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MONOTONICITY OF THE ZEROS OF A CROSS PRODUCT 

OF BESSEL FUNCTIONS 

Lee Lorch 

ABSTRACT. The principal result here is that each positive zero of the function 

Ju+p(x)l'Jv{x)-{-a^Iu+p(ax)/
(
Iu(ax) is an increasing function of u in — /?/2 <v< 

oo when a, /?, k are fixed, a > 0, 0 < (3 < 1, k = 1,2,3, This implies that the 

A;-th positive zero of Ju(x)I
r

u(x) — Iv{x)J
,

u{x) is an increasing function of v, — | < 
i/ < oo, fc = 1,2,..., a result relevant to work of M. S. Ashbaugh and R. D. 

Benguria on eigenvalues in the clamped plate problem for the ball. The functions 
Jv(x) and Iv(x) are the Bessel and modified Bessel functions, respectively. 

1.    Background and statement of main result 

Motivated by their appearance as eigenvalues in the clamped plate problem for the 
ball, M. S. Ashbaugh and R. D. Benguria (private communication) have conjectured 
that the positive zeros of 

Six) = Mx)r„(x) - J'Mhix) (i.i) 

increase with v > — |. J^ (x) and !„ (x) are the customary Bessel and modified Bessel 
functions [6]. Their conjecture will be verified here (Corollary 1), and also in a some- 
what extended form (Theorem 1). 

The proofs will employ, La., the recursion formulae [6, §3.2(4), p. 45, §3.71(4), p. 79] 

xJ'u(x) - vJv{x) — -xJv+\{x), (1.2) 

and 

xl^ix) - vlv{x) - xly+xix). (1.3) 

From them it follows immediately that the fc-th positive zero 7^ of /(re) is also the 
fc-th positive zero of 

JV\X) iv\X) 

The denominators in (1.4) do not distort the discussion. If x / 0, then Iv{x) > 0, 
v > — 1 (as is evident from the power series [6, §3.7(2), p. 77]); a positive zero of Jv(x) 

cannot be a zero of f(x) since Ju(x) and Jl(x) cannot vanish simultaneously, x ^ 0 
[6, §15.21, p. 479]. 

Received April 14, 1993, revised August 7, 1993. 
1991 Mathematics Subject Classification. Primary: 33C10, 33B30, 34L15. 

Key words and phrases. Bessel functions, zeros, monotonicity, eigenvalues. 
This work received partial support from the Natural Sciences and Engineering Research Council 

of Canada. 

75 



76 L. LORCH 

It is just as easy to consider the more general situation in which 7(A;, z/, a, /?) denotes 
the A;-th positive zero of an extension of ^(x), namely 

so that 7I/jfe = 7(fc, z/, 1,1). 
The main result can now be formulated: 

Theorem 1. Each zero j(k, v, a, /?) of (1.5) Z5 an increasing function of v, —{3/2 < 

v < oo, for fixed a, /?, A;, a > 0, 0 < /? < 1, A; = 1,2,  

When a = /? = 1 this becomes the Ashbaugh-Benguria conjecture: 

Corollary 1. The k-th positive zero 7^ of (1.1) and (1.4) is an increasing function 

of u, — I < u < 00, /or eacft ^ecf A; = 1,2,  

For the proof some results of [2] and [4] are required. As usual, j^k denotes the 
A;-th positive zero of J„(a;), j^ the A;-th positive zero of Jl(x). 

Clearly, $(i/,a;) > 0, 0 < x < jVi, since jV+/?,i > jVi, P > 0 [6, §15.6, p. 508]. Also, 

^(^ii/i-) = +00- Hence 7(1,1/,a,y8) > j^. 

Theorem A ([2] Lemma 2.3). For each fixed /?(0 < 0 < 1) and each x > 0 (x =fi 

juk^ k — 1,2,...), tte function Jl,+p(x)/Jl/(x) decreases as v increases, -(/3 4-1)/2 < 

i/ < 00, i/ > —1. 

