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ABSTRACT 

Long-standing biases of climate models limit the skills of climate prediction and 

projection. Overlooked are tropical Indian Ocean (IO) errors. Based on the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble, the present 

study identifies a common error pattern in climate models that resembles the IO 

Dipole (IOD) mode of interannual variability in nature, with a strong equatorial 

easterly wind bias during boreal autumn accompanied by physically consistent biases 

in precipitation, sea surface temperature (SST), and subsurface ocean temperature. 

The analyses show that such IOD-like biases can be traced back to errors in the South 

Asian summer monsoon. Too weak a southwest summer monsoon over the Arabian 

Sea generates a warm SST bias over the western equatorial IO. In boreal autumn, 

Bjerknes feedback helps amplify the error into an IOD-like bias pattern in wind, 

precipitation, SST, and subsurface ocean temperature. Such mean state biases result in 

too strong interannual IOD variability. Most models project an IOD-like future 

change for the boreal autumn mean state in the global warming scenario, which would 

result in more frequent occurrences of extreme positive IOD events in the future with 

important consequences to Indonesia and East Africa. The Intergovernmental Panel 

on Climate Change (IPCC) Fifth Assessment Report (AR5) characterizes this future 

IOD-like projection in the mean state as robust based on consistency among models, 

but our results cast doubts on this conclusion since models with larger IOD amplitude 

biases tend to produce stronger IOD-like projected changes in the future. 
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1. Introduction 

The tropical Indian Ocean (IO), in contrast to the tropical Pacific and Atlantic 

Oceans, features a unique monsoonal climate (Schott et al. 2009) where the Asian 

continent drives the strongest monsoon on Earth (e.g., Li and Yanai 1996; Lau et al. 

2006; Boos and Kuang 2010) and the cross-equatorial monsoonal winds display the 

dramatic seasonal reversals. The interaction of the South Asian monsoon with the 

ocean plays an important role in shaping the regional climate in many ways. For 

instance, the monsoonal winds bring about large seasonal alternations in ocean 

currents such as the annual reversal of the Somali Current in the Arabian Sea (Schott 

and McCreary 2001; Schott et al. 2002). Momentum advection by the cross-equatorial 

monsoon circulation drives the semiannual cycle in equatorial IO zonal wind (Ogata 

and Xie 2011). As a result, the oceanic Wyrtki jets carry warm upper-layer waters 

eastward twice a year in the equatorial IO during the inter-monsoon periods (Wyrtki 

1973; Schott et al. 2009). Such monsoon-induced characteristics are unique to the IO, 

and climatically important on both regional and global scales. The seasonal 

development of the southeasterly alongshore wind off Indonesia locks the IO Dipole 

(IOD) mode of inter-annual variability to boreal summer-autumn (Saji et al. 1999; 

Webster et al. 1999; Murtugudde et al. 2000; Yamagata et al. 2004; Du et al. 2013), a 

phenomenon of profound social and economic consequences for the IO rim countries 

(e.g., Ashok et al. 2001; Guan and Yamagata 2003; Hashizume et al. 2009; Cai et al. 

2009; Ummenhofer et al. 2011; Weller and Cai 2013a). 
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Unfortunately, many coupled general circulation models (CGCMs) exhibit large 

biases in the South Asian summer monsoon, with the upper-tropospheric temperature 

maximum over Tibet being too weak and displaced southeast of its observed location 

(Boos and Hurley 2013) along with insufficient summer precipitation over the South 

Asian monsoon region (e.g., Annamalai et al. 2007). However, it is unclear how these 

monsoon biases influence regional climate simulation and projection beyond the 

monsoon itself. 

CGCMs suffer from serious errors in simulating tropical Pacific and Atlantic 

climate, including an excessive equatorial cold tongue in the Pacific (e.g., Neelin et al. 

1992; Mechoso et al. 1995; Yu and Mechoso 1999; Davey et al. 2002; Wittenberg et 

al. 2006; de Szoeke and Xie 2008; Zheng et al. 2012; Li and Xie 2014), too weak a 

zonal sea surface temperature (SST) gradient along the equatorial Atlantic (e.g., 

Davey et al. 2002; Chang et al. 2007; Richter and Xie 2008; Wahl et al. 2011; 

Grodsky et al. 2012; Liu et al. 2013; Kozar and Misra 2013), and too warm SSTs over 

the tropical Southeast Pacific and Atlantic accompanied by a spurious double 

intertropical convergence zone (e.g., Mechoso et al. 1995; Zhang and Wang 2006; Lin 

2007; Song and Zhang 2009; Hwang and Frierson 2013; Li and Xie 2014; Wang et al. 

