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Abstract

The dependence of the Gaussian input information rate on the line-of-sight (LOS)
matrix in multiple-input multiple-output coherent Rician fading channels is explored.
It is proved that the outage probability and the mutual information induced by a multi-
variate circularly symmetric Gaussian input with any covariance matrix are monotonic
in the LOS matrix D, or more precisely, monotonic in D†D in the sense of the Loewner
partial order. Conversely, it is also demonstrated that this ordering on the LOS ma-
trices is a necessary condition for the uniform monotonicity over all input covariance
matrices. This result is subsequently applied to prove the monotonicity of the isotropic
Gaussian input information rate and channel capacity in the singular values of the LOS
matrix. Extensions to multiple-access channels are also discussed.

1 Introduction and Main Result

It is well known that the capacity of a single-input single-output coherent Rician fading
channel is monotonic in the magnitude of the line-of-sight (LOS) component. This can
be easily deduced from the facts that the channel capacity is achieved by a zero-mean
circularly-symmetric Gaussian input and that a non-central chi-square random variable
is stochastically monotonic in the non-centrality parameter [1, Lemma 6.2 (b)], [2]. This
result extends easily to the single-input multiple-output and, with a little more work, to
multiple-input single-output scenarios, from the similar stochastic monotonicity for the
non-central chi-square random variable of a higher degree.

The extension to the MIMO case, which may look straightforward at first, requires some
extra care, however. The first difficulty one encounters is that in order to demonstrate the
monotonicity, one has to introduce an ordering on the LOS matrices and it is a priori
unclear what the natural ordering is for the problem at hand. The second difficulty is
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that there is no closed-form expression for the capacity-achieving input distribution. It
is straightforward to demonstrate that the capacity is achieved by a circularly-symmetric
multivariate Gaussian input, but no closed-form expressions for the eigenvalues of the
optimal covariance matrix are known. Finally, as in the single-input case, under a fixed
input distribution, one LOS matrix may give rise to a larger information rate for a given
realization than another LOS matrix, but it may actually perform worse when averaged
over all fading realizations.

In this paper we show that the natural ordering on the LOS matrices D is given by
the Loewner partial order on D†D, and through this ordering we extend the monotonicity
results to the MIMO Rician channels. More specifically, we say that the m×n LOS matrix
D is “larger than or equal to” the m × n LOS matrix D̃, if D†D is greater than or equal
to D̃†D̃ in the Loewner sense, i.e., if D†D − D̃†D̃ is a positive semidefinite n × n matrix.1

(Here D† is the Hermitian conjugate of D.) Under this ordering on the LOS matrices, we
shall show the monotonicity of channel capacity, the monotonicity of the isotropic Gaussian
information rate, and the monotonicity of outage probability.

We shall also extend the discussion to the multiple-access channel (MAC). The MAC
poses an additional challenge in that the capacity region depends not only on the LOS
matrices of different users individually, but also on how these matrices relate to each other.
This requires a joint preorder on LOS matrices, as will be made clear in the next section.

It should be emphasized that our monotonicity results are proved when the distribution
of the granular component is held fixed. Consequently, as we vary the LOS matrix the
output power is not held fixed. See [3, 4, 5, 6] for studies where the output power is held
fixed.

We state our main result, from which the monotonicity results will follow.

Theorem 1.1. Let H be a random m×n matrix whose components are independent, each
with a zero-mean unit-variance circularly symmetric complex Gaussian distribution. If two
deterministic complex m × n matrices D, D̃ are such that

D
†
D � D̃

†
D̃

then we have

Pr
[

log det
(

Im + (H + D)K(H + D)†
)

≤ t
]

≤ Pr
[

log det
(

Im + (H + D̃)K(H + D̃)
†
)

≤ t
]

for any t ≥ 0 and any positive semidefinite n × n matrix K.