Theorem B ([2] Lemma 2.5). For each fixed /3(0 </?<!) and each fixed v > -0/2, 

the function Jl/+/3(x)/Ju(x) increases with x in each interval j^k < x < j^k+i, & = 

0,1,..., where juo = 0. 

Theorem C ([4] Theorem 1(8)). For each fixed 0 > 0, u > -l,i/ > -0/2, the posi- 

tive function Iv+p(x)/Iv(x) increases to 1 as x increases, 0 < x < 00. 

2.    Auxiliary results 

For Theorem 1 to have any content it is necessary to know that 7(fc, */, a, 0) exists for 
the specified values of the parameters. This will be established in the next theorem 

which provides also bounds. 

Theorem 2. For fixed a,/?,i/,fc, a>0, 0</3<l, fc = 1,2,... , v > -0/2, the 

function '){k,v,a,0) exists. Moreover, juk < 7(fc,i>,a,#) < jv+p^k- 

Proof Clearly, $(i/,a;) > 0, 0 < rr < j^i, since j^+^i > M, P>0 [6,§15.6, p. 508]. 
Also, *(i/,ji/i-) = +00. Hence 7(1,i/,a,/3) >jI/i. For each fc = 1,2,..., 

^/    •    » \ ^/^    •        \     „0lv+(3{a3v+p,k) ^ n 

lv\PL3v+P,k) 

so that a zero of $(i/,x) exists in j^ife < ^ < jW^.A;- Furthermore, this zero is unique, 
since $(i/,a;) is an increasing function in that interval according to Theorems B and 

C. The stated bounds are established as well.    □ 

Corollary 2. Let v > -1/2. 

(i) For k = 1,2,..., the positive zeros 7^ 0/ (1.1) and (1.4) satisfy the inequal- 

ities j^ < ivk < jV+ljfc- 

(ii) lfv>0, then also 7^ < j'^k+i • 
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(iii) // -1/2 < u < 0? then also 7^ < Jlk- 

Proof, (i) is evident, since 7^ = 7(fc, z/, 1,1). 
(ii) The recursion formula (1.3) implies ru(x) > 0 when u > 0 Hence J^^k) and 

J'Alvk) must be of the same sign. It follows that 7^ < j^+n as asserted, when 

z/>0. 
(iii) This too follows from the common sign of Ju{lvk) and JK^k), itself an obvious 

consequence of I^fc) > 0. The positivity of ^(7^), -1/2 < v < 0, follows from 
the unimodality with respect to u of ij,, the positive zero of 4(a;), in -1 < v < 0. The 
unimodality is shown by C. G. Kokologiannaki, M. E. Muldoon and P. D. Siafarikas [3, 
§4, Remark]. Specifically, they establish (a) that there is a unique ij, for -1 < v < 0, 
(b) that {'„ increases as u increases from -1 to I/Q = -.569..., (c) that ij, decreases 

in the interval UQ < v < 0, and (d) that i[,0 = .778  

In particular, this implies that Il(x) > 0 for x > 2,_i/2 when -1/2 < ^ < 0' since^ 

for each 1/ in -1< 1/ < 0, /./(ij,) is the minimum of Iu(x), 0 < x < 00. 
That the latter is the case follows from the differential equation satisfied by y = 

/,(*) [6, §3.7 (1), p. 77] 
x

2
y" +xy' -(x

2
 + v

2
)y = 0 

which shows that rj(x) > 0 whenever Il(x) = 0. 

Now, from (i) and the monotonicity of j^i, 

Ivk > 3vi > J-1/2,1 = 7r/2 > t'.x/a,    -5 < ^ < 0- 

Hence the proof can be concluded as before.    □ 

Remarks. Theorem 4.1 of [3] actually discusses a function more general than J„(a:). 

In the present notation, this function is 

Hvfaa) = alu(x) + xll(x). 

From the recursion formula (1.3), this can be written as 

Hu(x,a) = (a + i/^xJ + s/jH-i^). 

In [3] the existence and uniqueness of a positive zero of Hu(x, a), -1 < v < 0, a+i/ < 0 

is established. 
A different approach can be employed which applies to the somewhat more general 

function 

Hv (a?, a, (3) = (a + z/)/„ (re) + a/„+/? (a?). 

