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Abstract

We prove that if the Caputo-Fabrizio nabla fractional difference operator (CFRa–1 ∇αy)(t)

of order 0 < α ≤ 1 and starting at a – 1 is positive for t = a,a + 1, . . . , then y(t) is

α-increasing. Conversely, if y(t) is increasing and y(a) ≥ 0, then (CFRa–1 ∇αy)(t)≥ 0.

A monotonicity result for the Caputo-type fractional difference operator is proved as

well. As an application, we prove a fractional difference version of the mean-value

theorem and make a comparison to the classical discrete fractional case.

Keywords: discrete exponential kernel; Caputo fractional difference; Riemann

fractional difference; discrete fractional mean value theorem

1 Introduction

The fractional calculus was successfully used during the last few years in many branches

of engineering and science [–]. The core ideas of this type of nonlocal calculus were

applied successfully to the so-called discrete fractional calculus (DFC) [–]. This new

direction initiated about a decade ago is in continuous evolution, and it started recently

to be considered as a powerful tool to extract new insides of the dynamics of complex dis-

crete dynamical systems. The discrete diffusion equation within discrete Riesz derivative

is one of the new results reported very recently [, ]. Therefore, the DFC is a natu-

ral generalization of the classical discrete ones. Very recently, Caputo and Fabrizio []

introduced a new fractional derivative based on a nonsingular kernel. The discrete ver-

sion of this operator was reported in []. In our opinion, the existence of various types

of memory kernels increases the chances to formulate adequately different types of mod-

els where different types of memory appear. Very recently, some authors investigated the

monotonicity properties of discrete functions via their discrete fractional operators. Some

authors studied the monotonicity analysis of delta- or nabla-type fractional difference op-

erators of order  < α <  (see []), whereas others studied fractional difference operators

of order α >  [–]. These new results motivate us to discuss in this paper the mono-

tonicity results for this nabla discrete fractional operator with discrete exponential kernel

and compare them to the discrete classical ones. The fractional differences under con-

sideration in this paper have kernels different from classical nabla fractional differences

with kernels depending on the rising factorial powers, and we believe that they bring new

kernels with new memories, which may be of different interest for applications.
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2 Preliminaries

For two real numbers a < b with a ≡ b (mod 1), we denote Na = {a,a + , . . .}, bN =

{b,b – , . . .}, and Na,b = Na ∩ bN = {a,a + , . . . ,b}. For details about concepts of discrete

fractional calculus, we refer the reader to the nice text book [].

Using the time scale notation, the nabla discrete exponential kernel can be expressed

as êλ(t,ρ(s)) = ( 
–λ

)t–ρ(s) = ( – α)t–ρ(s) [], where λ = –α

–α
. The following discrete versions

were proposed in []:

Definition  ([]) For α ∈ (, ) and f defined on Na, or bN in right case, we have the

following definitions:

• The left (nabla) new Caputo fractional difference is given by

(
CFC
a ∇αf

)
(t) =

B(α)

 – α

t∑

s=a+

(∇sf )(s)( – α)t–ρ(s)

= B(α)

t∑

s=a+

(∇sf )(s)( – α)t–s. ()

• The right (nabla) new Caputo fractional difference is given by

(
CFC∇α

b f
)
(t) =

B(α)

 – α

b–∑

s=t

(–�sf )(s)( – α)s–ρ(t)

= B(α)

b–∑

s=t

(–�sf )(s)( – α)s–t . ()

• The left (nabla) new Riemann fractional difference is given by

(
CFR
a ∇αf

)
(t) =

B(α)

 – α
∇t

t∑

s=a+

f (s)( – α)t–ρ(s)

= B(α)∇t

t∑

s=a+

f (s)( – α)t–s. ()

• The right (nabla) new Riemann fractional difference is given by

(
CFR∇α

b f
)
(t) =

B(α)

 – α
(–�t)

b–∑

s=t

f (s)( – α)s–ρ(t)

= B(α)(–�t)

b–∑

s=t

f (s)( – α)s–t , ()

where B(α) is a normalizing positive constant depending on α and satisfying B() =

B() = .

Remark  ([]) In the limiting cases α →  and α → , we remark the following:

•

(
CFC
a ∇αf

)
(t) → f (t) – f (a) as α → ,
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and

(
CFC
a ∇αf

)
(t) → ∇f (t) as α → .