2014). These long-standing tropical biases exist in several generations of CGCMs for 

more than a decade, including those participating in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012; Hwang and Frierson 

2013; Li and Xie 2014; Wang et al. 2014). 
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Tropical IO biases in CGCMs are previously overlooked to a large extent, for 

one important reason. Annual mean biases may be small in magnitude in the tropical 

IO relative to other two tropical basins (e.g., Lin 2007; Hwang and Frierson 2013; Li 

and Xie 2014; Wang et al. 2014), but as will be described, the tropical IO biases have 

strong seasonal dependence with even seasonal sign reversals in wind/SST, resulting 

in small annual means. Recently, Lee et al. (2013) identified a common annual mean 

easterly wind bias along the equatorial IO in state-of-the-art CGCMs participating in 

both the CMIP3 and CMIP5. Cai and Cowan (2013) further found that the annual 

mean equatorial easterly wind bias in CGCMs is accompanied by an overly strong 

west-minus-east SST gradient and the unrealistic climatological mean thermocline 

slope tilting upward toward the eastern equatorial IO, suggestive of the positive 

ocean-atmospheric feedback of Bjerknes (1969). 

Although previous studies have noticed some annual mean simulation errors in 

the equatorial IO in CGCMs, many issues remain unresolved. For example, since the 

oceanic and atmospheric fields are closely coupled in the positive Bjerknes feedback 

loop and errors in one field will propagate into all the elements in the loop as a 

“chicken and egg” problem, it is unclear which element initiates the development of 

such equatorial IO biases. The seasonal evolutionary characteristics/processes of 

equatorial IO biases have not been studied. Moreover, the bias pattern off the equator 

is unknown. In particular, it is also unclear whether the equatorial IO biases are 

associated with errors of the South Asian summer monsoon. There are physical 



6 
 

reasons for the South Asian monsoon affecting equatorial IO biases. For example, the 

cross-equatorial monsoonal winds could affect SST in the western equatorial IO 

because of oceanic upwelling near, and heat advection from, the Somali and Omani 

coasts and of latent heat loss caused by the strong surface winds (Schott and 

McCreary 2001; Izumo et al. 2008; Schott et al. 2009). In addition, the meridional 

momentum advection during the monsoonal periods could affect the strength of 

westerly winds along the equator (Ogata and Xie 2011). 

The present study investigates seasonally dependent biases over the tropical IO 

in 19 CMIP5 CGCMs. Our analysis reveals pronounced biases during boreal autumn 

(September-November, SON) organized in coherent IOD-like patterns with a strong 

equatorial easterly wind bias accompanied by physically consistent biases in 

precipitation, SST, and subsurface ocean temperature. We show that these coupled 

ocean-atmosphere biases originate from too weak a southwest monsoon over the 

Arabian Sea during boreal summer (June-August, JJA) and the resultant warm SST 

bias in the western equatorial IO. In SON, the SST error is amplified into an IOD-like 

bias pattern through Bjerknes feedback. These mean state biases result in too large an 

amplitude of interannual IOD variability and also distort future climate projection in 

the region. In particular, models with larger IOD amplitude biases tend to project 

stronger IOD-like future changes. Our study highlights the tropical IO errors in 

CGCMs and emphasizes the importance of a realistic South Asian monsoon 
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simulation for reducing tropical IO simulation errors for both mean state and climate 

variability as well as increasing the reliability of regional future climate projection. 

The remainder of this paper is organized as follows. In Section 2, we provide a 

brief description of the models, datasets, and methods used in this study. Section 3 

introduces the annual mean IOD-like biases over the tropical IO in the CMIP5 

multi-model ensemble. Section 4 further investigates the seasonal development 

processes of IOD-like biases and their South Asian summer monsoon origin. Section 

5 discusses the effects of such IOD-like mean state biases on the simulation of 

tropical IO interannual variability and regional climate projection under global 

warming. Section 6 is a summary. 

