
Open Access.© 2019 Wang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution alone
4.0 License.

Open Math. 2019; 17:802–812

Open Mathematics

Research Article

Fei Wang, Jian-Hui He, Li Yin, and Feng Qi*

Monotonicity properties and inequalities
related to generalized Grötzsch ring functions
https://doi.org/10.1515/math-2019-0064

Received August 21, 2018; accepted May 29, 2019

Abstract: In the paper, the authors present somemonotonicity properties and some sharp inequalities for the

generalized Grötzsch ring function and related elementary functions. Consequently, the authors obtain new

bounds for solutions of the Ramanujan generalized modular equation.

Keywords: Gaussian hypergeometric function; generalized Hersch–Pfluger distortion function; sharp in-

equality; generalized Grötzsch ring function; generalized modular equation

MSC: Primary 33E05; Secondary 26A48, 26D15

1 Introduction and main results

For real numbers a, b, and c with c = ̸ 0, −1, −2, . . . , the Gaussian hypergeometric function is defined [1, 4]

by

F(a, b; c; x) = 2F1(a, b; c; x) =

∞
∑

n=0

(a)n(b)n
(c)n

xn

n!
, |x| < 1, (1.1)

where

(x)n =

{

x(x + 1) · · · (x + n − 1), n ≥ 1

1, n = 0
(1.2)

is called [23] the rising factorial of x ∈ C.

For a, r ∈ (0, 1) and s =
√
1 − r2 , letKa(r) and Ea(r) denote the generalized elliptic integrals of the first

and second kinds which are defined [6] by



























Ka = Ka(r) =
π

2
F
(

a, 1 − a; 1; r2
)

Ka = Ka(r) = Ka(s)

Ka(0) =
π

2
Ka(1) =∞

(1.3)
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and






























Ea = Ea(r) =
π

2
F
(

a − 1, 1 − a; 1; r2
)

Ea = Ea(r) = Ea(s)

Ea(0) =
π

2

Ea(1) =
sin(πa)

2(1 − a)

(1.4)

respectively. In the special case a = 1
2 , the functions Ka(r) and Ea(r) reduce to K(r) and E(r) which are the

complete elliptic integrals of the first and second kinds [2, 5, 7, 8, 11, 15, 21, 35] respectively. The complete

elliptic integrals havemany important applications in physics, engineering, geometric function theory, quasi-

conformal analysis, theory of mathematical means, number theory, and other fields [6, 8–10, 17, 31, 32].

In what follows, by the symmetry of (1.3), we assume that a ∈
(

0, 12
]

.

For real numbers a ∈
(

0, 12
]

and r ∈ (0, 1), the generalized Grötzsch ring function µa(r) : (0, 1) → (0,∞)

is defined by

µa(r) =
π

2 sin (πa)

Ka(r)

Ka(r)
. (1.5)

In the special case a = 1
2 , we denote µ1/2(r) by µ(r)which is the modulus of the plane Grötzsch ring B2 \ [0, r]

for r ∈ (0, 1) and B2 is the unit disk in the plane [3, 6, 24, 28, 36].

It is known that the Ramanujan generalized modular equation with signature 1
a of degree p can be

expressed by
F(a, 1 − a; 1; 1 − s2)

F(a, 1 − a; 1; s2)
= p

F(a, 1 − a; 1; 1 − r2)

F
(

a, 1 − a; 1; r2
) , 0 < r < 1.

From (1.3) and (1.5), it follows that

µa(s) = pµa(r) (1.6)

and the solution s to the equation (1.6) can be written as

s = φaK(r) = µ
−1
a

(

µa(r)

K

)

, K ∈ (0,∞), p =
1

K
.

In the special case a = 1
2 , the solution φ

a
K(r) reduces to the Hersch–Pfluger distortion function φK(r) which

is important in the theory of the plane quasi-conformal mappings. As usual, we call φaK(r) the generalized

Hersch–Pfluger distortion function [16, 26, 30, 34].