In this theorem and throughout, the notation A � B indicates that A − B is positive
semidefinite. The notation Im denotes the m-dimensional identity matrix. We use H+(n)

1We point out that the Loewner partial order on D
†
D induces a preorder on the LOS matrices D, for

D
†
D � D̃

†
D̃ and D̃

†
D̃ � D

†
D implies D

†
D = D̃

†
D̃, but not D̃ = D. It only implies D̃ = UD for some unitary

matrix U.
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to denote the set of all n × n positive semidefinite Hermitian matrices and use U(n) for
the set of all unitary n × n matrices. For a complex matrix A, AT denotes its transpose
while A† denotes its Hermitian conjugate (i.e., elementwise complex conjugate of AT). We
extend the usual notion of diagonality to non-square matrices by saying that any matrix A

is diagonal if Aij = 0 for all i 6= j. All vectors are column vectors unless specified otherwise.
All logarithms are natural, i.e., to the base e.

In the following section we shall describe the single-user and the multiple-access Rician
fading channels and present the main corollaries of Theorem 1.1. The proof of Theorem 1.1
is given in Section 3.

2 Applications

We introduce two functions that will simplify the notation in our subsequent discussion.
In the notation of Theorem 1.1, we define for any t ≥ 0 and K ∈ H+(n)

F (t;K,D) , Pr
[

log det
(

Im + (H + D)K(H + D)†
)

≤ t
]

and
I(K,D) , E

[

log det
(

Im + (H + D)K(H + D)†
)]

.

Noting that

I(K,D) =

∫ ∞

0

(

1 − F (t;K,D)
)

dt (1)

we obtain the following corollary of Theorem 1.1.

Corollary 2.1. If D†D � D̃†D̃, then

I(K,D) ≥ I(K, D̃), ∀K ∈ H+(n).

The following converse to Corollary 2.1 also holds, which shows that the preorder on
the LOS matrices is natural:

Proposition 2.2. If I(K,D) ≥ I(K, D̃) for all K ∈ H+(n), then D†D � D̃†D̃.

Proof. See Appendix A.

We further note the rotational symmetry in F (t;K,D) and I(K,D). First observe that
the law of H is invariant under left and right rotations, i.e., for any U ∈ U(m) and V ∈ U(n),

UHV
† L

= H.
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Consequently, we have for any U ∈ U(m) and V ∈ U(n)

F (t;K,UDV
†) = Pr

[

log det
(

Im + (H + UDV
†)K(H + UDV

†)
†
)

≤ t
]

= Pr
[

log det
(

Im + (UHV
† + UDV

†)K(UHV
† + UDV

†)
†
)

≤ t
]

= Pr
[

log det
(

U

(

Im + (H + D)V†
KV(H + D)†

)

U
†
)

≤ t
]

= Pr
[

log det
(

Im + (H + D)V†
KV(H + D)†

)

≤ t
]

= F (t;V†
KV,D). (2)

From this and (1), we thus have

I(K,UDV
†) = I(V†

KV,D). (3)

2.1 The Single-User Rician Fading Channel

The output (H,Y) of the coherent single-user Rician (or Ricean in certain dialects) fading
channel consists of a random m × n matrix H whose components are independent and
identically distributed (IID) according to the zero-mean unit-variance circularly symmetric
complex Gaussian distribution NC(0, 1), and of a random m-vector Y ∈ Cm given by

Y = (H + D)x + Z (4)

where x ∈ Cn is the channel input; D is a deterministic m × n complex LOS matrix; and
Z ∈ Cm is drawn according to the zero-mean circularly symmetric complex multivariate
Gaussian distribution NC

(

0, σ2Im

)

for some σ2 > 0. It is assumed that H and Z are
independent of each other, and that their joint law does not depend on the channel input x.

Since the law of H does not depend on x, we can express the mutual information
between the channel input and output as

I
(

X; H,Y
)

= I
(

X;Y
∣

∣H
)

. (5)

Of all input distributions of a given covariance matrix, the zero-mean circularly symmetric
multivariate complex Gaussian maximizes the conditional mutual information I(X;Y|H =
H), irrespective of the realization H = H. Consequently, it also maximizes the average
mutual information I(X;Y|H). We shall therefore consider in this paper zero-mean cir-
cularly symmetric Gaussian input distributions NC(0,K) only. focus on the dependence
of mutual information on the LOS matrix D when the input covariance matrix K is held
fixed. Also, since we can absorb the dependence on σ2 into K, we assume σ2 = 1 without
loss of generality.

