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We show that a recent definition of relative Rényi entropy is mono-
tone under completely positive, trace preserving maps. This proves a re-
cent conjecture of Müller-Lennert et al. [“On quantum Rényi entropies: A
new definition, some properties,” J. Math. Phys. 54, 122203 (2013); e-print
arXiv:1306.3142v1; see also e-print arXiv:1306.3142]. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4838835]

Recently, Müller-Lennert et al.12 and Wilde et al.15 modified the traditional notion of relative
Rényi entropy and showed that their new definition has several desirable properties of a relative
entropy. One of the fundamental properties of a relative entropy, namely, monotonicity under com-
pletely positive, trace preserving maps (quantum operations) was shown only in a limited range of
parameters and conjectured for a larger range. Our goal here is to prove this conjecture.

More precisely, the definition of the quantum Rényi divergence12 or sandwiched Rényi entropy15

is

Dα(ρ‖σ ) =

⎧⎪⎪⎨
⎪⎪⎩

(α − 1)−1 log
(
(Tr ρ)−1 Tr

(
σ (1−α)/(2α)ρσ (1−α)/(2α)

)α)
if α ∈ (0, 1) ∪ (1,∞),

(Tr ρ)−1 Tr ρ (log ρ − log σ ) if α = 1,

log
∥∥σ−1/2ρσ−1/2

∥∥
∞ if α = ∞,

for non-negative operators ρ, σ . Here, for α ≥ 1, we define Tr
(
σ (1−α)/αρσ (1−α)/α

)α = ∞ if the
kernel of σ is not contained in the kernel of ρ. The factor (Tr ρ)−1 is inessential and could be
dropped, but we keep it in order to be consistent with Ref. 12. After a first version of our paper
appeared (arXiv:1306.5358), we were made aware of the fact that Dα(ρ‖σ ) is a special case of a
two-parameter family of relative entropies introduced earlier in Ref. 7.

Note that Dα(ρ‖σ ) is the relative von Neumann entropy for α = 1, the relative max-entropy for
α = ∞ and closely related to the fidelity Tr

(
σ 1/2ρσ 1/2

)1/2
for α = 1/2. In Ref. 12, it is shown that

Dα(ρ‖σ ) depends continuously on α, in particular, at α = 1 and α = ∞.
The definition of Dα(ρ‖σ ) should be compared with the traditional relative Rényi entropy (see,

e.g., Ref. 11),

D′
α(ρ‖σ ) = (α − 1)−1 log

(
(Tr ρ)−1 Tr σ 1−αρα

)
if α ∈ (0, 1) ∪ (1,∞).

Note that by the Lieb–Thirring trace inequality9

Dα(ρ‖σ ) ≤ D′
α(ρ‖σ ) for α > 1.
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Our main results in this paper are the following two theorems.

Theorem 1 (Monotonicity). Let 1/2 ≤ α ≤ ∞ and let ρ, σ ≥ 0. Then for any completely
positive, trace preserving map E ,

Dα(ρ‖σ ) ≥ Dα(E(ρ)‖E(σ )).

Theorem 2 (Joint convexity). Let 1/2 ≤ α ≤ 1. Then Dα(ρ‖σ ) is jointly convex on pairs (ρ, σ )
of non-negative operators with Tr ρ = t for any fixed t > 0.

For the relative von Neumann entropy (α = 1) both theorems are due to Lindblad,10 whose
proof is based on Lieb’s concavity theorem.8 Theorem 1 for α ∈ (1, 2] is due to Refs. 12 and
15. In a preprint of Ref. 12, its validity was conjectured for all values α ≥ 1/2. Shortly, after the
first version of our paper appeared (arXiv:1306.5358v1) which proved this conjecture for all α ≥
1/2, Beigi3 independently posted (arXiv:1306.5920) an alternative proof of Theorem 1 in the range
α ∈ (1, ∞).

Just as in Lindblad’s monotonicity proof for α = 1, we will deduce Theorem 1 for α > 1 from
Lieb’s concavity theorem.8 The proof for 1/2 ≤ α < 1 uses a close relative of this theorem, namely,
Ando’s convexity theorem.1 These theorems enter in the proof of Proposition 3 below.

Let us turn to the proofs of the theorems. Both of them are based on the following proposition.