For real number x > 0, the Euler gamma function Γ and its logarithmic derivative ψ, the so-called

digamma or psi function, are defined [1, 19, 20, 22, 29] by

Γ(x) =

∞
∫

0

tx−1e−t d t and ψ(x) =
Γ′(x)

Γ(x)

for ℜ(x) > 0 respectively. For a ∈
(

0, 12
]

, the so-called Ramanujan constant R(a) is defined [27] by

R(a) = −2γ − ψ(a) − ψ(1 − a), (1.7)

where γ is the Euler–Mascheroni constant which can be defined [12–14, 18] by

lim
n→∞

n
∑

k=1

(

1

k
− ln n

)

= 0.5772156649 . . . .

By [1, 6.3.4], we have R
(

1
2

)

= ln 16.

In 2000, Anderson, Qiu, Vamanamurthy, and Vuorinen discovered relations between bounds of s =

φaK(r), µa(r), and ma(r) by establishing in [6, Theorem 6.6] the double inequality

1 < exp{(K − 1)[ma(r) + ln r]} <
rK

φa
1/K

(r)
< exp{(K − 1)[µa(r) + ln r]} (1.8)
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for all r ∈ (0, 1) and K ∈ (1,∞), where

ma(r) =
2

π sin(aπ)
s2Ka(r)Ka(r)

and ma(r) + ln r is the so-called Hüber function.

During the past decades, the function µa(r) plays an important role in several fields of mathematics.

For instance, it is indispensable in the theory of mathematical means, the theory of geometric functions,

quasi-conformal theory, and the theory of the Ramanujan modular equations. See [3, 6, 24, 28, 33]. In recent

years, convexity and Hölder mean property of the function µa(r)were obtained. Especially, many remarkable

properties and sharp inequalities can be found in the literature [3, 33, 36, 37].

The main purpose of this paper is to present some monotonicity properties and some sharp inequalities

for the generalized Grötzsch ring function µa(r) and related elementary functions. By applying these results,

we establish new bounds for solutions to the Ramanujan generalized modular equation.

Our main results in this paper can be stated as follows.

Theorem 1. For r ∈ (0, 1), a ∈
(

0, 12
]

, b = 1 − a, and C = R(a)
2 , define

F(r) =
C − [µa(r) + ln r]

1 − (s2 artanh r)/r
, r ∈ (0, 1),

where artanh denotes the inverse of the hyperbolic tangent function. Then the function F(r) is strictly increasing

from (0, 1) onto
(

3(a2+b2)
4 , C

)

. In particular, the double inequality

C

(

1 − A1

∞
∑

n=1

anr
2n

)

< µa(r) + ln r < C

(

1 − A2

∞
∑

n=1

anr
2n

)

(1.9)

holds for A1 = 1, A2 =
3(a2+b2)

4C , an =
2

4n2−1
, and r ∈ (0, 1).

Theorem 2. For B1 = R(a)−ln 16
2 , B2 = B1

ln 4
, B3 = 3(1−2a)2

8 , B4 = eB1 , B5 = eB2 , B6 = B3
B1
, a ∈

(

0, 12
)

, and

r ∈ (0, 1), the following conclusions hold true:

1. The function

G1(r) =
µa(r) − µ(r)

s2 ln(4/s)
(1.10)

is strictly increasing from (0, 1) onto (B2,∞). In particular, for r ∈ (0, 1),

B2s
2 ln

4

s
< µa(r) − µ(r) < B1. (1.11)

2. The function

G2(r) =
B1 − [µa(r) − µ(r)]

1 − (s2 artanh r)/r

is strictly increasing from (0, 1) onto (B3, B1). In particular, for r ∈ (0, 1),

B1
s2 artanh r

r
< µa(r) − µ(r) < B1

[

1 − B6

(

1 −
s2 artanh r

r

)]

. (1.12)

3. Let r0 = s, rn =
2
√
rn−1

1+rn−1
= φ2n (s) for n ∈ N, A(r) = s2 artanh r

r , B(r) = s2 ln 4
s , and P(r) =

∏∞
n=0(1 + rn)

2−n . For

a ∈
(

0, 12
]

and r ∈ (0, 1), we have

P(r)max
{

B4
A(r)

, B5
B(r)} ≤ exp[µa(r) + ln r] ≤ P(r)B4

1−B6[1−A(r)]. (1.13)

Theorem 3. For C1 =
R(a)−3 ln 2

2 ln 4
, the function

H(r) =
µa(r) − artanh

√
s

s2 ln(4/s)

is strictly increasing from (0, 1) onto (C1,∞). In particular, for r ∈ (0, 1),

C1s
2 ln

4

s
< µa(r) − artanh

√
s < C1 ln 4. (1.14)
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2 Lemmas

For proving our main results, we need the following formulas and lemmas.

