
The Monsoon Mission is a national program that has nurtured a system to provide skillful 

Indian summer monsoon predictions, benefiting society and advancing global science.
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T
 he skill of seasonal predictions of Indian summer  

 monsoon rainfall (ISMR) by climate models  

 remained “low” (correlation value R between ob-

servation and predictions of about 0.4; Rajeevan et al. 

2012), significantly below the estimates of potential 

predictability limit (PPL ~0.65; Kumar et al. 2005; 

Kang and Shukla 2006) for seasonal mean monsoon 

forecasts one season in advance. Unfortunately, de-

spite the improved simulation of other global climate 

modes in coupled general circulation models (GCMs), 

the simulation of major modes of monsoon variability 

remained problematic (Kim et al. 2012; Sperber et al. 

2013; Sabeerali et al. 2013; Shashikanth et al. 2014; 

Ramesh and Goswami 2015; Alessandri et al. 2015; 

Johnson et al. 2017; Annamalai et al. 2017; Mishra 

et al. 2018), calling for targeted model developments 

to address the generic biases in simulating the Indian 

monsoon system. Although the India Meteorological 

Department (IMD) has considerable experience in 

predicting the ISMR using statistical models, with 

moderate success, the limitations of these models 

have been recognized (Gadgil et al. 2005; DelSole 

and Shukla 2009). Until 2009, IMD had been issuing 

short-range forecasts using regional models, while 

the medium-range forecasts were issued based on 

a low-resolution global NWP model (atmospheric 

GCMs) being run by National Centre for Medium 

Range Weather Forecasting (NCMRWF). Operational 

dynamical system for extended-range prediction did 

not exist. The foundation for the Monsoon Mission 

(MM) was put in place well before the official sanc-

tion in 2012. The operational requirement of day-to-

day weather forecasts at short- to medium-range time 

scales was being met through other non-Indian op-

erational centers (monsoon reports, available online 

at www.imd.gov.in/pages/monsoon_main.php). Lack 

of adequate high-performance computing facilities 

in the country held back the seasonal and extended-

range prediction using coupled climate models and 

high-resolution weather prediction.

Against this backdrop, the Ministry of Earth 

Sciences (MoES), Government of India, launched 

the Monsoon Mission in 2012. This mission mode 

program aimed not only to implement 1) a state-of-

the-art dynamical seasonal prediction system, 2) dy-

namical extended-range prediction system for active 

and break spells, and 3) ensemble short-range weather 

prediction system using a high-resolution global 
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atmospheric model, but also to carry out the funda-

mental and applied research and development (R&D) 

required to improve the models’ depiction and skill 

of the Indian monsoon. The first phase of the MM 

ended in 2017. It is important to keep in mind that, 

unlike in research projects, the objective of a mission 

mode program is the demonstration of the potential 

for improvement in skill. Hence, the deliverable of a 

mission mode program must be a demonstration of 

improvement in skill. Further, all the research work 

must be on the Operational Modeling Framework 

so that the research can be seamlessly transferred 

to the operational model. This article describes the 

scientific basis for the program, its implementation 

strategy, and its demonstrable success. With proper 

planning and financial support from the MoES, active 

cooperation between several institutes within the 

ministry, and input from national and international 

community in R&D, the targeted objectives of the 

programs were achieved, making Indian weather 

and climate prediction systems competitive. It is also 

demonstrated that the efforts put in by the research 

community have led to a reduction in systematic 

biases and an improvement in prediction skill. A 

new insight that emerged from MM is that the ISMR 

is much more predictable than previously thought.

ISMR amounts to more than 80% of the annual 

rainfall over India, making it a critical lifeline for 

agriculture, drinking water, and energy production. 

The economy, life, and property in the region are vul-

nerable to significant variability of the ISMR on day-

to-day, intraseasonal, interannual, and interdecadal 

time scales (Webster et al. 1998; Krishnamurthy and 

Goswami 2000; Goswami et al. 2006). Although the 

year-to-year variation of all India summer monsoon 

rainfall is only about 10% of the mean (86 cm), there 

is a strong link between the country’s food production 

and the gross domestic product (GDP) with ISMR 

(Gadgil and Gadgil 2006). Hence, predicting ISMR 

at different time scales from short range (2–3 days) to 

medium range (up to 10 days) to extended range (2–3 

weeks), seasonal, and beyond is of great socioeconomic 

importance. For many decades, attempts have been 

made but with limited success (Gadgil and Gadgil 

2006; Kang and Shukla 2006). Until recently, most of 

these efforts involved statistical models using a variety 

of regression techniques (Walker 1925; Rajeevan et al. 