•

(
CFC∇α

b f
)
(t) → f (t) – f (b) as α → ,

and

(
CFC∇α

b f
)
(t) → –�f (t) as α → .

•

(
CFR
a ∇αf

)
(t)→ f (t) as α → ,

and

(
CFR
a ∇αf

)
(t)→ ∇f (t) as α → .

•

(
CFR∇α

b f
)
(t)→ f (t) as α → ,

and

(
CFR∇α

b f
)
(t)→ –�f (t) as α → .

Remark  ([] (the action of the discrete Q-operator)) The Q-operator acts regularly

between left and right new fractional differences as follows:

• (QCFR
a ∇αf )(t) = (CFR∇α

bQf )(t),

• (QCFC
a ∇αf )(t) = (CFC∇α

bQf )(t),

where (Qf )(t) = f (a + b – t).

Definition  ([]) For  < α <  and u :Na →R, a < b, a ≡ b (mod 1), we define:

• the corresponding left fractional sum by

(
CF
a ∇–αu

)
(t) =

 – α

B(α)
u(t) +

α

B(α)

t∑

s=a+

u(s)ds; ()

• the right fractional sum by

(
CF∇–α

b u
)
(t) =

 – α

B(α)
u(t) +

α

B(α)

b–∑

s=t

u(s)ds. ()

In [], it was shown that (CFa ∇–αCF
a ∇αf )(t) = f (t) and (CF∇–α

b
CF∇α

b f )(t) = f (t). Also, it

was shown that (CFa ∇αCF
a ∇–αf )(t) = f (t) and (CF∇α

b
CF∇–α

b f )(t) = f (t).
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Proposition  ([] (the relation between Riemann- and Caputo-type fractional differ-

ences with exponential kernels))

• (CFCa ∇αf )(t) = (CFRa ∇αf )(t) – B(α)
–α

f (a)( – α)t–a;

• (CFC∇α
b f )(t) = (CFR∇α

b f )(t) –
B(α)
–α

f (b)( – α)b–t .

Some parts of the following lemma are essential to proceed.

Lemma  For  < α <  and g defined on Na, we have:

(i)

(
CF
a ∇–α( – α)t

)
(t) =

( – α)a+

B(α)
; ()

(ii) ∇s( – α)t–s = α( – α)t–s;

(iii) (CFa ∇–α∇g)(t) = (∇CF
a ∇–αg)(t) – α

B(α)
g(a);

(iv) ∇( – α)t = –α( – α)t–;

(v) (CFRa ∇α( – α)t)(t) = B(α)( – α)t–[ – α(t – a)];

(vi) (CFRa ∇α)(t) = B(α)( – α)t–a–.

Proof We just give the proof of (i), (iii), (v), and (vi). The other parts are direct and easy.

• The proof of (i):

(
CF
a ∇–α( – α)t

)
(t) =

 – α

B(α)
( – α)t +

α

B(α)

t∑

s=a+

( – α)s

=
 – α

B(α)
( – α)t +

α

B(α)
( – α)a+

 – ( – α)t–a

 – ( – α)

=


B(α)

[
( – α)t+ + ( – α)a+ – ( – α)t+

]

=
( – α)a+

B(α)
. ()

• The proof of (iii):

(
CF
a ∇–α∇g

)
(t) =

 – α

B(α)
∇g(t) +

α

B(α)

t∑

s=a+

∇g(s)

=
 – α

B(α)
∇g(t) +

α

B(α)

[
g(t) – g(a)

]

= ∇

[
 – α

B(α)
g(t) +

α

B(α)

t∑

s=a+

g(s)

]
–

α

B(α)
g(a)

=
(
∇CF

a ∇–αg
)
(t) –

α

B(α)
g(a).