The following derivative formulas in [6, Theorem 4.1] and [29] hold true:

dKa

d r
=
2(1 − a)

rs2
(Ea − s

2
Ka),

dEa
d r

=
2(a − 1)

r
(Ka − Ea), (2.1)

d

d r
(Ka − Ea) =

2(1 − a)rEa
s2

,
d

d r
(Ea − s

2
Ka) = 2arKa , (2.2)

d µa(r)

d r
= −

π2

4rs2K2
a

, KaE
′
a +K

′
aEa −K

′
aKa =

π sin(aπ)

4(1 − a)
. (2.3)

Lemma 1 ([7, Theorem 1.25]). For −∞ < a < b < ∞, let g, h : [a, b] → R be continuous on [a, b] and

differentiable on (a, b) and let h′(x) = ̸ 0 on (a, b). If g
′(x)
h′(x)

is increasing (or decreasing respectively) on (a, b),

then so are
g(x) − g(a)

h(x) − h(a)
and

g(x) − g(b)

h(x) − h(b)
.

Lemma 2 ([2, Lemma 2]). Let rn and sn for n ∈ N be real numbers and the power series

R(x) =

∞
∑

n=0

r(n)xn and S(x) =

∞
∑

n=0

s(n)xn

be convergent for |x| < 1. If sn > 0 for n ∈ N and if rnsn is strictly increasing (or decreasing respectively) for n ∈ N,

then the function R(x)
S(x)

is strictly increasing (or decreasing respectively) on (0, 1).

Lemma 3 ([6, Lemmas 5.2 and 5.4] and [25, Theorem 2.2]). For r ∈ (0, 1) and b = 1 − a, the following

conclusions hold true:

1. the function Ea−s
2
Ka

r2
is strictly increasing from (0, 1) onto

(

aπ
2 , sin(aπ)

2b

)

;

2. the function Ka−Ea

ln(1/s)
is strictly decreasing from (0, 1) onto (sin(aπ), (1 − a)π);

3. the function
π2/4−s2K2

a

r2
is strictly increasing from (0, 1) onto

(

(

a2+b2
)

π2

4 , π
2

4

)

;

4. the function scKa is decreasing from (0, 1) onto
(

0, π2
)

if and only if c ≥ 2a(1− a); the function
√
sKa(r) is

decreasing for each a ∈
(

0, 12
]

;

5. the function E−1
s2 ln(4/s)

is strictly increasing from (0, 1) onto
(

π−2
2 ln 4

, 12
)

.

Lemma 4 ([6, Theorem 5.5] and [24, Theorems 1 and 2]). Let R(a) be the Ramanujan constant defined in (1.7).

Then

1. the function µa(r) + ln r is strictly decreasing from (0, 1) onto
(

0, R(a)2

)

;

2. the function µa(r) − µ(r) is strictly decreasing from (0, 1) onto
(

0, R(a)−ln 162

)

;

3. the function µa(r) − artanh
√
s is strictly decreasing from (0, 1) onto the interval

(

0, R(a)−3 ln 22

)

.

Lemma 5. For r ∈ (0, 1) and b = 1 − a, the following conclusions hold true:

1. the function

I1(r) =
ln(1/s)

(1 + r2)(artanh r)/r − 1

is strictly increasing from (0, 1) onto
(

3
8 ,

1
2

)

;

2. the function

I2(r) =
Ka − Ea − (1 − 2a)(Ea − s

2
Ka)

r2

is strictly increasing from (0, 1) onto
(

(a2+b2)π
2 ,∞

)

;

3. the function

I3(r) =
π2/(4s2K2

a) − 1

ln(1/s)
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is strictly increasing from (0, 1) onto (2
(

a2 + b2
)

,∞).