2007; Wang et al. 2015). Statistical models, however, 

are built based on empirical relationships based upon 

past observations (DelSole and Shukla 2009) and can 

fail to perform satisfactorily in real-time forecasts due 

to either overfitting or longer-term nonstationarity 

(Gadgil et al. 2005). In addition, statistical model 

predictions asymptotically approach the “mean” 

and largely miss the extremes (Gadgil et al. 2005). 

It is also to be noted that the relationship between 

the predictors and predictand (ENSO and monsoon, 

for example) are not stationary (Kumar et al. 1999). 

Further, atmospheric general circulation models 

forced by observed sea surface temperature (SST) 

cannot produce realistic monsoon simulations due 

to their inadequacy in simulating coupled ocean–at-

mosphere processes (Wang et al. 2005). The coupled 

ocean–atmospheric modes of variabilities also control 

the Indian monsoon at various spatiotemporal scales. 

Dynamical forecasts by ocean–atmosphere coupled 

climate model are useful for the planners and decision-

makers in the country, even for averages like ISMR. 

The working hypothesis of the MM has been that 

the current estimate of the PPL (~0.65) is achievable 

with the reduction in model biases, and may even be 

too conservative since it is estimated using the same 

problematic models. PPL can be estimated in two 

ways. First, it is the perfect model correlation method 
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in which the model is considered perfect, and each 

ensemble member deviates from the others due to an 

error in the initial conditions (ICs; Kumar et al. 2005). 

These correlation values provide an estimate of poten-

tial predictability. The other method is the analysis 

of variance (ANOVA; Kang and Shukla 2006), which 

provides a measure of predictability by calculating the 

ratio of external (caused by low-frequency variability, 

the predictable component) to internal (caused by 

high-frequency subseasonal variability, the unpredict-

able component) variance, known as signal-to-noise 

ratio (SNR). It has been shown that the PPL estimates 

for ISMR based on the above two methods are much 

higher than originally thought (Saha et al. 2019).

The first priority was to tackle and reduce the sys-

tematic biases of the forecast model at weather and cli-

mate time scales. Specifically, the simulation of sum-

mer precipitation exhibits a major dry bias over the 

Indian subcontinent, barely improving in the CMIP5 

models compared to those in the CMIP3 models 

(Sperber et al. 2013). Seasonal prediction is possible 

due to the predictability arising out of the slowly vary-

ing boundary forcings such as SST, snow cover, and 

soil moisture (Shukla and Paolino 1983; Palmer and 

Anderson 1994; Webster et al. 1998). Hence, the prin-

cipal approach toward reliable seasonal predictions 

should be to improve the simulation of the slowly 

varying boundary conditions such as the SSTs in the 

tropical Pacific and the associated teleconnections 

(e.g., Drbohlav and Krishnamurthy 2010; George et al. 

2016; Pillai et al. 2017). New ideas were warranted to 

make further progress. One such new idea is that the 

summer monsoon intraseasonal oscillations (MISOs) 

act as a building block of the seasonal mean monsoon 

(Goswami et al. 2006, 2011) such that a large fraction 

of coupled model biases in simulating the mean may 

reflect failures in simulating the MISOs (Sabeerali 

et al. 2013; Sharmila et al. 2013). If so, one identified 

target for model development under the MM was to 

improve the biases in simulating the MISO. Such an 

improvement in MISO phenomenon is expected to 

deliver twin benefits, namely, better simulation of the 

MISOs or the active and break spells and improve-

ments in seasonal mean ISMR. Extreme weather 

events (synoptic-scale systems, etc.) at short to me-

dium time scales are also of paramount importance 

as these events pose the maximum threat to life and 

property. For this purpose, too, sophisticated global 

numerical weather prediction (NWP) models at very 

high resolution with advanced physics, dynamics, and 

data assimilation algorithms are required, with a fo-

cus on India’s distinctive weather regimes. Resolution 

improvement is one easy first step, the other being 

physics improvement and ocean coupling. Although 

the representation of monsoon rainfall in initialized 

global NWP models has considerably improved, as a 

result of better representations of subgridscale physi-

cal processes, land surface processes, and increased 

model resolution, meaningful skill is still limited 

to less than 4 days (Mandal et al. 2007; Gadgil and 

Srinivasan 2013; Durai and Bhowmik 2014). One 

limiting factor to skill is the systematic error and 

bias of the seasonal mean in any model which builds 

up in the first few days of integration (weather time 

scale; Martin et al. 2010; Rai and Krishnamurthy 

2011; Bhargava et al. 2018). Therefore, if we are able 

to improve the seasonal mean bias, the skill of short-, 

medium-, and extended-range forecasts should also 

improve. Improvements in atmospheric physics, dy-

namics, and ocean coupling must therefore go hand 

in hand to achieve the program goals.