Proposition 3. The following map on pairs of non-negative operators

(ρ, σ ) 	→ Tr
(
σ (1−α)/(2α)ρσ (1−α)/(2α)

)α

is jointly concave for 1/2 ≤ α < 1 and jointly convex for α > 1.

We note that this proposition implies that exp ((α − 1)Dα(ρ‖σ )) is jointly concave for 1/2 ≤ α

< 1 and jointly convex for α > 1 on pairs (ρ, σ ) of non-negative operators with Tr ρ = t for any fixed
t > 0. Since x 	→ x1/(α − 1) is increasing and convex for 1 < α ≤ 2, we deduce that exp (Dα(ρ‖σ )) is
jointly convex for 1 < α ≤ 2 on pairs (ρ, σ ) of non-negative operators with Tr ρ = t for any fixed t
> 0. This fact is also proved in Refs. 12 and 15.

The argument to derive Theorem 1 from Proposition 3 is well known, but we include it for the
sake of completeness. The fact that joint convexity implies monotonicity appears in Ref. 10, but here
we also use ideas from Ref. 14.

Proof of Theorem 1 given Proposition 3. We prove the assertion for α ∈ [1/2, 1) ∪ (1, ∞). The
remaining two cases follow by continuity in α. By a limiting argument, we may assume that the
underlying Hilbert space is CN for some finite N. If E is a completely positive, trace preserving map
then by the Stinespring representation theorem13 there is an integer N′ ≤ N2, a density matrix τ on
CN ′

(which can be chosen to be pure) and a unitary U on CN ⊗ CN ′
such that

E(γ ) = Tr2 U (γ ⊗ τ ) U ∗.

Thus, if du denotes normalized Haar measure on all unitaries on CN ′
, then

E(γ ) ⊗ (N ′)−11CN ′ =
∫

(1 ⊗ u)U (γ ⊗ τ ) U ∗(1 ⊗ u∗) du. (1)

By the tensor property of Dα(·‖·),

Dα(E(ρ)‖E(σ )) = Dα(E(ρ) ⊗ (N ′)−11CN ′ ‖ E(σ ) ⊗ (N ′)−11CN ′ ). (2)
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By (1) and Proposition 3 the double, normalized u integral in (2) is bounded from below (if 1/2 ≤ α

< 1) or above (if α > 1) by a single integral:

∫
Dα((1 ⊗ u)U (ρ ⊗ τ ) U ∗(1 ⊗ u∗)‖ (1 ⊗ u)U (σ ⊗ τ ) U ∗(1 ⊗ u∗)) du

=
∫

Dα(ρ ⊗ τ‖σ ⊗ τ ) du

= Dα(ρ ⊗ τ‖σ ⊗ τ )

= Dα(ρ‖σ ).

Here, we used the unitary invariance of Dα(·‖·), the normalization of the Haar measure and the
tensor property of Dα(·‖·).

Dividing the inequality we have obtained by Tr E(ρ) = Tr ρ, taking logarithms and multiplying
by α − 1 we obtain the monotonicity stated in the theorem. �

Proof of Theorem 2 given Proposition 3. This follows immediately from Proposition 3 together
with the fact that x	→log x is increasing and concave. �

Thus, we have reduced the proofs of Theorems 1 and 2 to the proof of Proposition 3.
The latter, in turn, is based on two ingredients. The first one is a representation formula for
Tr

(
σ (1−α)/(2α)ρσ (1−α)/(2α)

)α
.

Lemma 4. Let ρ, σ ≥ 0 be operators. Then, if α > 1,

Tr
(
σ (1−α)/(2α)ρσ (1−α)/(2α)

)α = sup
H≥0

(
α Tr Hρ − (α − 1) Tr

(
H 1/2σ (α−1)/α H 1/2

)α/(α−1)
)

.

The same equality holds for 0 < α < 1, provided sup is replaced by inf.

The second ingredient in the proof of Proposition 3 is a concavity result for Tr (B∗ Ap B)1/p.

Lemma 5. For a fixed operator B, the map on positive operators

A 	→ Tr
(
B∗ Ap B

)1/p

is concave for − 1 ≤ p ≤ 1, p 
= 0.

The case 0 < p ≤ 1 in this lemma is due to Epstein,6 with an alternative proof due to Carlen–
Lieb5 based on the Lieb concavity theorem.8 Legendre transforms, similar to Lemma 4, are also
used in Ref. 5.