 

2. Models, datasets, and methods 

We examine the historical and RCP 8.5 experiments in the CMIP5 multi-model 

ensemble (Taylor et al. 2012). Monthly mean outputs from 19 CMIP5 CGCMs are 

used, including precipitation, wind and geopotential height at lower troposphere (925 

mb), SST, and ocean temperature. Table 1 shows the model names, modeling groups 

(or centers), and their letter labels. Further information on individual models is 

available online at http://www-pcmdi.llnl.gov/ (Taylor et al. 2012). Here, we only use 

one ensemble member (‘‘r1i1p1’’) run for each model. The 1950-1999 mean in 

historical simulations is represented as the present climatology, and the 2050-2099 

mean in Representative Concentration Pathway (RCP) 8.5 runs as the future 
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climatology. Their difference denotes climate change under global warming. The 

multi-model ensemble mean (MME) bias in this study is defined as the difference 

between the 19 model mean and observations, unless otherwise specified. 

For comparison, we also examine both the observed and reanalyzed (assimilated) 

datasets (for simplicity referred to as observations). Specifically, the precipitation 

climatology is obtained from the Global Precipitation Climatology Project (GPCP; 

Adler et al. 2003) for 1979-2008 and from the National Center for Atmospheric 

Research-National Centers for Environmental Prediction (NCEP-NCAR) reanalysis 

project (Kalnay et al. 1996) for 1950-1999. Although the two precipitation products 

cover different time periods, the climatology is very similar. Only the results from the 

GPCP are shown, unless otherwise specified. The wind and geopotential height in the 

lower troposphere (925 mb) is the climatology from ECWMF 40 Year Re-analysis 

(ERA-40) (Uppala et al. 2005) for 1958-2001. The SST climatology is obtained from 

Hadley Centre Sea Ice and SST (HadISST; Rayner et al., 2003) for 1950-99. In 

addition, the ocean temperature from the Simple Ocean Data Assimilation (SODA) 

reanalysis (Carton and Giese 2008) from 1950 to 1999 is used. All model outputs and 

observational datasets are interpolated to a uniform 2°  2° horizontal grid, unless 

otherwise specified. 

To examine the inter-model diversity of seasonal mean SST (or wind) biases, we 

perform an inter-model empirical orthogonal function (EOF) analysis for observations 

and 19 CMIP CGCMs. Instead of temporal variance in conventional EOF analysis 
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(Hannachi et al. 2007), our inter-model EOF analysis maximizes the variance of 

inter-model differences in SST (or wind) biases among CMIP5 CGCMs. For example, 

the two dimensional space-model filed of SST biases, SST(m, s), is expanded into K 

orthogonal spatial patterns as follows: 

               SSTሺ݉, ሻݏ ൌ ∑ u௞ሺݏሻa௞
୏
௞ୀଵ ሺ݉ሻ                (1) 

where s and m denote spatial position (latitude-longitude ) and different models, 

respectively; u௞ is the vector which gives the spatial structure of the mode of 

inter-model variances in SST biases; a௞ is corresponding model coefficients in SST 

biases. The inter-model EOF method has been successfully used for the tropical 

oceans (Li and Xie 2012, 2014) and extratropical oceans (Wang et al. 2014). 

 

3. Annual mean biases 

Figure 1 compares the annually averaged zonal wind, precipitation, and SST 

along the equatorial IO between observations (black lines) and 19 CMIP5 CGCMs 

(colored lines). Although the zonal distributions of annual mean zonal wind, 

precipitation, and SST along the equatorial IO are qualitatively simulated, large errors 

are clearly found in the CMIP5 CGCMs. For example, annual mean equatorial 

westerly winds are too weak in most CMIP5 CGCMs relative to observations (Figure 

1a; Lee et al. 2013; Cai and Cowan 2013). Also, the CMIP5 CGCMs commonly 

simulate the excessive (slightly insufficient) precipitation in the western (eastern) 

equatorial IO (Figure 1b). 
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Figures 2a and 2b show the spatial patterns of annual mean wind, precipitation, 

and SST over the tropical IO (40°-110°E, 20S-20N) for observations and the MME 

biases in CMIP5 CGCMs, respectively. Here, we focus on the spatial distributions of 

model biases by normalizing with the tropical IO means of precipitation and SST for 

observations and each model. Indeed, the CMIP5 CGCMs suffer from a strong 

equatorial easterly wind bias accompanied by excessive (insufficient) precipitation in 

the western (eastern) basin (Figure 2b), in patterns similar to a positive IOD event 

(Saji et al. 1999) in nature. In particular, annual mean southwesterly (southeasterly) 

winds over the North (South) IO are significantly weaker in CMIP5 CGCMs than 

observations. Such annual mean IOD-like biases on the equator and weakened 

southwesterly (southeasterly) winds over the North (South) IO are present in most 

CMIP5 CGCMs (see Figure S1 in the Supplementary Material). 