OBJECTIVES. Before the MM launch (i.e., before 

2010), there was no coupled ocean–atmosphere dy-

namical modeling framework in India to make either 

operational or experimental forecasts of seasonal 

mean monsoon and monsoon active and break cycles. 

Until recently, modeling activity in India was limited 

to standalone AGCMs and statistical models, mainly 

due to lack of trained personnel to work on model 

development and lack of adequate high-performance 

computing (HPC) infrastructure to run these mod-

els. Several academic and R&D institutes in India 

were carrying out monsoon research, including 

diagnostics of why the models, both empirical and 

dynamical, fail to predict a particular year’s mon-

soon performance (Rajeevan 2001; Wang et al. 2015). 

However, the knowledge gained from these studies 

had no pathway into operational weather and climate 

forecasts. Concerted efforts between the academic 

and R&D institutes and operational organizations 

were necessary, and this required a new initiative 

of national and even international scope. Bounding 

that scope required investing in a specific model (or 

at best two) with prospects for reasonably accurate 

forecasts and coordinating with several institutes/

organizations/universities to pursue their goals in 

that specific model.

Based on these strategic imperatives, MM defined 

the following overarching objective: to set up a state-

of-the-art dynamical modeling framework and im-

prove the skill of monsoon prediction at 1) seasonal 

and extended ranges and 2) short and medium ranges 

(up to 2 weeks).

To achieve this objective, the following two critical 

objectives needed to be fulfilled simultaneously:
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At an operational level, to build up a working 

partnership among the academic and R&D orga-

nizations (both national and international) and the 

MoES institutes to improve the monsoon forecast 

skill over India.

At a technical level, to enhance the peak HPC 

capacity at the R&D-cum-operational weather and 

climate prediction centers in India by four orders of 

magnitude between 2010 and 2017. It was estimated 

that in order for the R&D centers in India to imple-

ment operationalization of state-of-the-art weather 

and climate predictions systems and carry on R&D 

to improve their skills, the availability of HPC capac-

ity needs to be increased from less than one teraflop 

in 2010 to about 1 petaflop in 2013 and further to 

about 10 petaf lops in 2017 (Table 1 compares the 

computational power of major HPC systems at lead-

ing climate research centers in the world before the 

launch of MM in 2009).

IMPLEMENTATION STRATEGY.  MoES 

entrusted the responsibility of overall execution 

and coordination of the MM to the Earth System 

Science Organization–Indian Institute of Tropical 

Meteorology (ESSO-IITM), Pune. Four MoES in-

stitutes [ESSO-IITM, ESSO–National Center For 

Medium-Range Weather Forecasting (NCMRWF), 

ESSO–IMD, and ESSO–Indian National Centre for 

Ocean Information Services (INCOIS)] have part-

nered actively in this program to realize the above 

objectives. The working model set up by the MoES for 

implementation and execution of the MM consisted 

of the Director of IITM as the Mission Director, 

advised and assisted by a Scientific Research and 

Monitoring Committee and guided by a Scientific 

Steering Committee. The ocean–atmosphere coupled 

dynamical model, Climate Forecast System version 2 

[CFSv2, adopted from National Centers for Environ-

mental Prediction (NCEP), United States], was chosen 

as the common platform for setting up prediction 

systems for short-range weather forecasts (using the 

atmosphere only component of CFS, up to 8 days in 

advance), extended-range predictions (a combina-

tion of CFS and its atmosphere-only component, 

up to 3 weeks in advance), and seasonal prediction 

[based on CFS, for the southwest (SW) monsoon 

season of June–September (JJAS)] and building an 

Earth system model (ESM) based on CFS for climate 

projections. ESSO-IITM is responsible for testing 

and setting up the short-range, extended-range, and 

seasonal predictions systems based on the CFSv2, 

and for model developmental activities. The IITM 

Centre for Climate Change Research (CCCR) dealt 

with the development of ESM. ESSO-NCMRWF 

worked on improving short- to medium-range fore-

casts using the Unified Model (UM) of U.K.’s Met 

Office (UKMO) and was also responsible for run-

ning the atmospheric data assimilation system for 

both UM and GFS models. MoES is a core partner 

in the UM partnership with UKMO, along with the 

Korea Meteorological Administration, Bureau of 

Meteorology/Commonwealth Scientific and Indus-

trial Research Organization (Australia), and National 

Institute of Water and Atmospheric Research (New 

Zealand). The development and implementation of 

UM for seamless weather and climate prediction is 

the responsibility of NCMRWF. NCMRWF works 

closely with UM partners to improve the model for 

the Indian region and implement an appropriate suite 

of models for real-time use and R&D at NCMRWF. 