The remaining case − 1 ≤ p < 0 can be proved similarly, using Ando’s convexity theorem,1

as in Ref. 5. (For an introduction to both theorems we refer to Ref. 4.) While this case could easily
have been included in Ref. 5, it was not, and for the benefit of the reader we explain the argument
below. Alternatively, one could probably follow Bekjan’s adaption2 of Epstein’s proof to establish
the − 1 ≤ p < 0 case.

Proof of Proposition 3 given Lemmas 4 and 5. Lemma 5 implies that

σ 	→ (1 − α) Tr
(
H 1/2σ (α−1)/α H 1/2

)α/(α−1)

is concave for 1/2 ≤ α < 1 and convex for α > 1. The claim of the proposition now follows from
the representation formula in Lemma 4. �
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It remains to prove the lemmas.

Proof of Lemma 4. Let α > 1 and abbreviate β = (α − 1)/(2α). Since H1/2σ 2βH1/2 and σβHσβ

have the same non-zero eigenvalues, the right side of the lemma is the same as

sup
H≥0

(
α Tr Hρ − (α − 1) Tr

(
σβ Hσβ

)1/(2β)
)

.

Let us show that the supremum is given by Tr
(
σ−βρσ−β

)α
. To prove this, we may assume (by

continuity) that σ is positive and we observe that the supremum is attained (at least if the underlying
Hilbert space is finite-dimensional, which we may assume again by an approximation argument).
The Euler–Lagrange equation for the optimal Ĥ reads

αρ − ασβ
(
σβ Ĥσβ

)1/(α−1)
σβ = 0,

that is,

Ĥ = σ−β
(
σ−βρσ−β

)α−1
σ−β.

By inserting this into the expression we wish to maximize, we obtain Tr
(
σ−βρσ−β

)α
, as claimed.

The proof for 0 < α < 1 is similar. �
We are grateful to the referee for suggesting the following alternative proof of Lemma 4 for

α > 1. Recall that for positive operators X and Y and 1 < p, q < ∞ with 1/p + 1/q = 1 one has

Tr XY ≤ 1

p
Tr X p + 1

q
Tr Y q ,

with equality if Xp = Yq. This implies the statement of the lemma, if we set X = σ − βρσ − β , Y =
σβHσβ and p = α, q = α/(α − 1).

Proof of Lemma 5. As we have already mentioned, the result for 0 < p ≤ 1 is known.5, 6

Therefore, we only give the proof for − 1 ≤ p < 0 and for this we adapt the argument of Ref. 5. We
note that

p Tr
(
B∗ Ap B

)1/p = inf
X≥0

(
Tr Ap/2 B X1−p B∗ Ap/2 − (1 − p) Tr X

)
.

(The proof is similar to the proof of Lemma 4.) If we can prove that

(A, X ) 	→ Tr Ap/2 B X1−p B∗ Ap/2 (3)

is jointly convex on pairs of non-negative operators, then p Tr (B∗ Ap B)1/p as an infimum over jointly
convex functions is convex (see Lemma 2.3 of Ref. 5), which implies the lemma.

To prove that (3) is jointly convex, we write, as in Ref. 8,

Tr Ap/2 B X1−p B∗ Ap/2 = Tr Z p K ∗ Z1−p K ,

where

K =
(

0 0

B∗ 0

)
, Z =

(
A 0

0 X

)
.

We can consider K, which is an operator in H ⊕ H, as a vector in (H ⊕ H) ⊗ (H ⊕ H) and write
K̃ . Thus,

Tr Z p K ∗ Z1−p K = 〈K̃ , Z p ⊗ Z1−p K̃ 〉.
By Ando’s convexity theorem,1 the right side is a convex function of Z. This is equivalent to (3)
being jointly convex, as we set out to prove. �

Remark 6. More generally, for a fixed operator B, A 	→ Tr (B∗ Ap B)q/p is concave on non-
negative operators for 0 < |p| ≤ q ≤ 1. The case p > 0 is due to Carlen–Lieb5 and the case p < 0
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follows from similar arguments. More precisely, we can write

r Tr
(
B∗ Ap B

)q/p = inf
X≥0

(
Tr Ap/2 B X1−r B∗ Ap/2 − (1 − r ) Tr X

)
with the notation r = p/q < 0. Since

Tr Ap/2 B X1−r B∗ Ap/2 = Tr Z p K ∗ Z1−r K

with Z and K as in the previous proof, the more general assertion again follows from Ando’s convexity
theorem.1
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