For a given realization H = H, we can express the conditional mutual information
I(X;Y|H = H) for a NC(0,K) input as

I(X;Y|H = H) = log det
(

Im + (H + D)K(H + D)†
)

. (6)
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By taking the expectation with respect to H, we can express the average conditional mutual
information as an explicit function of K and D as

I(X;Y|H) = E

[

log det
(

Im + (H + D)K(H + D)†
)]

= I(K,D).

Thus Corollary 2.1 can be interpreted as the monotonicity of the average conditional mutual
information of the Rician fading channel (4) with fixed input covariance matrix. We can also
give a more direct interpretation of Theorem 1.1 through the notion of outage probability.
Consider the probability

Pr
[

log det
(

Im + (H + D)K(H + D)†
)

≤ R
]

= F (R;K,D).

We can interpret this quantity as the probability that the realization H of H will be such
that the information rate on the Gaussian channel Y = (D + H)x + Z for the input
distribution NC(0,K) does not exceed R. Under this interpretation, Theorem 1.1 can be
viewed as the monotonicity of the outage probability in the channel LOS matrix.

These monotonicity results can be used to study the power-E isotropic Gaussian input
information rate

IIG(E ,D) , I

(

E

n
In,D

)

and the capacity C(E ,D) of the Rician channel under the average input power constraint
E
[

X†X
]

≤ E :

C(E ,D) , max
K

I(K,D) (7)

where the maximum is taken over the set of all input covariance matrices K satisfying the
trace constraint

tr (K) ≤ E . (8)

It follows immediately from Corollary 2.1 that, if D†D � D̃†D̃, then IIG(E ,D) ≥ IIG(E , D̃)
and C(E ,D) ≥ C(E , D̃).

Theorem 1.1 can also be used to study the rate-R outage probability corresponding to
the isotropic Gaussian input of power-E

P IG
out(R, E ,D) , F

(

R,
E

n
In,D

)

and the optimal power-E rate-R outage probability P ∗
out(R, E ,D), which is the smallest

outage probability that can be achieved for the rate R and the average power E :

P ∗
out(R, E ,D) , min

K

F (R,K,D) (9)
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where the minimum is over all positive semidefinite matrices K satisfying (8). From The-
orem 1.1 we now obtain that D†D � D̃†D̃ implies that P IG

out(R, E ,D) ≤ P IG
out(R, E , D̃) and

P ∗
out(R, E ,D) ≤ P ∗

out(R, E , D̃).2

Using the rotational invariance (3), we can strengthen these results by stating them
in terms of the singular values of the LOS matrices. Indeed, for any unitary matrix V,
we have tr

(

V†KV
)

= tr (K) , and hence it follows from (3) that for any U ∈ U(m) and
V ∈ U(n)

IIG(E ,UDV
†) = IIG(E ,D)

and
C(E ,UDV

†) = C(E ,D)

i.e., that the isotropic Gaussian input information rate and channel capacity depend on
the LOS matrix only via its singular values. By a similar argument, it can be verified
that, by (2), both the outage probability corresponding to the isotropic Gaussian input
P IG

out(R, E ,D) and the optimal outage probability P ∗
out(R, E ,D) depend on the LOS matrix

D only via its singular values. Consequently, all these quantities are monotonic in the
singular values of the LOS matrix:

Corollary 2.3. Let σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃min{m,n} be the

singular values of the LOS matrices D and D̃, respectively. Suppose that σi ≥ σ̃i for all i.
Then

IIG(E ,D) ≥ IIG(E , D̃)

C(E ,D) ≥ C(E , D̃)

P IG
out(R, E ,D) ≤ P IG

out(R, E , D̃)

and

P ∗
out(R, E ,D) ≤ P ∗

out(R, E , D̃).

We can obtain an alternative proof (cf. [7]) of this corollary based on the observation
that, if the LOS matrix D is diagonal, the capacity-achieving covariance matrix K is also
diagonal. (See also [8].) Since this structural theorem on the capacity-achieving input
distribution is of independent interest, we restate it here.