One of the main goals is to implement a seamless 

modeling system at NCMRWF, covering the range 

from days to seasons. Ocean data assimilation system 

was set up at ESSO-INCOIS and provides initial con-

ditions for different forecasts using the Global Ocean 

Data Assimilation System (GODAS).

To build working partnerships between the MoES 

organizations (ESSO-IITM, ESSO-IMD, ESSO-

NCMRWF, and ESSO-INCOIS), and selected national 

and international academic and R&D organizations, 

a total of 40 research projects were funded by the 

MoES through the MM, after appropriate review by 

the Scientific Review and Monitoring Committee and 

approval by the Scientific Steering Committee. Out of 

these, 20 projects were funded to institutions outside 

India (United States, United Kingdom, Australia, 

Canada, France, Japan, and United Arab Emirates). 

The objectives of all the projects were directed toward 

improving the prediction and predictability of the 

two chosen models (i.e., CFSv2 and UM). They were 

also focused on capacity building where one or two 

early-career scientists from the MoES organizations 

worked closely with each of the projects. An all-hands 

meeting was convened in India to synthesize results 

and to facilitate research-to-operations pathways in 

2015.

Even though the primary target of the MM was 

the Indian monsoon, it is well understood that some 

of the key parameterizations are limited by gaps in 

our fundamental understanding of the underlying 

physical processes. As a result, a few focused obser-

vational programs of atmosphere and ocean were 

also supported with an intention to use this observa-

tional data to modify the existing parameterization 

schemes in the dynamical models. One major ocean-

observation project entitled “Ocean Mixing and 
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Monsoon (OMM)” was funded by MoES under the 

MM. Finescale observations in the near-surface Bay 

of Bengal were gathered across seasons to understand 

the freshwater pathways, mesoscale and macroscale 

structures of Indian Ocean hydrography, and differ-

ent dynamical and thermodynamic processes govern-

ing the evolution. The work under these programs is 

expected to lead to the improved parameterization 

of air–sea fluxes and upper-ocean physics in ocean 

models and coupled models used for diurnal to 

subseasonal monsoon prediction. This project also 

helped Indian scientists to get trained in using state-

of-the-art equipment for taking in situ observations 

of physical processes in the ocean as well as the 

processing and analysis of data collected by such in-

struments. The preliminary results from this project 

are available in a special issue of Oceanography (2016, 

Vol. 29, No. 2). Also, three observational projects 

were also funded through MM as part of Indo–U.K. 

collaboration [MoES–Natural Environment Research 

Council (NERC)] to understand drivers of variability 

in the Indian monsoon. These projects were led in 

India by the Indian Institute of Science (IISc). These 

projects are “Interaction of Convective Organisation 

and Monsoon Precipitation, Atmosphere, Surface 

and Sea (INCOMPASS)” (Bhowmick and Parker 

2018; Fitzpatrick et al. 2016; Fletcher et al. 2019; Hunt 

et al. 2016; Hunt and Turner 2017a; Willetts et al. 

2017; Hunt and Turner 2017b; George et al. 2018), 

“South West Asian Aerosol Monsoon Interaction 

(SWAAMI)” (Kumar et al. 2015), and “Impact 

of Ocean-Atmosphere Processes in the Bay of 

Bengal on the South Asian Monsoon (BOBBLE)” 

(Vinayachandran et al. 2018; Sanchez-Franks et al. 

2018; Peatman and Klingaman 2018; Webber et al. 

2018; Tang et al. 2017), and they are still continuing 

(http://mmnerc.tropmet.res.in/nerc/index.php).

