs−1}
β

2d

∑

z j+1

I{z j+1=z j ±e1}

≤ β

d

∞∑

j=0

∑

�z j

⎛

⎝
j−1∏

i=0

p�ηs◦�zi (zi , zi+1)

⎞

⎠ I{z j ∈�ηs−1}, (3.16)

since only two terms contribute to the rightmost sum in the first line of (3.16). From
(2.2), this is equal to

123
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β

d

∞∑

j=0

∑

�z j

Q
�ηs ( �ω j = �z j )I{z j ∈�ηs−1} = β

d

∞∑

j=0

Q
�ηs (ω j ∈ �ηs−1)

≤ β

d

s−1∑

l=0

∞∑

j=0

Q
�ηs (ω j = ηl). (3.17)

The inequality (3.12) then follows from (3.4) with i = 0. The inequality (3.13) is
obtained similarly, using (3.4) with i = 1 at the last step, while (3.14) and (3.15) are
obtained using (3.5) with i = 0 and i = 1 respectively at the last step. �

Proof of Proposition 3.2 It follows from (2.6) that
∑

x,y∈Zd
∑

m |π(N )
m (x, y)| is

bounded by

∑

ω
(0)
1

pβ(ω
(0)

1 )

∞∑

j1=1

∑

�ω(1)
j1+1

|�1|
j1−1∏

i1=1

p
�ω(0)

1 ◦�ω(1)
i1

(
ω

(1)

i1
, ω

(1)

i1+1

)

· · ·
∞∑

jN =0

∑

�ω(N )
jN +1

|�N |
jN −1∏

iN =1

p
�ω(N−1)

jN−1+1◦�ω(N )
iN

(
ω

(N )

iN
, ω

(N )

iN +1

)
, (3.18)

where the sums over jk , k ≥ 2 are all from 0 to ∞. Note that �1 can only be non-zero if
j1 is odd (so in particular, non-zero). We proceed by using Lemma 3.3 to successively
bound the sums over jk of this expression, beginning with the sum over jN .

If N = 1 then we use (3.14) with s = 1 to bound this sum by sβ E0(d)
d , and then∑

ω
(0)
1

pβ(ω
(0)

1 ) = 1 gives the result. If N > 1 then we use (3.12) with s = jN−1 + 1

on the sum over jN , followed by repeated applications of (3.13) with s = jk−1 + 1 on
the sums over jk with k = N − 1, . . . , 2 respectively, then (3.15) with s = 1 on the
sum over j1 and again the result follows since

∑
ω

(0)
1

pβ(ω
(0)

1 ) = 1. �

Since the speed is known to exist [5], the following corollary is an easy consequence
of [15, Propositions 3.1 and 6.1] together with Proposition 3.2, and the fact that a6 < 1
since G∗2

5 < 52/6 [9].

Corollary 3.4 (Formula for the speed of ERW) For all d ≥ 6 and β ∈ [0, 1],

θ(β, d) = lim
n→∞ E[ωn+1 − ωn] = βe1

d
+

∞∑

m=2

∑

x∈Zd

xπm(x). (3.19)

In fact, the first equality in Corollary 3.4 holds for all d ≥ 2 since the law µn of the
cookie environment as viewed by the random walker at time n is known to converge
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(see e.g. [5]) and

E[ωn+1 − ωn] = E
[
E[ωn+1 − ωn| �ωn]

] = E

[
βe1

d
I{ωn /∈�ωn−1}

]

= βe1

d

[
1 − P(ωn ∈ �ωn−1)

]
, (3.20)

where the right hand side which converges as n → ∞ since P(ωn ∈ �ωn−1) is the
µn-measure of the event that the cookie at the origin is absent.