Proof. Utilizing (1.1) and [29, 2.2.5] and using power series expansion lead to

ln
1

s
=

∞
∑

n=0

r2n+2

2(n + 1)
(2.4)

and

artanh r = rF

(

1

2
, 1;

3

2
; r2
)

=

∞
∑

n=0

r2n+1

2n + 1
. (2.5)

Applying (2.5) yields

(1 + r2) artanh r

r
− 1 =

∞
∑

n=0

1

2n + 1
r2n +

∞
∑

n=0

1

2n + 1
r2n+2 − 1

=

∞
∑

n=0

(

1

2n + 1
+

1

2n + 3

)

r2n+2 =

∞
∑

n=0

4(n + 1)

(2n + 1)(2n + 3)
r2n+2,

from which and (2.4), it follows that

I1(r) =
ln(1/s)

(1 + r2)(artanh r)/r − 1
=

∑∞
n=0 a1(n)r

2n

∑∞
n=0 b1(n)r

2n
,

where

a1(n) =
1

2(n + 1)
and b1(n) =

4(n + 1)

(2n + 1)(2n + 3)
.

Let c1(n) =
a1(n)
b1(n)

. Then

c1(n)

c1(n + 1)
=
(2n + 1)(n + 2)2

(2n + 5)(n + 1)2
< 1. (2.6)

Hence, the inequality (2.6) implies that c1(n) is strictly increasing in n. From Lemma 2, it follows that I1(r) is

strictly increasing in (0, 1).

By virtue of L’Hôpital’s rule and Lemma 5, we easily obtain the limits I1(0
+) = 3

8 and I1(1
−) = 1

2 .

From (1.1) to (1.4), it is easy to verify that

Ka − Ea =
π

2

∞
∑

n=0

(a)n(1 − a)n+1
(n + 1)(n!)2

r2n+2

and

Ea − s
2
Ka =

aπ

2

∞
∑

n=0

(a)n(1 − a)n
(n + 1)(n!)2

r2n+2

for r ∈ (0, 1). Hence, after simplifying and utilizing (1.2), the function I2(r) can be rewritten as

I2(r) =
π

2

[

∞
∑

n=0

(a)n(1 − a)n+1
(n + 1)(n!)2

r2n − a(1 − 2a)

∞
∑

n=0

(a)n(1 − a)n
(n + 1)(n!)2

r2n

]

=
π

2

∞
∑

n=0

Jn
(n + 1)(n!)2

r2n ,

where Jn = [a2 + b2 + n](a)n(1 − a)n and b = 1 − a. A conclusion in [6, Lemma 7.1] states that the function

(x)n+1(1 − x)n+1 for n ≥ 0 is positive, increasing on
[

0, 12
]

, and decreasing on
[

1
2 , 1

]

. This implies that Jn > 0.

Thus, the monotonicity of I2(r) follows immediately.

The limits limx→0+ I2(x) =
(a2+b2)π

2 and limx→1− I2(x) =∞ are straightforward.

Let I3(r) = I4(r)
I5(r)

, where I4(r) = π2

4s2K2
a
− 1 and I5(r) = ln 1

s . By (1.3), it follows that limx→0+ I4(x) =

limx→0+ I5(x) = 0.
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From the formula (2.1) and elementary computation, it follows that

I′4(r)

I′5(r)
=
π2

2

1

s4K3
a

r2Ka − 2(1 − a)(Ea − s
2
Ka)

r

s2

r

=
π2

2

1

s2K3
a

Ka − Ea − (1 − 2a)(Ea − s
2
Ka)

r2
.

From Lemma 1, the fourth item in Lemma 3, and the second item in Lemma 5, the monotonicity of I3(r)

follows immediately.

By L’Hôpital’s rule and Lemmas 3 and 5, we arrive at

lim
r→0+

I3(r) = lim
r→0+

I′4(r)

I′5(r)
=
π2

2

1

(π/2)3

(

a2 + b2
)

π

2
= 2
(

a2 + b2
)

,

while limr→1− I3(r) =∞ directly. The proof of Lemma 5 is complete.

Lemma 6. For r ∈ (0, 1) and b = 1 − a, we have the following conclusions:

1. the function L1(r) =
K−Ka

ln(1/s)
is strictly increasing from (0, 1) onto the interval

(

π(1−2a)2

4 , 1 − sin(aπ)
)

;

2. the function L2(r) = K−Ka

Ka−Ea
is strictly increasing from (0, 1) onto the interval

(

(1−2a)2

4b
, 1
sin(aπ)

− 1
)

; the

function K−Ka

K−E
is strictly increasing from (0, 1) onto

(

(1−2a)2

2 , 1 − sin(aπ)
)

;

3. the function L3(r) =
K−Ka

(1+r2)(artanh r)/r−1
is strictly increasing from (0, 1) onto

(

3π(1−2a)2

32 , 1−sin(aπ)2

)

.