MAJOR ACHIEVEMENTS. High-resolut ion 

dynamical seasonal prediction system. Under the 

MM program, MoES institutes now run the CFSv2, 

originally obtained from NCEP with a very high-

resolution atmospheric component, at a spectral 

resolution of T382 (i.e., around 38-km horizontal 

resolution). This is the first time that a seasonal 

prediction system was run at such a high-resolution 

globally (Table 2), and this high-resolution model 

has been used to provide experimental long-range 

forecasts since 2011 at IITM (Srivastava et al. 2015; 

Ramu et al. 2016; Pai et al. 2017). The CFSv2 (Saha 

et al. 2014) comprises four constituent models. The 

GFS at a spectral resolution of T382 is the atmospheric 

model. The GFS has 64 hybrid vertical levels. Coupled 

to the GFS is the Modular Ocean Model, version 4p0d 

(MOM4; Griffies et al. 2004) developed at the Geo-

physical Fluid Dynamics Laboratory (GFDL). MOM4 

also employs a dynamical sea ice model (Winton 

2000). A four-layer land surface model (Ek et al. 2003) 

completes the CFS suite. All these components are 

coupled in the Earth System Modeling Framework 

TABLE 1. HPC facility at leading climate research centers in the world at the time of MM inception (top 500 

list, June 2011, www.top500.org/list/2011/06/). 

Institution HPC Rpeak (TF)

Korea Meteorological Administration, South Korea Cray XE6 758.0

INPE (National Institute for Space Research), Brazil Cray XT6 258.0

NOAA/Oak Ridge National Laboratory, United States Cray XT6 259.7

King Abdullah University of Science and Technology, Saudi Arabia IBM 222.8

NOAA/Earth Science Research Laboratory/GSD, United States Raytheon/Aspen Systems 148.1

Japan Agency for Marine-Earth Science and Technology NEC 131.1

European Centre for Medium-Range Weather Forecasts IBM 312.8

DOE/SC/Pacific Northwest National Laboratory HPE 159.9

National Centers for Environment Prediction, United States IBM 187.6

National Center for Atmospheric Research (NCAR), United States IBM 76.4

Indian Institute of Tropical Meteorology, India IBM 70.4

Met Office, United Kingdom IBM 132.4

Meteorological Research Institute, Japan Meteorological Agency, Japan Hitachi 72.8

Bureau of Meteorology, Australia Oracle 53.9

MoES Institutes (NCMRWF, Noida, IMD, New Delhi and INCOIS Hyderabad)* IBM P6 ~45.0

*HPC strategic document of MoES, 2009, before the launch of Monsoon Mission.
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(ESMF, www.earthsystemcog.org/projects/esmf/). 

The low-resolution CFSv2 (T126) is known to have a 

systematic dry bias over the Indian landmass and a 

cold bias over tropical ocean basins (Saha at al. 2014). 

An increase in the resolution of the atmospheric 

model of CFSv2 to T382 causes a reduced dry bias 

and a slight warm bias in the tropical ocean basins 

(Ramu et al. 2016). Analysis of hindcasts generated 

by this high-resolution model highlighted that the 

hindcasts initialized with February ICs (3-month 

lead) have better skill for boreal summer monsoon 

rainfall than other shorter leads (Chattopadhyay 

et al. 2016; Ramu et al. 2016; Pillai et al. 2017) and are 

higher for the CFSv2–T382 (MM model) compared 

to the original T126 (100-km resolution) version. 

Figure 1a shows the scatterplot for ISMR confirming 

this skill improvement with an increase of horizontal 

resolution of AGCM from T126 to T382 (with respect 

to gridded rainfall data at 1° resolution supplied by 

the IMD for the period 1981–2010 (Rajeevan et al. 

2006) and Global Precipitation Climatology Project 

(GPCP) rainfall data (left panel; Huffman et al. 2001). 

The skill of the model in simulating the country-

averaged rainfall increases from 0.50 (T126) to 0.63 

(T382) with respect to GPCP. The skill scores with 

respect to IMD gridded data are 0.46 (T126) and 

0.63 (T382). Earlier, Ramu et al. (2016) had reported 

the skill of the model to increase from 0.48 (T126) 

to 0.55 (T382) for a shorter period (1981–2008) with 

respect to IMD gridded data. Most importantly, they 

reported an improvement in the interannual standard 

deviation from 0.4 mm day–1 (T126) to 0.5 mm day–1 

(T382) over a wetter India, hence illustrating a link 

between bias reduction and skill improvement. These 

improvements are attributed to better simulation of 

mean state, reduced systematic bias in teleconnection 

between Indian Ocean dipole and ISMR (Ramu et al. 

2016), and improved teleconnections associated with 

El Niño Modoki (Pillai et al. 2017). The country-

averaged rainfall forecast is a useful metric for the 

socioeconomic planners and decision-makers of the 

country and is closely linked to the gross domestic 

product and food grain production in the country 

(Gadgil and Gadgil 2006). Prediction of seasonal 

mean ISMR at long lead is important during extreme 

monsoon years (droughts and f loods) when the 

rainfall anomaly is homogeneous over the country 

(Xavier and Goswami 2007). The model skill at 

simulating the rainfall is reasonably good for three 

out of five homogenous monsoon regions of India, 

namely, central-northeast, northeast, and northwest 

(Ramu et al. 2017).