For annual mean, the bias in west-east SST gradient along the equatorial IO 

seems weak (Figures 1c and 2b), and does not match well with wind and precipitation 

biases in an IOD-like manner. Figures 3a, 3b, 3c, and 3d show the MME biases of 

seasonally averaged SST in CMIP5 CGCMs relative to observations during boreal 

spring (March-May, MAM), JJA, SON, and boreal winter (December-February, DJF), 

respectively. A close inspection reveals extremely warm (slightly cool) SST biases in 

the western (eastern) IO in both JJA and SON, suggestive of a positive IOD-like bias. 

Figures 4a, 4b, and 4c show the equatorial IO zonal wind, precipitation, and SST 

during June-November in observations (black lines) and 19 CMIP5 CGCMs (colored 
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lines), respectively. The seasonal biases of zonal wind and precipitation along the 

equator in CGCMs are more pronounced than their annual mean biases (Figures 1 and 

4). While observations display robust equatorial westerly winds (Figure 4a) as a part 

of the Walker circulation (Schott et al. 2009), half of the CGCMs feature easterly 

winds on the equator (Figure 4a). In addition, almost all CGCMs exhibit warm SST 

biases in the equatorial western IO, implying seasonally dependent biases in 

west-minus-east SST gradient (Figure 4c). 

 

4. Seasonal cycle of errors and the monsoon origin 

a. Seasonal cycle of errors 

To show the seasonality of the biases, Figure 5 compares the longitude-time 

sections of 925 mb wind, precipitation, and SST along the equatorial IO between 

observations and the MME simulation. The weakened cross-equatorial JJA monsoon 

causes a strong warm SST bias in the west (Figure 5b). While the MME bias in 

cross-equatorial winds is no longer significant in September, the SST error in the 

equatorial western IO could last till November-December when an overly strong 

cross-equatorial boreal winter monsoon reverses the sign of SST bias (Figure 5b). The 

seasonal sign reversal in SST bias renders the annual mean small on the equator. 

While the warm SST bias occurs in both JJA and SON over the western equatorial IO, 

the easterly wind bias along the equator and excessive precipitation in the western 

equatorial IO in CMIP5 CGCMs are much more pronounced in SON than JJA. 
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Associated with the equatorial easterly wind bias, the models tend to display an 

overly steep slope in the thermocline depth (20 °C isotherm, Z20) shoaling towards 

the east. Figure 6 shows the ocean temperature structures in the zonal-vertical plane 

along the equator during SON in observations and the MME simulation. Indeed, 

models generally feature a too steep eastward shoaling of Z20 in the equatorial 

eastern IO during SON. Most CMIP5 CGCMs share such an unrealistic equatorial 

Z20 slope tilting upward toward the east (see Figure S2 in the Supplementary 

Material). This relationship among wind, precipitation, SST, and z20 biases during 

SON (Figures 5b and 6b) is suggestive of Bjerknes feedback. 

These results are supported by an inter-model analysis. We perform an 

inter-model EOF analysis for JJA SST and SON zonal wind separately in the 

equatorial IO (40°-100°E, 6°S-6°N) among observations and 19 CMIP5 CGCMs. The 

SST for observations and each CGCM is normalized by their tropical IO means. The 

first modes (Figures 7a and 7b) feature a JJA SST zonal dipole and SON easterly 

wind biases along the equatorial IO, respectively. The first principal component (PC1) 

for JJA SST is highly correlated with the west-east SST gradient along the equatorial 

IO (40°-60°E minus 80°-100°E) in JJA at 0.82 (Figure 7c), while the SON wind PC1 

with zonal wind in the central equatorial IO (CEIO, 70°-90°E) in SON at -0.99 

(Figure 7e). Furthermore, the two PC1s are mutually correlated at 0.63 (Figure 7f), 

suggesting that the JJA west-east SST gradient bias drives the SON equatorial easterly 

wind bias. 
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b. Errors in JJA versus SON 

Then, why do the IOD-like coupled biases develop in SON instead of in JJA? 