• The proof of (v): By (iv) we have

(
CFR
a ∇α( – α)t

)
(t) = B(α)∇

t∑

s=a+

( – α)t–s( – α)s

= B(α)∇
[
(t – a)( – α)t

]
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= B(α)
[
( – α)t– – α(t – a)( – α)t–

]

= B(α)( – α)t–
[
 – α(t – a)

]
. ()

• The proof of (vi):

(
CFR
a ∇α

)
(t) = B(α)∇t

t∑

s+a+

( – α)t–s

= B(α)

[
 +

t–∑

s=a+

∇t( – α)t–s

]

= B(α)

[
 – α

t–∑

s=a+

( – α)t––s

]
= B(α)

[
 – α

t–a–∑

i=

( – α)i

]

= B(α)

[
 – α

 – ( – α)t–a–

 – ( – α)

]

= B(α)( – α)t–a–. ()

�

Definition  (See also []) Let y : Na → R be a function satisfying y(a) ≥ . Then y is

called an α-increasing function on Na if

y(t + ) ≥ αy(t) for all t ∈ Na.

Note that if y is increasing on Na, then y is an α-increasing function on Na, and if α = ,

then the increasing and α-increasing concepts coincide.

Definition  (See also []) Let y : Na → R be a function satisfying y(a) ≤ . Then y is

called an α-decreasing function on Na, if

y(t + ) ≤ αy(t) for all t ∈ Na.

Note that if y is decreasing on Na, then y is an α-decreasing function on Na, and if α = ,

then the decreasing and α-decreasing concepts coincide.

3 Themonotonicity results

Theorem  Let y :Na– →R. Suppose that, for  < α ≤ ,

(
CFR
a– ∇αy

)
(t)≥ , t ∈Na–.

Then y(t) is α-increasing.

Proof Rewrite (CFRa– ∇αy)(t) = B(α)∇S(t), where S(t) =
∑t

s=a y(s)(–α)t–s. By the assumption

we have

S(t) – S(t – ) = y(t) –
α

 – α

t–∑

s=a

y(s)( – α)t–s ≥ . ()
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Substituting t = a into (), we see that y(a)≥ . Substituting t = a +  into (), we get

y(a + ) –
α

 – α
y(a)( – α) = y(a + ) – αy(a)≥ ,

and hence y(a + ) ≥ αy(a) ≥ . We shall proceed by induction on t ∈ Na. Assume that

y(i + ) ≥ αy(i) ≥  for all i < t. Let us show that y(t + ) ≥ αy(t). Replacing t with t +  in

(), we have

y(t + ) ≥
α

 – α

[
( – α)t+–ay(a) + ( – α)t–ay(a + ) + · · · + ( – α)y(t)

]
,

or

y(t + ) ≥
[
α( – α)t–ay(a) + α( – α)t–a–y(a + ) + · · · + αy(t)

]
≥ αy(t),

which completes the proof. �

Using Proposition  and Theorem , we can state the following Caputo fractional differ-

ence monotonicity result.

Theorem  Let a function y :Na– →R satisfy y(a) ≥ . Suppose that, for  < α ≤ ,

(
CFC
a– ∇αy

)
(t) ≥

–B(α)

 – α
f (a – )( – α)t–a+, t ∈Na–.

Then y(t) is α-increasing.

Theorem  Let a function y :Na– →R satisfy y(a) ≥  and be increasing onNa. Then, for

 < α ≤ ,

(
CFR
a– ∇αy

)
(t)≥ , t ∈Na–.

Proof Again, rewriting (CFRa– ∇αy)(t) = B(α)∇S(t), where S(t) =
∑t

s=a y(s)( – α)t–s, it suf-

fices to show that S(t) is increasing on Na. Substituting t = a into () implies that S(a) –

S(a – ) = y(a) ≥  by assumption. Assume that S(i) – S(i – ) ≥  for all i < t. We shall

show that S(t) – S(t – ) ≥ . By the assumption that y is increasing we conclude that

y(t) ≥ y(t – ) ≥ y(a) ≥  for all t = a + k ∈Na. Now, we have

S(t) – S(t – ) = y(t) –
α

 – α

t–∑

s=a

y(s)( – α)t–s

= y(t) – αy(t – ) –
α

 – α

t–∑

s=a

y(s)( – α)t–s

= y(t) – αy(t – )

–
α

 – α

[
t–∑

s=a

(
y(s) – y(t – )

)
( – α)t–s +

t–∑

s=a

y(t – )( – α)t–s

]

≥ y(t) – αy(t – ) –
α

 – α

t–∑

s=a

y(t – )( – α)t–s
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= y(t) – y(t – ) + y(t – ) –
α

 – α
y(t – )

t–∑

s=a

( – α)t–s

≥ y(t – )

[
 –

α

 = α

t–∑

s=a

( – α)t–s

]

= y(t – )

[
 – α( – α)k

k∑

s=

( – α)–s

]

= y(t – )( – α)k ≥ , ()

which completes the proof. �

Similarly, can prove the following result.