Using this high-resolution CFSv2 forecast system 

(henceforth referred to as the MM model), IMD suc-

cessfully predicted (experimentally), the deficit mon-

soon of 2014 (14% lower than long-term mean) at a lead 

TABLE 2. Resolution of the atmospheric models operational at leading climate research centers.

Agency Seasonal Extended range Short range

IITM ~38 km ~110 km
~12.5 km (deterministic)

~33 km (probabilistic)

NCMRWF ~60 km ~60 km

~17 km (deterministic) in 2015

~12 km (deterministic) in 2018

~33 km (probabilistic) in 2016

~12 km (probabilistic) in 2018

NCEP ~110 km ~110 km

~13 km (up to 10 days, deterministic)

~23 km (beyond 10 days, deterministic)

~34 km (up to 8 days, probabilistic)

~52 km (beyond 8 days, probabilistic)

ECMWF ~80 km* ~36 km
Deterministic (~9 km)**

Probabilistic (~18 km)**

JMA ~110 km
~40 km (up to 18 days),  

~55 km (after 18 days)

~20 km (deterministic)

~40 km (probabilistic)

UKMO ~60 km —
~10 km (deterministic)

~20 km (probabilistic)

* ECMWF switched to system 5 in November 2017 with an atmospheric model resolution of ~36 km for 

seasonal forecasts.

** Short-/medium-range predictions.
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time of 3 months (February IC) with a large degree of 

spatial agreement with observations. In contrast, fore-

casts from other leading climate centers suggested a 

near-normal monsoon during that year (Pai et al. 2017; 

Srivastava et al. 2015). The year 2015 was a consecutive 

deficit monsoon year following 2014 (12% lower than 

long-term average), a rare occurrence (have occurred 

only thrice in the history of instrumented rainfall 

records from 1871 to 2013). MM model could capture 

the consecutive deficits of 2014/15 accurately. However, 

it was important to gauge the model performance 

over a long period of hindcasts to have confidence 

in the forecasts. Figure 1b shows the time series of 

observed ISMR, IMD operational forecasts (derived 

from monsoon reports available at www.imd.gov.in 

/pages/monsoon_main.php), and MM model fore-

casts using NCEP ICs and the in-house atmo-

spheric and oceanic ICs 

(from ESSO-NCMRWF 

and ESSO-INCOIS, re-

spectively). Values are per-

centage departures from 

the mean ISMR. The MM 

model was able to capture 

the sign (positive or negative 

anomaly of ISMR averaged 

over Indian landmass) of 

all the extreme monsoon 

years accurately at 3-month 

lead, even though some 

false alarms occurred. The 

skill of the IMD operational 

forecasts (based on statisti-

cal models) for the 1988–

2017 period is 0.36, while 

the MM model skill (CFSv2 

T382, ~38 km atmospheric 

resolution) for the period 

is 0.54, an impressive 50% 

increase in the skill. This is 

a major achievement of the 

MM and assumes signifi-

cance, as the prediction skill 

of ISMR in the dynamical 

coupled models at the time 

of launching of MM was 

only 0.28 (in DEMETER 

models; Preethi et al. 2010) 

and 0.46 (in ENSEMBLE 

models; Rajeevan et a l. 

2012) for the 1960–2005 

per iod ,  which f ur t her 

decreases to 0.09 post-

1980 (Wang et al. 2015). The high-resolution MM 

model is operational at IMD since 2017. The latest 

seasonal forecasts can be obtained from www 

.imdpune.gov.in/Clim_Pred_LRF_New/Models.html.

Extended-range forecast system. Active–break spells of 

ISMR have been predicted experimentally by ESSO-

IITM since 2011 up to four-pentad lead using an 

indigenously developed ensemble prediction system 

(EPS) based on the MM model. The EPS generates 

a large number of forecasts from different initial 

conditions to give the expected (mean) forecast and 

also the expected spreads or uncertainties in terms 

of probability. Forecasts are generated at every 5-day 

interval from 1 January of the calendar year and in-

tegrated for next 45 days. In other words, the forecast 

lead time is up to 45 days and is updated at an interval 

FIG. 1. (a) Scatter diagram between ISMR from observations [(left) GPCP 

and (right) IMD] and T126- and T382-resolution versions of CFSv2 model. 