Specifically: 
A necessary and sufficient condition that HU{X,OL,I3) possess a positive zero when 

(3 > 0 and v > -1 is that a 4- ^ < 0. Tfte 2;ero is unique. 

Proof. 

ff„(s,a,/?) , ,   , ^Ji/+/?(g) 

Then ^(0) = a + v, while from Theorem C, rl)(x) increases from this value to +00 as 
x increases from 0 to 00. The conclusion is now obvious.   □ 
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3.    An auxiliary result 

The proof of Theorem 1 will use also an analogue of [2, Lemma 2.1]: 

Theorem 3. // x > 0 and (5 > 0 are fixed, then Ij/+p(x)/I1/(x) decreases as v in- 

creases in — (/? -f l)/2 < v < oo, provided v > —1. 

Proof. The conclusion is equivalent, for small e > 0, since Ijy(x) > 0, to 

A := Iv+p^Iv+eix) - Iu+p+£(x)Iu(x) > 0. (3.1) 

This follows from the formula [6, §13.72 (2), p. 441], valid for // + v > -1, 

r7r/2 

/0 

From (3.2) it follows, for z/ > -((3 + 1 + e)/2, that 

r/2 

/**72 

Iv(x)Iu(x) = (2/7r) /      /^+z,(a;)(2xcos(9)cos{(/x - i>)0}d6. (3.2) 

A = (2/7r) /      /2^/3+s(2xcos(9)[cos{(/? - e)6} - cos{(/3 + £)9})de, 
Jo 

and so 

/.7r/2 

A = (4/7r) /      /2l/+ig+e(2a;cose)sin()9fl)sin(ee)d9. (3.3) 
Jo 

This is clearly positive for 0 < e < 2 and 0 < /? < 2, again since Iv(x) > 0. 

It is not necessary to consider larger -e. To remove the restriction /? < 2, it suffices, 
for any larger /3, to decompose Il/^.p(x)/Iu(x) into an appropriate product of (decreas- 
ing) factors of the same form in which each factor has a numerator and a dominator 

whose orders do not differ by more than 2.   □ 

Remark.    In Theorem 3, the requirement that v > — 1 (relevant when /? > 1) cannot 
be dropped, since /-n(a;) = In(x),n = 1,2,... [6, §3.71 (8), p. 79]. 

4.  Proof of Theorem 1 

This proof is modelled after that of [2, Theorem 3.2]. Let ^(k, v, a, /?) be abbreviated 

to 7^, with a, /?, A; fixed. 
From Theorem A [2, Lemma 2.3] and Theorem 3, it is evident that $(z/,x), as 

defined by (1.5), decreases as v increases, —({3 + l)/2 < v < oo for fixed x > 0. Hence, 
for e > 0, 

*(^ + e, 7./) < *(^ 7./) = 0,    -(/? + l)/2 <i/<oo, 0< /? < 1, 

from the definition of 7^. 

From Theorem B [2, Lemma 2.5] and Theorem C [4,Theorem 1(8)], it is equally 
evident that ^(z/,x) is an increasing function of x for fixed is > —1,  — {3/2 < v < 

00,  0 < P < 1,   k = 1,2,    Hence the equation $(z/ + 5,7^+^) = 0, valid by 
definition of 7^-i-e, implies ^v+e > 7^, establishing the theorem. 
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5. The Turanian for ^(x) 

Theorem 3, as expressed by (3.1), generalizes the positivity of the Turanian, T^a;), of 
Ivix), i.e., 

Tv(x) := I^(x) - ly-^Iv+iix) > 0,    v > --, x > 0. 

