MONOTONICITY OF RATIO BETWEEN THE GENERALIZED LOGARITHMIC MEANS

Feng Qi, Shou-Xin Chen and Chao-Ping Chen

Abstract. Let $c>b>a>0$ be real numbers. Then the function $f(r)=\frac{L_{r}(a, b)}{L_{r}(a, c)}$ is strictly decreasing on $(-\infty, \infty)$, where $L_{r}(a, b)$ denotes the generalized (extended) logarithmic mean of two positive numbers a and b.

Mathematics subject classification (2000): 26D15, 26E60.
Key words and phrases: monotonicity, inequality, ratio, generalized logarithmic mean, extended logarithmic mean, identric mean, exponential mean.

REFERENCES

[1] H. Alzer, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl., 179, (1993), 396-402.
[2] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics, 97, Addison Wesley Longman Limited, 1998.
[3] T. H. Chan, P. Gao and F. Qi, On a generalization of Martins' inequality, Monatsh. Math., 138, (3) (2003), 179-187. RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 12, 93-101; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
[4] Ch.-P. Chen, F. Qi, Notes on proofs of Alzer's inequality, Octogon Math. Mag., 11, (1) (2003), 29-33.
[5] Ch.-P. Chen, F. Qi, P. Cerone and S. S. Dragomir, Monotonicity of sequences involving convex and concave functions, Math. Inequal. Appl., 6, (2) (2003), 229-239. RGMIA Res. Rep. Coll., 5, (1) (2002), Art. 1, 3-13; Available online at URL: http://rgmia.vu.edu.au/v5n1.html.
[6] N. Elezović, J. PeČARić, On Alzer's inequality, J. Math. Anal. Appl., 223, (1998), 366-369.
[7] B.-N. Guo, F. Qi, An algebraic inequality, II, RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 8, 55-61; Available online at $U R L:$ http: //rgmia.vu.edu.au/v4n1.html.
[8] B.-N. GUO, F. QI, Inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with arbitrary difference, Tamkang. J. Math., 34, (3) (2003), 261-270.
[9] B.-N. Guo, F. Qi, Monotonicity of sequences involving geometric means of positive sequences with monotonicity and logarithmical convexity, Math. Inequal. Appl., 9, (1) (2006), 1-9.
[10] J.-Ch. KuANG, Chángyòng Bùděngshì (Applied Inequalities), 2nd ed., Hunan Education Press, Changsha, China, 1993. (Chinese)
[11] J.-Ch. Kuang, Some extensions and refinements of Minc-Sathre inequality, Math. Gaz., 83, (1999), 123-127.
[12] Zh. Liu, New generalization of H. Alzer's inequality, Tamkang J. Math., 34, (3) (2003), 255-260.
[13] J. S. Martins, Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math Nachr., 139, (1988), 281-288.
[14] H. Minc, L. Sathre, Some inequalities involving $(r!)^{1 / r}$, Proc. Edinburgh Math. Soc., 14, (1964/65), 41-46.
[15] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[16] N. Ozeki, On some inequalities, J. College Arts Sci. Chiba Univ., 4, (3) (1965), 211-214. (Japanese)
[17] F. Qi, An algebraic inequality, J. Inequal. Pure Appl. Math., 2, (1) (2001), Art. 13; Available online at URL: http://jipam.vu.edu.au/article.php?sid=129. RGMIA Res. Rep. Coll., 2, (1) (1999), Art. 8, 81-83; Available online at URL: http://rgmia.vu.edu.au/v2n1.html.
[18] F. QI, Generalizations of Alzer's and Kuang's inequality, Tamkang J. Math., 31, (3) (2000), 223-227. RGMIA Res. Rep. Coll., 2, (6) (1999), Art. 12, 891-895; Available online at URL: http://rgmia.vu.edu.au/v2n6.html.
[19] F. Qı, Generalization of H. Alzer's inequality, J. Math. Anal. Appl., 240, (1999), 294-297.
[20] F. QI, Inequalities and monotonicity of sequences involving $\sqrt[n]{(n+k)!/ k!}$, Soochow J. Math., 29, (4) (2004), 353-361. RGMIA Res. Rep. Coll., 2, (5) (1999), Art. 8, 685-692; Available online at URL: http://rgmia.vu.edu.au/v2n5.html.
[21] F. QI, Inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with unit difference, Austral. Math. Soc. Gaz., 30, (3) (2003), 142-147. Internat. J. Math. Ed. Sci. Tech., 34, (4) (2003), 601-607. RGMIA Res. Rep. Coll., 6, (2003), suppl., Art. 2; Available online at URL: http://rgmia.vu.edu.au/v6(E) .html.