The values shown are percentage departures from the mean for the summer 

monsoon rainfall averaged over Indian landmass. (b) Comparison of observed 

ISMR, operational ISMR forecast based on IMD’s statistical model, and MM 

CFSv2-T382-predicted (hindcast) ISMR based on NCEP and INCOIS initial 

conditions from 1988 to 2017. ISMR is calculated as the rainfall averaged over 

Indian land points only.
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of every 5 days. Intraseasonal skill is evaluated using 

pentad (5-day) mean rainfall and again, a hindcast 

has been used to characterize the system. Figure 2a 

shows how multimodel ensemble (MME) forecasts 

are prepared using four variants, CFSv2 at T126 

and T382 resolutions and GFS (both T126 and T382 

resolutions) forced with bias-corrected SST from 

CFS (termed as GFSbc; Abhilash et al. 2014b). Each 

realization has 11 ensemble members. Model and 

experimental details and skills of GFSbc, CFST126, 

and CFST382 may be found in Abhilash et al. (2013, 

2014a,b,c) and Sahai et al. (2015a,b). This experi-

mental real-time extended-range prediction (ERP) 

is available at www.tropmet.res.in/erpas/. Detailed 

extended-range forecasts out to 20 days are shared 

with ESSO-IMD, which generates agricultural/

FIG. 2. (a) Schematic representation of the system adopted for extended-range prediction under MM program. 

The MME out of the above four suites of models are run operationally for 32 days based on every Wednesday 

initial condition with four ensemble members (one control and three perturbed) each for CFSv2T382, 

CFSv2T126, GFSbcT382, and GFSbcT126. The hindcast period is 13 years (2003–15). (b) Pentad 1 (P1) to pentad 

5 (P5) forecast skill of IITM extended-range prediction system and ECMWF operational system for different 

homogenous regions of India: the monsoon zone of India (MZI), northeast India (NEI), northwest India (NWI), 

and south peninsular India (SPI).
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hydrological bulletins to disseminate to the user 

community for planning purposes.

Various other customized forecast products 

are also being disseminated from this EPS, which 

includes active–break spells, monsoon onset, pro-

gression, withdrawal, heat–cold wave, monitoring 

of monsoon intraseasonal oscillations (MISO) and 

the Madden–Julian oscillation (MJO), cyclogenesis, 

and extreme rainfall events. More detailed analysis 

of the system can be found in Abhilash et al. (2013, 

2014a,b,c, 2015a,b; 2018), Borah et al. (2015), Joseph 

et al. (2015a,b, 2016, 2017, 2018), Sahai et al. (2013, 

2015a,b, 2016, 2017, 2019), and Saranya Ganesh et al. 

(2018). This ERP system is now capable of generating 

extended outlooks for various sector-specific appli-

cations such as agriculture (N. Chattopadhyay et al. 

2018) and hydrology (Shah et al. 2017).

Hindcast verification has been done over four 

different regions of India, where monsoon rainfall is 

more or less homogeneous. The selected regions are 

central India (CEI), northeast India (NEI), north-

west India (NWI), south peninsular India (SPI), and 

a broader region, the core monsoon zone of India 

(MZI). Figure 2b compares the skill (anomaly correla-

tion coefficient between simulated and observed) of 

this MM system with ECMWF prediction system (S2S 

ECMWF ensemble forecast data, CY41R2 version) 

over the different regions of India from pentad 1 to 

pentad 4. Since the ECMWF system has 11 mem-

bers, an equal number of members were taken from 

the ERP system as well (three from each of CFS126, 

CFS382, and GFSbc126 and two from GFSbc382). 

IMD’s station data that are gridded and merged with 

TRMM derived rainfall data (Mitra et al. 2013) are 

used as observation data. The skill of the MM system 

is seen to be comparable to the ECMWF system at 

all lead times and is slightly better in the first two 

pentads for SPI and NEI in spite of running at a lower 

resolution (R. Chattopadhyay et al. 2018).

High-resolution GEFS for short-range forecasting. The 

atmospheric general circulation model, namely, the 

GFS at T574 horizontal resolution and 64 vertical 

levels with semi-Lagrangian dynamical core has been 

used for the Global Ensemble Forecast System (GEFS) 

with 21 ensemble members. This system is being used 

to provide real-time short-range ensemble forecasts 

since June 2016. Initial conditions are from the Global 

Data Assimilation System [GDAS; the control analysis 

using Gridpoint Statistical Interpolation (GSI) and 

ensemble Kalman filter (EnKF) hybrid analyses] and 

the 20 ensembles from the EnKF scheme. These data 

assimilation systems are being run at NCMRWF, 

Noida. Therefore, a total of 21-member forecast is 

run for 10 days with GFS semi-Lagrangian model. 