Although the warm SST bias in the western equatorial IO is present as early as in JJA, 

the equatorial easterly wind bias does not develop until SON (Figure 5b). Figures 8a 

and 8b examine the relationship between the west-east SST gradient along the 

equatorial IO and CEIO zonal wind among observations and 19 CMIP5 CGCMs for 

JJA and SON, respectively. There is a strong inter-model correlation (r=-0.92) 

between the west-minus-east SST gradient and CEIO zonal wind biases in SON, but 

this inter-model relationship is insignificant in JJA (r=-0.22), suggesting that the 

positive Bjerknes feedback loop is broken in JJA. 

The zonal momentum equation on the equator within the planetary boundary 

layer (generally below 850 mb) can be written approximately as (Okumura and Xie 

2004; Ogata and Xie 2011): 

        εݑ ൌ െ డ஍

డ௫
െ ݒ డ௨

డ௫
൅ res.,                  (2) 

where ε is the linear drag coefficient, u is the zonal wind, the first term on the right 

hand side is the pressure gradient, the second term is the meridional momentum 

advection, and the last term is the residual. In JJA, the advection of the easterly 

momentum from the southeast trades by the southerly cross-equatorial wind is 

important in the equatorial IO (Ogata and Xie 2011). For CGCMs, the weakened 

cross-equatorial monsoon wind bias in JJA warms SST in the western IO, and the 
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resultant west-east SST/pressure gradient would induce equatorial easterly wind bias. 

The weakened cross-equatorial southerly wind at the same time reduces the easterly 

momentum advection, opposing the SST/pressure gradient effect. Thus, the two 

effects of the cross-equatorial wind bias are out of phase, precluding a strong 

relationship between the SST gradient and zonal wind biases in JJA (Figure 8a). 

We test this hypothesis by examining the pressure gradient and meridional 

momentum advection terms in Equation (2). Figures 9a and 9b show the 

longitude-time sections of MME biases for the pressure gradient and meridional 

momentum advection terms along the equatorial IO in 19 CMIP5 CGCMs, 

respectively. Indeed, the SST/pressure effect in JJA is to generate easterly wind bias, 

particularly in the western equatorial IO, but the meridional momentum advection 

effect is large and offsets the SST/pressure effect. In SON, with the monsoon gone, 

the SST/pressure effect prevails and induces the easterly wind bias over the CEIO, 

allowing Bjerknes feedback to develop the IOD-like biases rapidly. This has more or 

less implications for the important question of why the observed IOD events generally 

peak in SON rather than in JJA (e.g., Saji et al. 1999; Webster et al. 1999; Cai and 

Cowan 2013). 

 

c. Monsoon origin 

Figures 10a and 10b show the spatial distributions of MME biases of 925 mb 

wind, precipitation, and SST over the tropical IO in CMIP5 CGCMs during JJA and 
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SON, respectively. The southwest monsoon in JJA is too weak in CMIP5 CGCMs 

over the Arabian Sea along with insufficient summer precipitation over the South 

Asian monsoon region. The weakened cross-equatorial monsoon generates warm SST 

and excessive precipitation biases over the western equatorial IO (Figure 10a). The 

warm SST bias in the equatorial western IO persists until SON, when Bjerknes 

feedback helps amplify the SST error into an IOD-like bias pattern with a strong 

equatorial easterly wind bias accompanied by warm (cool) SST and excessive 

(insufficient) precipitation biases in the western (eastern) basin (Figure 10b). 

Inter-model statistics also support the hypothesis that the seasonally dependent 

IOD-like biases are induced by biases of the South Asian summer monsoon. Figures 

11a and 11b show the relationship between the cross-equatorial meridional wind in 

the western IO (40°-60°E) and west-minus-east SST gradient along the equatorial IO 

in JJA, and between the west-minus-east SST gradients along the equatorial IO in JJA 

and SON, respectively. Models with a weaker cross-equatorial monsoon in JJA tend 

to develop larger equatorial SST gradient biases in both JJA and SON, suggesting the 

importance of a good JJA monsoon simulation for improving SST simulation during 

JJA and SON. The SST gradient bias then induces the equatorial easterly wind error 

in SON (Figure 8b). The easterly wind bias steepens the z20 slope along the 

equatorial IO (Figure 11c), which in turn helps intensify the SST gradient bias (Figure 

11d). Figure 12 summarizes the South Asian monsoon origin and Bjerknes feedback 

for the IOD-like bias pattern. 
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5. Discussion on regional climate variability and change 

The CMIP5 CGCMs have been used for global climate simulation and projection 

on a lot of aspects (e.g., Taylor et al. 2012; Christensen et al. 2013). However, 

long-standing biases of mean state simulation for the equatorial Pacific cold tongue 

and intertropical convergence zone (ITCZ) considerably limit the skills of CGCMs in 

simulating and predicting El Nino-Southern Oscillation (ENSO) as well as its global 

teleconnections (Latif et al. 2001; Guilyardi 2006; AchutaRao and Sperber 2006; 

Wittenberg et al. 2006; Misra et al. 2008; Ham and Kug 2012; Li and Xie 2014). 