[22] F. QI, On a new generalization of Martins' inequality, RGMIA Res. Rep. Coll., 5, (3) (2002), Art. 13, 527-538; Available online at URL: http://rgmia.vu.edu.au/v5n3.html.
[23] F. QI, Ch.-P. Chen, Monotonicity and inequalities for ratio of the generalized logarithmic means, RGMIA Res. Rep. Coll., 6, (2) (2003), Art. 18, 333-339; Available online at URL: http://rgmia.vu.edu.au/v6n2.html.
[24] F. Qi, L. Debnath, On a new generalization of Alzer's inequality, Internat. J. Math. Math. Sci., 23, (12) (2000), 815-818.
[25] F. Qi, B.-N. Guo, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese J. Math., 7, (2) (2003), 229-237. RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 8, 55-61; Available online at $U R L$: http://rgmia.vu.edu.au/v4n1.html.
[26] F. Qi, B.-N. Guo, Monotonicity of sequences involving convex function and sequence, Math. Inequal. Appl. 9, (2) (2006), 247-254. RGMIA Res. Rep. Coll., 3, (2) (2000), Art. 14, 321-329; Available online at URL: http://rgmia.vu.edu.au/v3n2.html.
[27] F. Qi, B.-N. GuO, Monotonicity of sequences involving geometric means of positive sequences with logarithmical convexity, RGMIA Res. Rep. Coll., 5, (3) (2002), Art. 10, 497-507; Available online at URL: http://rgmia.vu.edu.au/v5n3.html.
[28] F. Qi, B.-N. Guo, Some inequalities involving the geometric mean of natural numbers and the ratio of gamma functions, RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 6, 41-48; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
[29] F. Qi, B.-N. GUO and L. Debnath, A lower bound for ratio of power means, Internat. J. Math. Math. Sci., 2004, (1) (2004), 49-53. RGMIA Res. Rep. Coll., 5, (4) (2002), Art. 2; Available online at URL: http://rgmia.vu.edu.au/v5n4.html.
[30] F. Qi, Q.-M. Luo, Generalization of H. Minc and J. Sathre's inequality, Tamkang J. Math., 31, (2) (2000), 145-148. RGMIA Res. Rep. Coll., 2, (6) (1999), Art. 14, 909-912; Available online at URL: http://rgmia.vu.edu.au/v2n6.html.
[31] F. Qi, N. Towghi, Inequalities for the ratios of the mean values of functions, Nonlinear Funct. Anal. Appl., 9, (1) (2004), 15-23. An inequality for the ratios of the arithmetic means of functions with a positive parameter, RGMIA Res. Rep. Coll., 4, (2) (2001), Art. 15, 305-309; Available online at URL: http://rgmia.vu.edu.au/v4n2.html.
[32] J. A. Sampaio Martins, Inequalities of Rado-Popoviciu type, In: Marques de Sá, Eduardo (ed.) et al. Mathematical studies. Homage to Professor Doctor Luís de Albuquerque. Coimbra: Universidade de Coimbra, Faculdade de Ciências e Tecnologia, Departamento de Matemática, (1994), 169-175.
[33] J. SÁNDOR, Comments on an inequality for the sum of powers of positive numbers, RGMIA Res. Rep. Coll., 2, (2) (1999), 259-261; Available online at URL: http://rgmia.vu. edu. au/v2n2.html.
[34] J. SÁndor, On an inequality of Alzer, J. Math. Anal. Appl., 192, (1995), 1034-1035.
[35] J. SÁNDOR, On an inequality of Bennett, General Mathematics (Sibiu), 3, (3-4) (1995), 121-125.
[36] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag., 48, (1975), 87-92.
[37] K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87, (1980), 545-548.
[38] J. S. UME, An elementary proof of H. Alzer's inequality, Math. Japon., 44, (3) (1996), 521-522.
[39] M.-J. WANG, B. Hu, A poof of monotonicity of H. Alzer's function and some properties, Shùxué de Shíjiàn yǔ Rènshí (Mathematics in Theory and Practice), 36, (10) (2006), 243-246. (Chinese)
[40] Z.-K. Xu, On further generalization of an inequality of H. Alzer, J. Zhējiang Shifàn Dàxué Xuébào Zirǎn Kēxué Bǎn (J. Zhejiang Norm. Univ. (Nat. Sci.)), 25, (3) (2002), 217-220. (Chinese)
[41] Z.-K. Xu, D.-P. Xu, A general form of Alzer's inequality, Comput. Math. Appl., 44, (3-4) (2002), 365-373.

