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MONOTONICITY IN TERMS OF ORDER OF THE ZEROS

OF THE DERIVATIVES OF BESSEL FUNCTIONS

LEE LORCH

(Communicated by Kenneth R. Meyer)

Abstract. An elementary Sturm technique is shown to provide an alternative

and simpler proof of the result that the known monotonicity of the zeros of

fixed rank of the Bessel function of the first kind implies monotonicity for the

zeros of its derivative for orders between -1 and 0. The reasoning applies to

other Bessel functions.

The chief objective is to show that Sturm methods suffice to infer the mono-

tonicity in v , -1 < v < 0, of j'vk from that of jvk , k = 1,2, ... .

Only minor changes are required to show more directly than in [3] but also by

Sturm methods that j'vk increases when v > 0 and so this is recorded as well.

For the same reason a result for the Bessel function of the second kind, Yv(x)v,

v > -1/2, is also noted. Similar remarks apply to other Bessel functions.

There are Sturm-type proofs for the monotonicity of jvk , v > 0, [ 1, 3] and

also for jvk, v > 0, [3] but none such have been offered for -1 < v < 0. For

this interval, monotonicity has been established otherwise both for jvk [2; 6,

p. 509] and for j'vk [4].

As usual, jvk and j'vk denote the respective k-th positive zeros of Jv(x)

and its derivative, k = 1,2, ... , except that j'ox =0 to assure continuity as

v —► 0+ . This is the Bessel function of first kind and order v . It satisfies the

differential equation.

(1) (xy'J + x-\x2-v2)yv = f),       yv = Jv(x)-

Use will be made of the function

W(x) = Jß(x)[xJl(x)] - J^ixJ'^x)]

and its derivative which, in view of (1), can be expressed as

xW\x) = (u-p2)Ji/{x)Jp{x).
-
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Required also are the inequalities

(2) J»k<JM,k+i>        -\<p<v<P+\,    k=\,2,....

These follow from the interlacing relations in [6, p. 479] since jvk < j   x k .

Theorem A [4]. For each fixed k = 1,2,3, ... ,  the function j'vk increases for

-1 <v <0.

Proof. It is required to establish that

(3) j'ßk<j'vk>        -\<p<v<Q,    k = l,2,....

2 2
Here p  > v  . Hence

W'(x)<0,       Juk<x<JMk+x.

Moreover, W(jßM,) = -jß k+xJv(jpMl)fftUltM1)>0.

Therefore, W(x) > 0, jvk < x < juk+x .

If j'vk > jß >k+i, the conclusion would be obvious. In case jvk < j'vk < jß k+x ,

then W(jlk)>0. Thus,

Q<-íkJÁhk)J'¿j'uk)>

so that (~l)k+l J'ßUlk) >°> since (-VkJvU'uk) > 0, for -1< z/ < 0.

This establishes that j'vk > j'. , as asserted.

Theorem B [5, p. 248; 6, p. 510]. For each fixed k = 1,2,3,..., the function

j'vk increases, v > 0.

Proof. With v > p > 0, it will be shown that j'vk > j'. . Without restricting

generality, v may be taken less than p, + 1, so that (2) holds. Here v2 > p2

and so

W'(x)>0,       jvk_x<x<jßk,       k=\,2,...,

where jv0 = 0 so as to include the case j'vX ; here /„(0) = / (0) = 0.

Now, W{jv k_x) = jv k_xJß{jv k_x)Jl{jv,k-l) >Q, k= 1,2, ... . Hence,

W(x) > 0, jv k_x < x < j . . For j'vk > jßk the conclusion is obvious. For

hjc-\ < j'vk < JMk . it follows that WUlk) > 0, whence Jv(jvk)J'jyJvk) < 0.

Thus, (-1) +lJ'piU'l,k) > ° so that J'lk > J'vk ' as asserted.

Remark. The same line of reasoning allows one to infer that yvk increases,

v > -1/2, from the known result [6, p. 509] that yvk increases for v > -1/2,

for fixed k = 1,2, .... As usual yvk , y'vk denote the respective /cth positive

zeros of the Bessel function Yv(x) and its derivative.

In carrying out the details, it must be remembered both that y . < yvk <

y/i+i.k ' -\/2< p<v , with v < p+ 1, and that

(4) yM+i.k<yß.k+i>       0>-i»    k=l,2,...,

as is implicit in [6, §15.22, pp. 479-480].
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