Conceivably a realistic simulation of tropical IO mean state by the CMIP5 CGCMs is 

also an important prerequisite for their good skill in regional climate simulation and 

projection. 

We turn our attention to the effects of such IOD-like mean state biases on the 

simulation of tropical IO interannual variability and regional climate projection under 

global warming. With the equatorial easterly wind bias, the unrealistically steep 

equatorial Z20 slope tilting upward toward the eastern IO during SON (Figure 6) 

generates an overly strong subsurface thermocline feedback on SST, helping develop 

an excessively large amplitude of interannual IOD variability in CGCMs (Cai and 

Cowan 2013; Liu et al. 2014). Figure 13a compares the amplitudes of interannual 

IOD variability between observations and the MME simulation as a function of 

calendar month. In this study, the IOD amplitude is defined as the standard deviation 
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of the Dipole Mode index (DMI) proposed by Saji et al. (1999). The error bars 

indicate the standard deviation spread among 19 CMIP5 CGCMs. Indeed, CMIP5 

CGCMs tend to produce too large an IOD amplitude, twice as large for the MME 

simulation compared to observations in the IOD peak-season. 

Our recent research (Li et al. 2015) suggests that this typical easterly wind error 

along the equatorial IO could induce too deep a thermocline dome over the 

southwestern IO (SWIO) in CGCMs by forcing a westward-propagating downwelling 

Rossby wave in the tropical South IO, extremely similar to a South IO oceanic 

Rossby wave response to El Nino-forced equatorial easterly wind anomalies in nature 

(Xie et al. 2002; Du et al. 2009). Due to the deep thermocline bias over the SWIO, too 

weak a thermocline feedback on SST there leads to a suppressed simulation amplitude 

of interannual variability for the IO basin (IOB; Klein et al. 1999; Lau et al. 2000) 

mode in CGCMs and possibly limits the CGCMs’ skill in predicting the IOB warming 

following El Nino and extreme climate and weather events over the IO and rim 

countries/regions such as East Asia affected by the IOB (Yang et al. 2007; Xie et al. 

2009; Kosaka et al. 2013; Li et al. 2015). 

Most CGCMs project an IOD-like pattern of coupled ocean-atmospheric climate 

changes in the SON mean state over the tropical IO under global warming, with 

equatorial easterly wind anomalies (i.e., a weakened tropical Walker circulation; 

Knutson and Manabe 1995; Held and Soden 2006; Vecchi and Soden 2007) as well as 

physically consistent west-east SST gradient, the precipitation dipole, and the 
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shoaling thermocline in the equatorial eastern IO (Zheng et al. 2010, 2013; Cai et al. 

2013). This climate change pattern has important consequences to the IO and its 

surrounding countries (Saji et al. 1999; Hashizume et al. 2009; Weller and Cai 2013a, 

2013b; Cai et al. 2014). For example, attributed to such an IOD-like future change for 

the mean state in the global warming scenario, the CMIP5 ensemble of CGCMs 

forced by a scenario of high greenhouse gas emissions (RCP 8.5 runs) commonly 

projects an increased frequency of extreme positive IOD events by almost three times 

from about one event every 17 years during the twentieth century to about one event 

every 6 years during the twenty-first century (Cai et al. 2014), with an increasing risk 

of extreme climate and weather events over Indonesia and East Africa (Saji et al. 

1999; Hashizume et al. 2009; Weller and Cai 2013a, 2013b). 

In particular, the Intergovernmental Panel on Climate Change (IPCC) Fifth 

Assessment Report (AR5) characterized this IOD-like projected pattern in the SON 

mean state as robust based on the consistency among climate models (Christensen et 

al. 2013), but our results cast doubts on this conclusion since CGCMs tend to feature 

too strong a Bjerknes feedback in SON that produces the IOD pattern in the first place. 