4 The differentiation step

To verify the exchange of limits in (2.12), it is sufficient to prove that
∑

x,y∈Zd (y − x)

π
(N )
m (x, y) is absolutely summable in m and N (note that for every m and N the sum-

mations over x and y are finite) and that
∑∞

N=1
∑∞

m=2 supβ∈[0,1] |
∑

x,y∈Zd (y − x)

ϕ
(N )
m (x, y)| < ∞. By Proposition 3.2 and the fact that |y − x | = 1 for x, y nearest

neighbours, the first condition holds provided that

βad < 1. (4.1)

In fact we will see later on that this inequality for β = 1 is sufficient to also establish
the second condition. We now identify ϕ

(N )
m (x, y).

Recall (2.6). Then we can write

ϕ(N )

m (x, y) = ϕ(N ,1)

m (x, y) + ϕ(N ,2)

m (x, y) + ϕ(N ,3)

m (x, y), (4.2)

where (by Leibniz’ rule), ϕ(N ,1)
m (x, y), ϕ(N ,2)

m (x, y) and ϕ
(N ,3)
m (x, y) arise from differen-

tiating pβ(ω
(0)

1 ),
∏N

n=1
∏ jn−1

in=0 p
�ω(n−1)

jn−1+1◦�ω(n)
in (ω

(n)

in
, ω

(n)

in+1) and
∏N

n=1 �n , respectively,
with respect to β.

Observe that if ηm = xl then

∂

∂β
p�ηm
β (xl , x) = e1 · (x − xl)I{xl /∈�ηm−1}

2d
I{|x−xl |=1}

= I{xl /∈�ηm−1}
2d

(
I{x−xl=e1}−I{x−xl=−e1}

)
, (4.3)

and hence, using IA − IA∩C = IA∩Cc we have

∂

∂β

(
p�ηm
β (xl , x)− p �ωn◦�ηm

β (xl , x)
)
= 1

2d
I{xl /∈�ηm−1,xl∈�ωn−1}

(
I{x−xl=e1} − I{x−xl=−e1}

)
.

(4.4)

123



Monotonicity for excited random walk in high dimensions 343

Clearly then

∣∣∣∣
∂

∂β

(
p�ηm
β (xl , x)− p �ωn◦�ηm

β (xl , x)
)∣∣∣∣ ≤ 1

2d
I{xl∈�ωn−1\�ηm−1}

(
I{x−xl=e1} + I{x−xl=−e1}

)
.

(4.5)

Let ρ(N ) be the quantity obtained by replacing pβ(ω
(0)

1 ) in (2.6) with (2d)−1

I{ω(0)
1 =±e1} (a bound on its derivative) and by bounding�n by |�n| for all n = 1, . . . , N .

For k = 1, . . . , N , let γ
(N )

k be the quantity obtained from (2.6) by bounding �n by

|�n| for all n = 1, . . . , N and by replacing
∏ jk−1

ik=0 p
�ω(k−1)

jk−1+1◦�ω(k)
ik (ω

(k)

ik
, ω

(k)

ik+1) with the
following bound on its derivative

jk−1∑

l=0

I{ω(k)
l+1−ω

(k)
l =±e1}

2d

jk−1∏

ik = 0
ik �= l

p
�ω(k−1)

jk−1+1◦�ω(k)
ik

(
ω

(k)

ik
, ω

(k)

ik+1

)
. (4.6)

Similarly, let χ
(N )

k be obtained by replacing �k in (2.6) by (2d)−1 I{ω(k)
jk

∈�ω(k−1)
jk−1

}
I{ω(k)

jk+1−ω
(k)
jk

=±e1} (a bound on its derivative) and by bounding �n for n �= k by |�n|.
Letting γ (N ) = ∑N

k=1 γ
(N )

k and χ(N ) = ∑N
k=1 χ

(N )

k , we obtain

∑

m

∑

x,y∈Zd

|ϕ(N ,1)

m (x, y)| ≤ ρ(N ),
∑

m

∑

x,y∈Zd

|ϕ(N ,2)

m (x, y)| ≤ γ (N ), and

∑

m

∑

x,y∈Zd

|ϕ(N ,3)

m (x, y)| ≤ χ(N ). (4.7)

We shall bound each of these terms separately, in Lemmas 4.1, 4.2 and 4.4 below.