Theorem 2.4. Suppose that D†D has the eigenvalue decomposition D†D = VLV† for some
unitary matrix V and diagonal matrix L. Then the capacity-achieving covariance matrix K∗

is given by
K∗ = VΛV

†

for some diagonal matrix Λ.

2Note that from the definition of power-E ǫ-outage capacity C∗
out(ǫ, E ,D) , sup{R : P ∗

out(R, E ,D) < ǫ}
we immediately get the monotonicity C∗

out(ǫ, E , D) ≥ C∗
out(ǫ, E , D̃) if D

†
D � D̃

†
D̃. A similar monotonicity

holds for CIG
out(ǫ, E ,D) , sup{R : P IG

out(R,E ,D) < ǫ}.
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Proof. We show that if D is diagonal, the capacity-achieving input covariance matrix K∗

is diagonal. The general case follows from (3) and (7).
Fix some 1 ≤ j ≤ n. Let V ∈ U(n) be a diagonal matrix with all diagonal entries

equal to 1 except the j-th entry, which is −1. Similarly, let U ∈ U(m) be diagonal with all
diagonal entries equal to 1 except for the j-th entry being −1. (In case j > m, U = Im.)
Since D is diagonal, we have

UDV
† = D. (10)

Let K̃ = V†KV. From (10) and the rotational invariance (3), we have

I(K̃,D) = I(V†
KV,D)

= I(K,UDV
†)

= I(K,D). (11)

Now consider the matrix K̂ = 1
2

(

K + K̃

)

. We note that the entries of K̂ are identical to

those of K except that its off-diagonal elements in the j-th row and in the j-th column are

zero. In particular, tr (K) = tr
(

K̂

)

. On the other hand, it follows from (11), the strict

concavity of I(K,D) in K, and Jensen’s inequality that

I(K̂,D) ≥
1

2

(

I(K,D) + I(K̃,D)
)

= I(K,D)

with equality if, and only if, K = K̂. Repeating this procedure for each j = 1, . . . , n − 1
shows that an optimal covariance matrix must be diagonal.

2.2 The Rician Multiple-Access Fading Channel

The coherent MIMO Rician multiple-access channel (MAC) with k senders is modeled as
follows. The channel output consists of k independent random matrices H1, . . . , Hk, where
Hi is a random m×ni matrix whose components are IID NC(0, 1), and of a random vector
Y ∈ Cm of the form

Y =

k
∑

i=1

(Hi + Di)xi + Z (12)

where xi ∈ Cni is the i-th transmitter’s input vector, Di is a deterministic m×ni complex
matrix corresponding to the LOS matrix of the i-th user, and Z ∼ NC

(

0, σ2Im

)

corre-
sponds to the additive noise vector. It is assumed that all fading matrices {Hi}

k
i=1 are

independent of Z and that the joint distribution of (H1, . . . , Hk,Z) does not depend on the
inputs {xi}

k
i=1. Without loss of generality, we will assume σ2 = 1.

As in the single-user scenario, it can be shown [9, 10] that Gaussian inputs achieve
the capacity region of the MIMO Rician MAC. The rate region R(K1, . . . ,Kk;D1, . . . ,Dk)
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achieved by independent Gaussian inputs NC(0,Ki) over the MIMO Rician MAC with LOS
matrices {Di}

k
i=1 is given as the set of all rate vectors (R1, . . . , Rk) satisfying

∑

i∈S

Ri ≤ E

[

log det

(

Im +
∑

i∈S

(Hi + Di)Ki(Hi + Di)
†

)]

(13)

for all S ⊆ {1, . . . , k}. The capacity region of the MIMO Rician MAC, denoted as an explicit
function of the input power constraints on the different users and of their corresponding
LOS matrices, can be written as

C(E1, . . . , Ek;D1, . . . ,Dk) =
⋃

{Ki}k

i=1

R(K1, . . . ,Kk;D1, . . . ,Dk) (14)

where the union is over all input covariance matrices {Ki}
k
i=1 that satisfy the trace con-

straints tr (Ki) ≤ Ei, i = 1, . . . , k.
For each set S ⊆ {1, . . . , k} of elements 1 ≤ i1 < i2 < . . . < is ≤ k, define the block

matrices

DS , [Di1 , . . . ,Dis ]

HS , [Hi1 , . . . , His ]

and

KS , diag (Ki1 , . . . ,Kis) .