Figure 13b examines the relationship between the simulated present IOD amplitude 

and projected zonal wind change over the CEIO for SON under global warming 

among 19 CMIP5 CGCMs. The red line denotes the observed amplitude of 

interannual IOD variability. Indeed, models with a larger present IOD amplitude bias 

tend to generate a stronger IOD-like change pattern of future climate in equatorial IO 
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zonal wind for SON in the context of global warming, and the corresponding 

inter-model correlation reaches -0.82 with one outlier (M2) excluded. The similar 

inter-model spread relationship between the present-day IOD amplitude simulation 

and projected SST/precipitation dipole change in the future can be also found (not 

shown; Weller and Cai 2013b). In fact, the projected IOD-like mean state future 

change in equatorial IO zonal wind for SON under global warming would be not 

significant (nearly zero change in CEIO zonal wind; see Figure 13b) after calibrating 

the present-day climate simulation to observations in light of such a strong 

inter-model spread linear correlation between the present-day IOD amplitude 

simulation bias and future IOD-like climate projection. Considering the South Asian 

summer monsoon origin of the biased tropical IO mean state and exaggerated IOD 

amplitude in CMIP5 CGCMs (Figure 12), the present work implies that reducing JJA 

monsoon simulation errors would potentially increase our confidence for the 

reliability of regional future climate projections by CGCMs. 

 

6. Summary 

The tropical IO is unique in its strong interaction with the great monsoon of 

South Asia. The southwest summer monsoon is too weak over the Arabian Sea in 

most CMIP5 models. This monsoon bias creates a warm SST bias over the western 

equatorial IO. In SON, Bjerknes feedback kicks in to amplify biases into an IOD-like 

pattern, with easterly wind errors and a too steep eastward shoaling of the thermocline 
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in the equatorial IO (Figure 12). The seasonally dependent biases in the mean state 

affect inadvertently the simulation of interannual variability and projection of future 

climate in the region. Specifically, the excessive shoaling of the thermocline in the 

eastern equatorial IO causes too strong a Bjerknes feedback, resulting in an excess in 

the amplitude of inter-annual IOD variability. While the inter-model consistency led 

the IPCC AR5 to conclude that the future IOD-like climate change is robust, our 

results cast doubts on the reliability of this mean state future projection since models 

tend to exaggerate Bjerknes feedback that produces the IOD pattern in the first place. 

Such an IOD-like future change in the mean state is climatically important, which 

would result in more frequent occurrences of extreme positive IOD events in the 

future (Cai et al. 2014), with a potentially increasing risk of extreme climate and 

weather events in the regions affected by the IOD such as Indonesia and East Africa 

(Saji et al. 1999; Hashizume et al. 2009; Weller and Cai 2013a, 2013b). 

This example illustrates the need for model evaluation to go beyond simple 

performance metrics like the annual mean SST but to assess physical processes like 

Bjerknes feedback. In the monsoonal IO, mutually consistent representation of 

ocean-land-atmospheric processes and their interactions is key to improving climate 

models. The benefits of improved seasonal prediction and regional climate projection 

are enormous for more than a billion people living under the monsoon and affected by 

the IO. 
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Table 1. A list of the 19 CMIP5 CGCMs used in this study and the labels to denote 

them in the figures and text. 

Model name Model group (or center) Label 

ACCESS1-0 CSIRO M1 

CanESM2 CCCma M2 

CCSM4 NCAR M3 

CNRM-CM5 CNRM/CERFACS M4 

CSIRO-Mk3.6 CSIRO/QCCCE M5 

FGOALS-S2 IAP M6 

GFDL-ESM2G NOAA GFDL M7 

GFDL-ESM2M NOAA GFDL M8 

GISS-E2-R NASA GISS M9 

HadGEM2-CC MOHC M10 

HadGEM2-ES MOHC M11 

INMCM4 INM M12 

IPSL-CM5R-LR IPSL M13 

IPSL-CM5R-MR IPSL M14 

MIROC5 JAMSTEC M15 

MPI-ESM-LR MPI-M M16 

MPI-ESM-MR MPI-M M17 

MRI-CGCM3 MRI M18 

NorESM1-M NCC M19 
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Figure 1. Zonal sections of annual mean (a) zonal wind (m/s), (b) precipitation 

(mm/day), and (c) SST (°C) along the equator in observations (black line) and 19 

CMIP5 CGCMs (colored lines). 
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Figure 2. (a) Annual mean 925 mb wind (vectors, m/s), precipitation (color shaded, 

mm/day), and SST (black contours, °C) in observations; (b) The multi-model 

ensemble mean (MME) biases of annual mean 925 mb wind (vectors), precipitation 

[gray shaded and white contours, contour interval (CI) 0.1], and SST (color contours, 