Lemma 4.1 (Bounds on ρ(N )) For N = 1, ρ(1) ≤ d−2βE0(d), and, for N ≥ 2,

ρ(N ) ≤ βN Gd−1E1(d)

d2(d − 1)
aN−2

d . (4.8)

Proof This is exactly the same as the proof of Proposition 3.2 except that at the very
last step we use

∑

ω
(0)
1

1

2d
I{ω(0)

1 =±e1} = 1

d
. (4.9)

�
Lemma 4.2 (Bounds on χ(N )) For N = 1, χ(1) ≤ d−1E0(d), and, for N ≥ 2,

χ(N ) ≤ NβN−1 Gd−1E1(d)

d(d − 1)
aN−2

d . (4.10)
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Proof Proceeding exactly as in the proof of Proposition 3.2, except that the bound on
|�k| is missing the β term, we obtain χ

(1)

k ≤ d−1E0(d) and, for N ≥ 2,

χ
(N )

k ≤ βN−1d−1(d − 1)−1Gd−1E1(d)aN−2
d . (4.11)

The resulting bound on χ(N ), (which is simply β−1 N times (3.10)) is then easily
obtained by summing over k from 1 to N . �

Before proceeding to the bound on γ (N ), we first need a new lemma similar to
Lemma 3.1.

Lemma 4.3 Let Q
↔l ,�ηs denote the law of a self-interacting random walk �ω with his-

tory �ηs , where the transition probabilities are those of an ERW with history �ηs , except
that

Q
↔l ,�ηs (ωl+1 = ωl + e1| �ωl) = Q

↔l ,�ηs (ωl+1 = ωl − e1| �ωl) = 1

2
. (4.12)

Then, for all i ≥ 0,

∞∑

j=1

( j + i)!
j !

j−1∑

l=0

Q
↔l ,�ηs (ω j = u) ≤ (i + 1)!

(
d

d − 1

)i+2

G∗(i+2)
d−1 . (4.13)

Proof Since one of the j steps is a simple random walk step in the first coordinate,
the number of steps in the other coordinates has a Binomial( j − 1, d−1

d ) distribution.
Thus,

∞∑

j=1

( j + i)!
j !

j−1∑

l=0

Q
↔l ,�ηs (ω j = u)

≤ sup
v∈Zd−1

∞∑

j=1

j∑

l=1

j−1∑

k=0

( j + i)!
j ! P(N j−1 = k)Pd−1(ωk = v)

= sup
v∈Zd−1

∞∑

k=0

Pd−1(ωk = v)

∞∑

j=k+1

j
( j + i)!

j ! P(N j−1 = k)

= sup
v∈Zd−1

∞∑

k=0

Pd−1(ωk = v)

∞∑

r=k

(r + i + 1)!
r ! P(Nr = k). (4.14)

Now proceed as in the proof of Lemma 3.1 to obtain the result. �
Define

ε(d) = 2d

(d − 1)4 Gd−1G∗3
d−1 + E1(d)

d(d − 1)2 G∗2
d−1. (4.15)
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Lemma 4.4 (Bounds on γ (N )) For N = 1, 2, γ (1) ≤ β(d − 1)−2G∗2
d−1, γ (2) ≤ β2ε(d)

and, for all N ≥ 3,

γ (N ) ≤ ε(d)β2(βad)N−2 + (N − 2)
2β3E1(d)

(d − 1)4 Gd−1G∗3
d−1(βad)N−3. (4.16)

Proof We proceed as in the proof of Proposition 3.2 except that from the definition of
γ

(N )

k , the product of transition probabilities inside the sum over jk in (3.18), is replaced
with (4.6). We use Lemma 4.3 instead of Lemma 3.1 to bound this sum.