Further define D = [D1, . . . ,Dk]. Under this simplified notation, the rate region (13) can
be expressed as

∑

i∈S

Ri ≤ E

[

log det
(

Im + (HS + DS)KS(HS + DS)†
)]

= I(KS ,DS).

Since the condition D†D � D̃†D̃ implies that DS
†
DS � D̃

†
SD̃S for all S ⊆ {1, . . . , k}, it

follows from Corollary 2.1 that

R(K1, . . . ,Kk;D1, . . . ,Dk) ⊇ R(K1, . . . ,Kk; D̃1, . . . , D̃k)

and consequently, by (14),

C(E1, . . . , Ek;D1, . . . ,Dk) ⊇ C(E1, . . . , Ek; D̃1, . . . , D̃k).

We can strengthen this result using the symmetry of the problem as in the single-user
case. The utility of the rotational invariance (3) is, however, rather limited since the LOS
matrices cannot be assumed to be jointly diagonalizable. Thus, the monotonicity cannot
be simply stated in terms of the singular values of LOS matrices. Instead, we have the
following.
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Corollary 2.5. Let D = [D1, . . . ,Dk] and D̃ = [D̃1, . . . , D̃k] be LOS matrices such that

[D1U1, . . . ,DkUk]
†[D1U1, . . . ,DkUk] � D̃

†
D̃

for some Ui ∈ U(ni), i = 1, . . . , k. Then

C(E1, . . . , Ek;D1, . . . ,Dk) ⊇ C(E1, . . . , Ek; D̃1, . . . , D̃k).

3 Proof of Theorem 1.1

Recall that given any K ∈ H+(n) and D, D̃ ∈ Cm×n satisfying

D
†
D � D̃

†
D̃ (15)

we wish to show that for all t ≥ 0,

F (t;K,D) ≤ F (t;K, D̃) (16)

where
F (t;K,D) = Pr

[

log det
(

Im + (H + D)K(H + D)†
)

≤ t
]

.

Without loss of generality, we can assume that the matrices D and D̃ satisfy

D̃ = ΦD, Φ = diag (α, 1, . . . , 1) (17)

for some 0 ≤ α ≤ 1. We justify this reduction as follows. Suppose that the desired
inequality (16) holds under the condition (17). Then from the rotational invariance (2),
for any permutation matrix P,

F (t;K,PΦP
†
D) = F (t;K,ΦP

†
D)

≥ F (t;K,P†
D)

= F (t;K,D) (18)

and consequently the result must also hold when Φ = diag (1, . . . , 1, α, 1, . . . , 1). Expressing
diag (α1, . . . , αm) as a product

diag (α1, . . . , αm) = diag (α1, 1, . . . , 1) · diag (1, α2, 1, . . . , 1) · . . . · diag (1, . . . , 1, αm)

and applying the inequality (18) m − 1 times yields that the result (16) must also hold
for any D and D̃ such that D̃ = ΦD with arbitrary diagonal contraction matrix Φ with
0 ≤ Φii ≤ 1, i = 1, . . . ,m. Now applying the rotational invariance (2) once again to

9



arbitrary unitary matrices U ∈ U(m), V ∈ U(m) and nonnegative diagonal contraction
matrix Φ, we obtain

F (t;K,UΦV
†
D) = F (t;K,ΦV

†
D)

≥ F (t;K,V†
D)

= F (t;K,D).

Thus the desired inequality (16) holds for any D, D̃, and Φ such that

D̃ = ΦD, Φ
†
Φ � Im. (19)

But (19) is equivalent to the original condition (15) (see, for example, [11]). Therefore, in
order to prove the theorem, it suffices to establish the inequality (16) under the simplified
condition (17).