CI 0.01) in 19 CMIP5 CGCMs. The precipitation and SST for observations and each 

CGCM in (b) are normalized by their tropical IO (40°-110°E, 20S-20N) means. The 

wind speed smaller than 0.6 m/s and 0.3 m/s in (a) and (b) has been masked out, 

respectively. 
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Figure 3. The MME biases of seasonal SST (°C) in boreal (a) spring (March-May, 

MAM), (b) summer (June-August, JJA), (c) autumn (September-November, SON), 

and winter (December-February, DJF) in 19 CMIP5 CGCMs. 
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Figure 4. Same as Figure 1, but for June-November. 
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Figure 5. (a) Longitude-time section of the observed climatologies of 925 mb wind 

(vectors, m/s), precipitation (gray shaded, mm/day), and SST (color contours, °C) on 

the equator; (b) Same as (a), but for the MME biases in 19 CMIP5 CGCMs. The wind 

speed smaller than 2.0 m/s and 0.8 m/s has been masked out in (a) and (b), 

respectively. 
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Figure 6. Ocean temperature (color shaded, °C) in the zonal-vertical plane along the 

equator during SON in (a) observations and (b) the MME simulation. The 20 °C 

isotherms in observations and the MME simulation are denoted by the black and 

white solid curves, respectively. The 28 °C isotherms in observations and the MME 

simulation are denoted by the black and white dashed curves, respectively. 
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Figure 7. (a) The regression pattern of the first inter-model EOF mode for the JJA 

SST in the equatorial IO (40°-100°E, 6°S-6°N) among observations and 19 CMIP 

CGCMs (accounting for 50% of the total variance). Here the SST for observations 
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and each CGCM is normalized by their tropical IO (40°-110°E, 20S-20N) means; (b) 

Same as (a), but for the SON zonal wind (accounting for 75% of the total variance); (c) 

Scatter plot of the first principal component (PC1) for the JJA SST versus west-east 

JJA SST gradient (40°-60°E minus 80°-100°E) on the equator; (d) Same as (c), but 

for the PC1 for the SON zonal wind versus west-east SON SST gradient; (e) Same as 

(c), but for the PC1 for the SON zonal wind versus central equatorial IO (CEIO, 

70°-90°E) SON zonal wind; (f) Same as (c), but for the PC1s for the JJA SST and 

SON zonal wind. The inter-model correlation (r) is shown in each panel of (c)-(f). 
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Figure 8. Scatter plots of the west-east SST (°C) gradient along the equatorial IO 

versus CEIO zonal wind (m/s) among observations and 19 CMIP CGCMs during (a) 

JJA and (b) SON. The inter-model correlation (r) is shown in the left-lower side of 

each panel. 
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Figure 9. Longitude-time sections of MME biases for the (a) pressure gradient term 

(m/s2) and (b) meridional momentum advection term (m/s2) in Equation (2) on the 

equator in 19 CMIP5 CGCMs. 
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Figure 10. (a) The MME biases of 925 mb wind (vectors, m/s), precipitation (colored 

shaded, mm/day), and SST (CI: 0.3 °C) in JJA in 19 CMIP5 CGCMs; (b) Same as (a), 

but in SON. The wind speed smaller than 0.5 m/s has been masked out. 
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Figure 11. Scatter plots of (a) the meridional wind (m/s) in the equatorial western IO 

(40°-60°E) versus west-east SST (°C) gradient in JJA along the equator, (b) the SST 

gradients in JJA versus SON; (c) the CEIO zonal wind (m/s) versus west-east z20 (m) 

gradient in SON, and (d) the z20 versus SST gradients in SON. The inter-model 

correlation (r) is shown in each panel. 
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Figure 13. (a) Comparison of monthly IOD amplitudes between observations and the 

MME simulation; (b) Scatter plot of the simulated IOD amplitude versus projected 

zonal wind change in the CEIO for SON under global warming in 19 CMIP5 CGCMs. 

The IOD amplitude is defined as the standard deviation of Dipole Mode index (DMI) 

proposed by Saji et al. (1999). The error bars in (a) indicate the standard deviation 

spread among CMIP5 CGCMs. The red line in (b) denotes the observed IOD 

amplitude. The inter-model correlation (r=-0.82) is shown in (b) with one outlier (M2) 

excluded. 
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