Indeed, T_i/2(x) is also positive, x > 0, as follows directly from the definitions 

1/2, 

(5.1) 

, v /2\ /   cosh re 

,.    , , /2V/2smhx 

sinh rr     cosh x 
P3/2 

Further, putting ^9 = e in (3.1) and then replacing v by v — e yields an inequality 
which generalizes (5.1), i.e., for e ^ 0, 

T^Or) := Iftx) - I^e(x)Iv+e(x) >0,    z/>--,rc>0, (5.2) 

as may be inferred from (3.3), which now takes the form 

fjr/2 1 

T^£(x) = (4/7r) /      I2v(2xcos9)sm
2
£6d0,    v > -~. (5.3) 

^o 2 

The inequalities (5.1) and (5.2) cannot be extended to all v. Even the more re- 
stricted (5.1) fails for u = —3/2, although it holds whenever is is any integer (positive, 
negative or zero) since I-n{x) = In(x) [6, §3.71 (8), p. 79]. 

An easy calculation establishes that 

T-3/2(x) = 
nx 

-1 + - 
sinh a; cosh a:      2 cosh x 

an increasing function which is negative for 0 < x < XQ and positive for XQ < x < oo, 
where XQ = 2.2648858.... 

From (5.3) it is evident that 

T„j£(x) < T^+nfa), 0 < e < 1, 7/ > 0, i/ > --, x > 0, (5.4) 

T^£(x) <TUte(x + S), i/>--, e>0,«>0, 

and 

(5.5) 

T^X) > Tv+^ix),  V > --£,  V > --,  X > 0,  £ > 0,  fl > 0, (5.6) 

i.e., that T„>e(a;) is an increasing function of £ and x, but a decreasing function of v. 
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Remarks. 1. Whether or not T^x) > 0, x > 0, for -1 < u < -1/2 as well as for 
the values v > —1/2 (for which positivity has been shown above) is an unanswered 
question. 

2. Martin Muldoon, using Maple V, has kindly performed calculations which sup- 
port the conjecture that T^x) > 0, x > 0, 0 < e < 1, also for -1 < v < -1/2. In 
the course of preparation of this paper he called inequality (5.2) to my attention as 
well as the fact that it can be inferred from the representation (3.2). He noted that 
this extends an inequality established differently for the case v > 0, e = 1, of (5.2) i.e., 
the case v > 0 of (5.1), by D. E. Amos [1, p. 243]. In the same context, he observed 
that (5.6) could be established and that this generalizes a result due to E. Neuman 
[5, Theorem 6]. He pointed out that some other results of [5], when reformulated via 
appropriate recursion formulae, could be seen as direct consequences of [4]. I thank 
him for these observations and for his suggestion that they be incorporated herein. 

3. For —1/2 < u < 0, the inequality (5.1) can be established without appealing to 
the representation (3.2). The recursion formula [6, §3.71 (1), p. 79] 

Iv-iix) = Iv+iix) + —Iv(x) 
X 

permits rewriting T^x) as 

Tv(x) = Il{x) - Il+^x) - —Iv{x)Iv+1{x). 
x 

This makes the inequality (5.1) obvious for —1/2 < v < 0 from Theorem C [4, The- 
orem 1 (8)]. For u = -1/2, (5.1) follows directly from the definitions of Iv(x) for 
z/ = -1/2 and z/ = 1/2. 

References 

1. D. E. Amos, Computation of modified Bess el functions and their ratios, Math. Comp. 28 (1974), 
239-251. 

2. M. E. H. Ismail and M. E. Muldoon, Monotonocity of the zeros of a cross product of Bessel 

functions, SIAM J. Math. Anal. 9 (1978), 759-767. 

3. C. G. Kokologiannaki, M. E. Muldoon and P. D. Siafarikas, A unimodal property of purely imag- 

inary zeros of Bessel and related functions, Canadian Math. Bull, (to appear). 

4. L. Lorch, Inequalities for some Whittaker functions, Arch. Math. (Brno) 3 (1967), 1-9. 

5. E. Neuman, Inequalities involving modified Bessel functions of the first kind, J. Math. Anal. Appl. 
171 (1992), 532-536. 

6. G. N. Watson, A  Treatise on the Theory of Bessel Functions, 2nd ed. The University Press, 
Cambridge 1960. 

DEPARTMENT OF MATHEMATICS, YORK UNIVERSITY, 4700 KEELE STREET, NORTH YORK, ONTARIO, 

CANADA M3J 1P3. 