For the rest of our discussion, we need the following result by T. W. Anderson [12] [13,
Theorem 8.10.5].

Lemma 3.1. (Anderson’s Theorem) Let H be a convex set in Cn, symmetric about the
origin (i.e., ξ ∈ H implies −ξ ∈ H). Let f(ξ) ≥ 0 be a function on Cn such that (i)
f(−ξ) = f(ξ) for all ξ, (ii) the set {ξ ∈ Cn : f(ξ) ≥ u} is convex for every u > 0; and
(iii)

∫

H f(ξ) dξ < ∞. Then

∫

H
f(ξ + αη) dξ ≥

∫

H
f(ξ + η) dξ (20)

for every vector η ∈ Cn and 0 ≤ α ≤ 1.

The proof of this celebrated result is based on the Brunn-Minkowski inequality [14].
An interested reader can refer to a nice review by Perlman [15] for further generalizations
and applications in multivariate statistics.

Returning to our problem, for any t ≥ 0, we define a set of matrices

Gt =
{

G ∈ Cm×n : log det
(

Im + GKG
†
)

≤ t
}

. (21)

For any fixed vectors g2, . . . ,gm ∈ Cn, let

Ht (g2, . . . ,gm) = {ξ ∈ Cn : [ξ,g2, . . . ,gm]T ∈ Gt} . (22)

In other words, Ht (g2, . . . ,gm) is the set of the first rows ξT that belong to Gt with given
values of other rows gT

2, . . . ,g
T

m. As will be checked later at the end of this section, for any
g2, . . . ,gm, the set Ht (g2, . . . ,gm) is convex and symmetric about the origin.

The rest of the proof proceeds along the lines similar to those of Das Gupta, Anderson,
and Mudholkar [16]. We represent H as [H1, . . . ,Hm]T, where HT

j is the j-th row of H.
Similarly, let dT

j denote the j-th row of D. Let f(ξ|h2, . . . ,hm) be the conditional density

10



of H1 conditioned on Hj = hj , j = 2, . . . ,m. Since the rows of H are mutually independent,
f(ξ|h2, . . . ,hm) = f(ξ) is multivariate Gaussian NC(0, In), which satisfies the conditions (i)
to (iii) of Anderson’s Theorem. Combining the conditions on f and Ht with the standing
assumption (17), we can invoke Anderson’s Theorem for the first row of H after conditioning
on the other rows HT

2, . . . ,H
T

m as follows:

Pr

[

log det
(

Im + (H + D)K(H + D)†
)

≤ t

∣

∣

∣

∣

Hi = hi, i = 2, . . . ,m

]

=

∫

Ht(h2+d2,...,hm+dm)
f(ξ − d1) dξ

≤

∫

Ht(h2+d2,...,hm+dm)
f(ξ − αd1) dξ

= Pr

[

log det

(

Im +
(

H + D̃

)

K

(

H + D̃

)†
)

≤ t

∣

∣

∣

∣

Hi = hi, i = 2, . . . ,m

]

. (23)

By taking the expectation on both sides of (23) with respect to the joint density of
H2, . . . ,Hm, we establish the desired inequality (16).

It remains to check the convexity and symmetry of the set Ht = Ht(g2, . . . ,gm). Let
G = [ξ,g2, . . . ,gm]T. We show that det(Im + GKG†) is convex and symmetric in ξ, which
clearly implies the convexity and symmetry of Ht. For the symmetry, observe that

det(Im + GKG
†) = det(Im + UGKG

†
U
†)

for any unitary matrix U; in particular, U = diag (−1, 1, . . . , 1) .