When N = 1, then also k = 1 and γ
(1)

1 is

∑

ω
(0)
1

pβ(ω
(0)

1 )

∞∑

j1=1

j1−1∑

l=0

∑

�ω(1)
j1+1

|�1|
I{ω(1)

l+1−ω
(1)
l =±e1}

2d

j1−1∏

i = 0
i �= l

p �ω(0)
1 ◦�ω(1)

i
(
ω

(1)

i , ω
(1)

i+1

)

≤ β

d2

∑

ω
(0)
1

pβ(ω
(0)

1 )

∞∑

j1=1

j1−1∑

l=0

∑

�ω(1)
j1

I{ω(1)
j1

=ω
(0)
0 }

I{ω(1)
l+1−ω

(1)
l =±e1}

2

×
j1−1∏

i = 0
i �= l

p �ω(0)
1 ◦�ω(1)

i
(
ω

(1)

i , ω
(1)

i+1

)
(4.17)

where we have used the usual bound (2.5) and the fact that
∑

ω
(1)
j1+1

I{ω(1)
j1+1=ω

(1)
j1

±e1} =2.

Now observe that

I{ω(1)
l+1−ω

(1)
l =±e1}

2

j1−1∏

i = 0
i �= l

p �ω(0)
1 ◦�ω(1)

i
(
ω

(1)

i , ω
(1)

i+1

) = Q
↔l , �ω(0)

1 ( �ω j1 = �ω(1)

j1
), (4.18)

so that (4.17) is equal to

β

d2

∑

ω
(0)
1

pβ(ω
(0)

1 )

∞∑

j1=1

j1−1∑

l=0

∑

�ω(1)
j1

I{ω(1)
j1

=ω
(0)
0 }Q

↔l , �ω(0)
1 ( �ω j1 = �ω(1)

j1
)

= β

d2

∑

ω
(0)
1

pβ(ω
(0)

1 )

∞∑

j1=1

j1−1∑

l=0

Q
↔l , �ω(0)

1 (ω j1 = ω
(0)

0 ).

Now use (4.13) with i = 0 to get the required bound.
For the remaining cases we begin by adjusting the sum over jk in (3.18) as in (4.17)

and (4.18). When N > 1 and k = 1 we use the same bounds as in the proof of Prop-
osition 3.2 except that we use (4.13) with i = 1 on the sum over j1. This gives us a
bound on γ

(N )

1 (when N > 1) of
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2β

d2

(
d

d − 1

)3

G∗3
d−1

β

d − 1
Gd−1

N−1∏

i=2

βad . (4.19)

When N > 1 and k = N , we use the same bounds as in the proof of Proposition 3.2
except that we use (4.13) with i = 0 on the sum over jN in (3.18). This gives us a
bound on γ

(N )

N (when N > 1) of

β

(d − 1)2 G∗2
d−1

β

d
E1(d)

N−1∏

i=2

βad . (4.20)

Similarly when N > 1 and 1 �= k �= N (so N > 2) we use (4.13) on the sum over jk

in (3.18) to get a bound on γ
(N )

k of the form

β

d − 1
Gd−1

β

d
E1(d)

2β

d2

(
d

d − 1

)3

G∗3
d−1

N−1∏

i=2
i �=k

βad . (4.21)

Simplifying these expressions and summing over k completes the proof of the lemma.
�

Corollary 4.5 (Summary of bounds) For all β ∈ [0, 1], and d such that ad < 1

d
∞∑

N=1

ρ(N ) ≤ E0(d)

d
+ Gd−1E1(d)

d(d − 1)(1 − ad)
, (4.22)

d
∞∑

N=1

χ(N ) ≤ E0(d) + Gd−1E1(d)(2 − ad)

(d − 1)(1 − ad)2 , (4.23)

d
∞∑

N=1

γ (N ) ≤ dG∗2
d−1

(d − 1)2 + ε(d)d

1 − ad
+ 2dE1(d)Gd−1G∗3

d−1

(d − 1)4(1 − ad)2 . (4.24)