Proof. Let ℓ1(r) = K−Ka and ℓ2(r) = ln 1
s . It is obvious that L1(r) =

ℓ1(r)
ℓ2(r)

and limr→0+ ℓ1(r) = limr→0+ ℓ2(r) = 0.

It follows from (1.3) and (2.1) that

ℓ′1(r)

ℓ′2(r)
=
E − s2K − 2(1 − a)(Ea − s

2
Ka)

r2
=

ℓ3(r)

ℓ4(r)
,

where

ℓ3(r) = E − s2K − 2(1 − a)(Ea − s
2
Ka) and ℓ4(r) = r

2
.

It is clear that limr→0+ ℓ3(r) = limr→0+ ℓ4(r) = 0. Applying (2.2) and (1.3) and differentiating give

ℓ′3(r)

ℓ′4(r)
=
K − 4a(1 − a)Ka

2
=
π

4

∞
∑

n=0

Tn
(n!)2

r2n ,

where Tn =
(

1
2

)

n

(

1
2

)

n
− 4a(1 − a)(a)n(1 − a)n. From [6, Lemma 7.1], it is easy to see that Tn ≥ 0. Therefore, the

monotonicity of L1(r) follows from Lemma 2.

By L’Hôpital’s rule and Lemmas 1 and 3, we have

lim
r→0+

L1(r) = lim
r→0+

ℓ′1(r)

ℓ′2(r)
= lim
r→0+

ℓ′3(r)

ℓ′4(r)
=
π(1 − 2a)2

4
.

It is known [4, (1.6)] that F(a, b; a + b; x) satisfies the Ramanujan asymptotic relation

B(a, b)F(a, b; a + b; x) + ln(1 − x) = R(a, b) + O((1 − x) ln(1 − x)), x → 1

for a, b ∈ (0,∞), where R(a, b) = −2γ − ψ(a) − ψ(b) and

lim
x→1−

F(a, 1 − a; 1; x)

ln[1/(1 − x)]
=

1

B(a, 1 − a)
, (2.7)

where

B(a, 1 − a) = Γ(a)Γ(1 − a) =
π

sin(aπ)
. (2.8)

Hence, the limit limr→1− L1(r) = 1 − sin(aπ) follows from (1.3), (2.7), and (2.8).
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The function L2(r) can be rewritten as

L2(r) =
K −Ka

ln(1/s)

ln(1/s)

Ka − Ea
.

Hence, the monotonicity property of the function L2(r) follows from the second item in Lemma 3 and the first

item in 6. Furthermore, the limits

lim
r→0+

L2(r) =
(1 − 2a)2

4(1 − a)
and lim

r→1−
L2(r) =

1

sin aπ
− 1

are easily obtained. Similarly, we can prove that the function K−Ka

K−E
is strictly increasing from (0, 1) onto

(

(1−2a)2

2 , 1 − sin(aπ)
)

.

The function L3(r) can be rewritten as

L3(r) =
K −Ka

ln(1/s)

ln(1/s)

(1 + r2)(artanh r)/r − 1
.

From the first items in Lemmas 5 and 6, the monotonicity of L3(r) follows immediately. Moreover, the limits

lim
r→0+

L3(r) =
3π(1 − 2a)2

32
and lim

r→1−
L3(r) =

1 − sin(aπ)

2

can be obtained from the first items in Lemmas 5 and 6. The proof of Lemma 6 is complete.

3 Proofs of main results

Now we are in a position to prove our main results.

Proof of Theorem 1. Let

f1(r) = C − [µa(r) + ln r] and f2(r) = 1 − s2
artanh r

r
.

Then F(r) = f1(r)
f2(r)

and, by Lemma 4, f1(0
+) = f2(0

+) = 0.