For the convexity, let F = GK
1

2 where K
1

2 is any matrix satisfying K
1

2 (K
1

2 )
†

= K. Recall
the identity

det (Ik + AB) = det (Ij + BA) (24)

for any A ∈ Ck×j,B ∈ Cj×k. Then we have

det
(

Im + GKG
†
)

= det
(

Im + FF
†
)

= det
(

In + F
†
F

)

= det



In +

m
∑

j=2

(fT

j )
†
fT

j + (fT

1)
†
fT

1





= det
(

M + (fT

1)
†
fT

1

)

= det (M) det
(

In + M
−1(fT

1)
†
fT

1

)

= det (M)
(

1 + fT

1M
−1(fT

1)
†
)

= det (M)
(

1 + ξT
K

1

2 M
−1

K
1

2 (ξT)
†
)

(25)
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where fT

j denotes the j-th row of F and the positive definite matrix M is defined as M =

In +
∑m

j=2 (f T

j )
†
fT

j . The last line of (25) is a positive semidefinite quadratic form in ξ, and
hence it is convex.

4 Concluding Remarks

In this paper we have found a natural ordering of MIMO Rician channels via their LOS
matrices. We have shown that for two LOS matrices D, D̃ ∈ Cm×n

D
†
D � D̃

†
D̃ ⇐⇒

(

I(K,D) ≥ I(K, D̃) ∀K ∈ H+(n)
)

where I(K,D) = I(X;Y|H) is the mutual information induced by a NC(0,K) input over
a coherent MIMO Rician channel with LOS matrix D. From this result we obtained
monotonicity results for isotropic Gaussian input information rate and for channel capacity,
not only for the single-user channel but also for the multiple-access channel.

In some sense the results of this paper may not be surprising because the relation

D†D � D̃†D̃ implies tr
(

D†D
)

≥ tr
(

D̃†D̃

)

and hence a larger output power. Note, however,

that some care must be exercised because in MIMO communications a larger output power
need not imply a larger capacity. For instance, if

D1 =

(

10 10
10 0

)

, D2 =

(

10 10
10 10

)

then although the power in the LOS component increases while changing from D1 to D2,
one can numerically show that the isotropic Gaussian input information rate and channel
capacity are larger on the channel with LOS matrix D1 than on the channel with LOS
matrix D2. The intuition is that D1 has full rank with singular values 16.18 and 6.18,
whereas D2 is rank deficient with singular values 20 and 0, thus providing only one LOS
eigenmode.

A Proof of Proposition 2.2

Instead of proving Proposition 2.2 directly, we will prove the equivalent statement

D
†
D � D̃

†
D̃ ⇒ I(K,D) < I(K, D̃) for some K ∈ H+(n).

We first note that D†D � D̃†D̃ means that there exists a vector a ∈ Cn such that

a†
D
†
Da < a†

D̃
†
D̃a. (26)

For such a vector a, let K0 = aa† ∈ H+(n). We will show that for K0 the strict inequality
I(K0,D) < I(K0, D̃) holds.

12



By (1) it suffices to show that F (t;K0,D) > F (t;K0, D̃) for all t > 0. Define G = Ha,
b = Da, and b̃ = D̃a. Then we have for any t > 0

F (t;K0,D) = Pr
[

log det
(

Im + (H + D)aa†(H + D)†
)

≤ t
]

= Pr
[

log
(

1 + a†(H + D)†(H + D)a
)

≤ t
]

(27)

= Pr
[

log
(

1 + (G + b)†(G + b)
)

≤ t
]

> Pr
[

log
(

1 + (G + b̃)
†
(G + b̃)

)

≤ t
]

(28)

= Pr
[

log
(

1 + a†(H + D̃)
†
(H + D̃)a

)

≤ t
]

= Pr
[

log det
(

Im + (H + D̃)aa†(H + D̃)
†
)

≤ t
]

= F (t;K0, D̃)

where (27) follows from (24) and (28) follows from the strict monotonicity result for the
single-antenna case [1, Lemma 6.2 (b)]. Indeed, G is distributed according to NC

(

0,a†a Im

)

and (G + b)†(G + b) has a scaled non-central chi-square distribution with (scaled) non-

centrality parameter b†b. Now (G + b̃)
†
(G + b̃) in (28) is also a scaled non-central chi-

square random variable, which, from (26), has a strictly larger non-centrality parameter

b̃
†
b̃ > b†b. Hence, (G + b̃)

†
(G+ b̃) is stochastically strictly larger than (G + b)†(G+b),

so that the strict inequality in (28) is justified for any t > 0.
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