Theorem  Let a function y : Na– → R satisfy y(a) >  and be strictly increasing on Na.

Then, for  < α ≤ ,

(
CFR
a– ∇αy

)
(t) > , t ∈Na–.

The following results can also be proved in a similar way.

Theorem  Let a function y :Na– → R satisfy y(a) ≤ . Suppose that, for  < α ≤ ,

(
CFR
a– ∇αy

)
(t)≤ , t ∈Na–.

Then y(t) is α-decresing.

Theorem  Let a function y : Na– → R satisfy y(a) ≤  and be decreasing on Na. Then,

for  < α ≤ ,

(
CFR
a– ∇αy

)
(t)≤ , t ∈Na–.

4 Application: mean value theorem

We know that (CFa ∇–αCFR
a ∇αy)(t) = y(t). However, the next result, which provides an initial

condition y(a), will be a tool to prove our fractional difference mean value theorem.

Theorem  For  < α ≤ , we have

(
CF
a ∇–αCFR

a– ∇αy
)
(t) = y(t) – αy(a). ()

Proof By definition and Lemma  we have

(
CF
a ∇–αCFR

a– ∇αy
)
(t) = CF

a ∇–α

[
B(α)∇t

t∑

s=a

y(s)( – α)t–s

]

= B(α)CFa ∇–α∇t

[
y(a)( – α)t–a +

t∑

s=a+

f (s)( – α)t–s

]
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= B(α)y(a)( – α)–aCFa ∇–α∇( – α)t + CF
a ∇–αCF

a ∇αy(t)

= –αB(α)y(a)( – α)–aCFa ∇–α( – α)t– + y(t)

= y(t) – αy(a).

The proof is completed. �

Theorem  (The fractional difference MVT) Let f and g be functions defined on Na,b,

where a ≡ b (mod 1). Assume that g is strictly increasing and α ∈ (, ). Then, there exist

s, s ∈Na,b such that

(CFRa– ∇αf )(s)

(CFRa– ∇αg)(s)
≤

f (b) – αf (a)

g(b) – αg(a)
≤

(CFRa– ∇αf )(s)

(CFRa– ∇αg)(s)
. ()

Proof We follow by contradiction. Suppose () is not true. Then, either

f (b) – αf (a)

g(b) – αg(a)
>
(CFRa– ∇αf )(t)

(CFRa– ∇αg)(t)
for all t ∈Na,b, ()

or

f (b) – αf (a)

g(b) – αg(a)
<
(CFRa– ∇αf )(t)

(CFRa– ∇αg)(t)
for all t ∈Na,b. ()

Since g is strictly increasing, by Theorem  we conclude that (CFRa ∇αg)(t) > . Hence, ()

becomes

f (b) – αf (a)

g(b) – αg(a)

(
CFR
a– ∇αg

)
(t) >

(
CFR
a– ∇αf

)
(t).

Applying the fractional sumoperator evaluated at t = b to both sides of the last inequality

and using () in Theorem  lead to

f (b) – αf (a) > f (b) – αf (a),

which is a contradiction. In a similar way, we can show that () leads to a contradiction.

This completes the proof. �

Remark 

• Since α <  and g is strictly increasing, clearly, the quantity g(b) – αg(a) in Theorem 

is not equal to zero.

• The corresponding coefficient of g(b) – αg(a) in the classical discrete fractional

calculus in case of delta analysis is of the form g(b) – Ŵ(b–a+α)
Ŵ(α)Ŵ(b–a+)

g(a) [], where both
Ŵ(b–a+α)

Ŵ(α)Ŵ(b–a+)
and α tend to  as α → . The coefficient in this paper for discrete

fractional differences with discrete exponential kernels is simpler, free of Ŵ(α), and

does not depend on the end points a and b. This reflects the absence of the memory

in the corresponding fractional sum.

• The results in this paper can be carried over the right fractional case by using the

action of the Q-operator.
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