Differentiating and making use of (2.3) give

f ′1(r)

f ′2(r)
=

π2/(4s2K2
a) − 1

(1 + r2)(artanh r)/r − 1
=
π2/(4s2K2

a) − 1

ln(1/s)

ln(1/s)

(1 + r2)(artanh r)/r − 1
.

From Lemmas 1 and the first and third conclusions in Lemma 5, we see that the function F(r) is strictly

increasing on (0, 1).

By L’Hôpital’s rule and the first and third items in Lemma 5, we obtain

lim
r→0

F(r) = lim
r→0

f ′1(r)

f ′2(r)
=
3
(

a2 + b2
)

4
.

Clearly, the limit F(1−) = R(a)
2 follows from the first item in Lemma 4.

Finally, by (2.5), the double inequality in (1.9) follows from the monotonicity property of F(r). The proof

of Theorem 1 is complete.

Corollary 1. For r ∈ (0, 1) and K ∈ (1,∞), the inequality

φa1/K(r) > r
K exp

{

C(1 − K)

[

1 −

∞
∑

n=1

anr
2n

]}

(3.1)

holds true, where C = R(a)
2 and an =

2
4n2−1

.
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Proof. This follows from combining (1.8) with the double inequality (1.9).

Remark 1. The upper and lower bounds in (1.9) are better than corresponding bounds in

C

[

1 −
abπ

sin(aπ)

∞
∑

n=0

anr
2n+2

]

< µa(r) + ln r < C

[

1 −
a2 + b2

2c

∞
∑

n=0

anr
2n+2

]

obtained in [34, Theorem 2].

The inequality (3.1) gives an elementary and infinite series estimates for φa1/K(r) and, consequently, the

bound of solutions to the Ramanujan generalized modular equations is refined.

Proof of Theorem 2. Write G1(r) as

G1(r) =
µa(r) − µ(r)

E − 1

E − 1

s2 ln(4/s)
= g1(r)g2(r),

where

g1(r) =
µa(r) − µ(r)

E − 1
and g2(r) =

E − 1

s2 ln(4/s)
.

Let g3(r) = µa(r) − µ(r) and g4(r) = E − 1. By (1.4) and the second item in Lemma 4, we obtain

g1(r) =
g3(r)

g4(r)
and g3(1) = g4(1) = 0.

Direct computation and utilization of (2.1) and (2.3) result in

g′3(r)

g′4(r)
=
π2

4

K +Ka

sK2sK2
a

K −Ka

K − E
. (3.2)

Hence, from the fourth item in Lemma 3 and the second item in Lemma 6, it follows that the function g1(r)

is strictly increasing on (0, 1). Using L’Hôpital’s rule together with the fifth item in Lemma 3 and the second

item in Lemma 6, the limits g1(0) =
R(a)−ln 16

π−2 and g1(1
−) =∞ follows readily.

By (3.2), the function G1(r) is a product of two positive and strictly increasing functions, so the mono-

tonicity of G1(r) follows from the fifth item in Lemma 3. From the fifth item in Lemma 3 and the limit of g1(r),

we gain G1(0
+) = R(a)−ln 16

2 ln 4
and G1(1

−) =∞. Moreover, the double inequality (1.11) is obvious.

Let g5(r) = B1 − [µa(r) − µ(r)] and g6(r) = 1 − s2 artanh r
r . Then G2(r) =

g5(r)
g6(r)

and g5(0) = g6(0) = 0. By (2.3),

simple computation leads to

g′5(r)

g′6(r)
=
π2

4

K
2 −K

2
a

s2K2K2
a

1

(1 + r2)(artanh r)/r − 1

=
π2

4

K +Ka

(sK2)(sK2
a)

K −Ka

(1 + r2)(artanh r)/r − 1
.

Hence, by Lemma 1, the monotonicity of G2(r) follows from the fourth item in Lemma 3 and the third item in

Lemma 6.

Clearly, the limit G2(1
−) = R(a)−ln 16

2 is valid. By L’Hôpital’s rule and the third item in Lemma 6, we readily

obtain

lim
r→0

G2(r) = lim
r→0

g′5(r)

g′6(r)
=
3(1 − 2a)2

8
.

By the monotonicity of G2(r), the double inequality (1.12) follows immediately.