Proof Firstly note that the condition on ad ensures that ρ(N ), χ(N ) and γ (N ) are all
summable over N , and in all cases the supremum over β occurs at β = 1 (see Lem-
mas 4.1, 4.2 and 4.4). The results are then easily obtained by summing each of the
bounds in Lemmas 4.1, 4.2 and 4.4 over N . �

5 Proof of Theorem 1.1

For d such that ad < 1, the bounds of Corollary 4.5 hold. From (4.7) we have the
required absolute summability conditions in the discussion after (2.12), and in partic-
ular (2.12) holds for all β ∈ [0, 1]. To complete the proof of the theorem, it remains to
show that the right hand side of (2.13) is no more than d−1. By (4.7) and Corollary 4.5,
we have bounded d times the right hand side of (2.13) by the sum of the right hand
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sides of the bounds in Corollary 4.5. Since these terms all involve simple random walk
Green’s functions quantities, we will need to use estimates of these quantities.

In order to bound Ei (d), we shall first prove that, for all i ≥ 0,

Ei (d) =
(

d

d − 1

)i+1

G∗(i+1)
d−1 − 1. (5.1)

In order to prove (5.1), we first make use of [9, Lemma B.3], which states that G∗n
d (x)

is non-increasing in |xi | for every i = 1, . . . , d, so that the supremum in (3.3) can be
restricted to v = 0 and v = e for any neighbour e of the origin. In order to bound
G∗n

d (e), we make use of the fact that for any function x �→ f (x) for which f (e) is
constant for all e ∈ Z

d with |e| = 1, we have f (e) = (Dd ∗ f )(0), so that

Ei (d)=max

{(
d

d − 1

)i+1

G∗(i+1)
d−1 (0)−1,

(
d

d − 1

)i+1

(Dd−1 ∗ G∗(i+1)
d−1 )(0)

}
.

(5.2)

Note that since Gd(x) = δ0,x + (Dd ∗ Gd)(x) ≥ δ0,x , we have that G∗i
d (0) ≥ 1 and

G∗(i+1)
d (0) = G∗i

d (0) + (Dd ∗ G∗(i+1)
d )(0). Therefore,

(
d

d − 1

)i+1

G∗(i+1)
d−1 (0) − 1 =

(
d

d − 1

)i+1

(Dd−1 ∗ G∗(i+1)
d−1 )(0)

+
(

d

d − 1

)i+1

G∗i
d (0) − 1, (5.3)

which is strictly larger than ( d
d−1 )i+1(Dd−1 ∗ G∗(i+1)

d−1 )(0) and thus proves (5.1).
By [9, Lemma C.1], d �→ G∗n

d is monotone decreasing in d for each n ≥ 1, so
that it suffices to show that the sum of terms on the right hand sides of (4.22)–(4.24)
is bounded by 1 for d = 9. For this we use the following rigorous Green’s functions
estimates [8,9] for d = 8:

Gd ≤ 1.07865, G∗2
d ≤ 1.2891, G∗3

d ≤ 1.8316. (5.4)

Putting in these values for d − 1 = 8 we get that the sum of the right hand sides of
the bounds in Corollary 4.5 is at most 0.97, whence the result follows for d ≥ 9. �

To prove monotonicity for β ∈ [0, β0] for some β0(d) for each d ≥ 8, it is sufficient
to prove that χ(1) < d−1 when d ≥ 8 (and that the other terms are bounded), since
this is the only term that does not contain a factor β that can be made arbitrarily small
by choosing β0 small. Since χ(1) ≤ d−1E0(d), it is enough to show that E0(d) < 1
for d = 8, since the right hand sides of (4.22)–(4.24) are bounded for d ≥ 8. From
[9] we have 6

5 G5 − 1 < 6
5 (1.157) − 1 < 1, and since E0(d) is decreasing in d, this

completes the result.
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