By the formula (1.11) in [28, Theorem 1], we have

exp
(

µ(r) + ln r
)

=

∞
∏

n=0

(1 + rn)
2−n = P(r). (3.3)

Consequently, the third item in Theorem 2 follows from (1.11) and (1.12). The proof of Theorem 2 is complete.
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Corollary 2. For r ∈ (0, 1) and K ∈ (1,∞), the inequality

φa1/K(r) >

[

max
{

B4
A(r)

, B5
B(r)}

∞
∏

n=0

(1 + rn)
1/2n

]

rK

eK
(3.4)

holds true, where A(r) = s2 artanh r
r and B(r) = s2 ln 4

s .

Proof. This follows from combining the double inequality (1.8), the equality (3.3), and the inequality (1.13).

Remark 2. The lower bound in (1.11) is better than the corresponding bound in the equation (11) in [24,

Theorem 1] which is referenced in item (2) of Lemma 4.

The upper and lower bounds in (1.12) are better than corresponding bounds in the equation (11) in [24,

Theorem 1] which is referenced in item (2) of Lemma 4.

The inequality (3.4) provides anelementary andan infinite product estimates forφa1/K(r)andanewbound

of solutions to the Ramanujan generalized modular equations is given.

Proof of Theorem 3. It is easy to see that the function H(r) can be written as

H(r) =
µa(r) − µ(r)

s2 ln(4/s)
+
µ(r) − artanh

√
s

s2 ln(4/s)
= G1(r) + H1(r), (3.5)

where G1(r) is defined by (1.10) and

H1(r) =
µ(r) − artanh

√
s

s2 ln(4/s)
(3.6)

which can be equivalently written as the product of two functions

H1(r) =
µ(r) − artanh

√
s

E − 1

E(r) − 1

s2 ln(4/s)
. (3.7)

Denote

h1(r) =
µ(r) − artanh

√
s

E − 1
=
h2(r)

h3(r)
,

where h2(r) = µ(r) − artanh
√
s and h3(r) = E − 1. By the third item in Lemma 4 and (1.4), we obtain h2(1

−) =

h3(1
−) = 0. Applying (2.1) and (2.3) and simply computing yield

h′2(r)

h′3(r)
=
1

2

π2

2 −
√
s (1 + s)K2

s2K2(K − E)
=
1

2

π2

2 −
√
s (1 + s)K2

r2
1

sK2(r)

r2

s(K − E)
.

Let

h4(r) =
π2

2 −
√
s (1 + s)K2(r)

r2
(3.8)

and s =
√
1 − r2 . Using the substitution

r =
2
√
u

1 + u
and u =

2
√
t

1 + t
. (3.9)

Then u = 1−
√
t

1+
√
t
. By Landen’s transformation formula

K

(

2
√
r

1 + r

)

= (1 + r)K(r)

in [30] and (3.9), we have

K(r) = (1 + u)K(u) = (1 + u)(1 + t)K(t). (3.10)

By (3.10), the identity (3.8) is equivalent to

h4(r) =

(

t +
√
t
)4

4(1 + t)
√
t

(π/2)2 − [t′K(t)]2

t2
. (3.11)
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It is easy to show that the first factor in the right hand side of (3.11) is strictly increasing in t on (0, 1). Hence,

by virtue of the third item in Lemma 3 and the relation between r and t, the function h4(r) is strictly increasing

on (0, 1).

It was given in [2, Theorem 15] that the function r → s(K−E)
r2

is strictly decreasing from (0, 1) onto
(

0, π4
)

.

Therefore, by (3.7) and Lemma 1, the function h1(r) is positive and strictly increasing.

From the fifth item in Lemma 3 and (3.6), we conclude that the function H1(r) is strictly increasing on

(0, 1). Hence, the monotonicity of H(r) follows from the first item in Theorem 2 and (3.5).

It is clear that the limits H1(0
+) = 1

4 and H1(1
−) = ∞ follow from item (5) in Lemma 3, item (1) in

Lemma 4, and item (1) in Theorem 2. Additionally we note that H(0+) = G1(o
+) + H1(o

+) = R(a)−ln 16
2 ln 4

. The

double inequality (1.14) follows immediately. The proof of Theorem 3 is complete.

Remark 3. The lower bound in (1.14) is better than corresponding bounds in the equation (14) in [24,

Theorem 2] which is presented in item (3) of Lemma 4.
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