The postprocessing is done at three different reso-

lutions for operational use. IMD forecast offices at 

New Delhi and other centers extensively used this 

forecast during the 2016 southwest monsoon period. 

Since then, a very high-resolution T1534 (~12.5 km, 

Table 2) deterministic forecast system has also been 

set up for short-range (10 days) predictions using GFS. 

A schematic of this system is illustrated in Fig. 3a. 

This short-range deterministic forecasting system 

has been transferred to IMD for operationalization 

FIG. 3. (a) Schematic representation of GFS (SL) T1534 

L64 running AT IITM. (b) Forecast skill (Peirce skill 

score) for different rainfall threshold values for day 

1, day 3, and day 5 forecast of GFS system of MM for 

different resolutions (T1534 and T574).
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since January 2017. Apart from IMD, a mirror site for 

the forecast graphics is available at http://srf.tropmet 

.res.in/srf/files/archive_hires.php. The location and 

intensity of extreme rains as well as cyclogenesis 

events have been forecasted with some success at 

reasonable lead time. Figure 3b shows that this de-

terministic GFS forecast system with a resolution 

of T1534 can increase this measure of forecast skill 

by up to 2 days (solid dark line above dashed blue 

line) compared to its lower-resolution version T574 

(Fig. 3b). The skill score has been computed with 

respect to IMD’s station data that are gridded and 

merged with TRMM derived rainfall data (Mitra et al. 

2013). Societal applications, like agriculture, energy 

sector, and forest fire monitoring and forecasting 

are being benefitted from its 12.5-km resolution. A 

high-resolution T574 (semi-Lagrangian core) GEFS 

for short-range forecast with 21 ensemble members 

has also been set up, for which ESSO-IITM, ESSO-

NCMRWF, and ESSO-IMD have worked together. 

This system is being used to provide real-time short-

range ensemble forecast since June 2016. Recently, 

after the completion of MM phase 1, a high-resolution 

ensemble prediction system based on GEFS at T1534 

(~12.5 km) resolution with 21 ensemble members has 

also been set up for issuing probabilistic short-range 

forecast up to 10 days.

IITM-ESM. It is important to understand the impact 

of changing climate on the Indian monsoon. For 

reliable future projections of the Indian monsoon 

rainfall in a changing climate, the successful CFSv2 

model (as described above) has been transformed to 

an Earth system model (IITM-ESM) (Swapna et al. 

FIG. 4. Spatial map of (a)–(c) annual mean surface air temperature (°C) and (d)–(f) summer monsoon (JJAS) 

precipitation (mm day–1) anomalies in (a),(d) observations (GISS temperature and GPCP precipitation datas-

ets); (b),(e) IITM-ESM present-day simulation based on the 2005 values of GHGs, aerosols, and land cover; and 

(c),(f) 2 × CO
2
 experiment from IITM-ESM. Observed anomalies are for the period 2000–17 with reference to 

base period of 1980–2017. The IITM-ESM anomalies are based on the 50-yr mean of 2005 control minus the 

50-yr mean of 1850 control integration.
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2015, 2018; Krishnan et al. 

2019). Figure 4 shows the 

annual mean surface air 

temperature and summer-

season (JJAS mean) precipi-

tation anomalies (relative 

to preindustrial control) 

simulated by the IITM-

ESM’s present-day control 

simulation based on the 

2005 values of greenhouse 

gases, aerosols, and land cover (center panels). For 

comparison, the results from 2 × CO
2
 experiment 

are shown (right panels) along with observed anoma-

lies (at left) for the period 2000–17 with respect 

to the base period of 1980–2017. The IITM-ESM 

anomalies are relative to the preindustrial control 

experiment (Swapna et al. 2018). The latest version 

of the IITM-ESMv2 is contributing to the Coupled 

Model Intercomparison Project phase 6 (CMIP6) 

for the Intergovernmental Panel on Climate Change 

(IPCC) Sixth Assessment Report (AR6)—the first 

such contribution from India. The IITM-ESMv2 is 

a radiatively balanced modeling framework capable 

of providing useful projections of climate sensitivity 

and the global and regional hydrological responses 

to the radiative effects of anthropogenic forcing due 

to greenhouse gases (GHGs), aerosols, and land-use/

land-cover changes. The radiatively balanced frame-

work was achieved by incorporating the effects of 

viscous dissipation of turbulent kinetic energy (TKE) 

in the atmospheric model of the IITM-ESMv2, refine-

ments in flux computations over ice-covered regions, 

implementation of fractional grids for exchange of 

f luxes between atmosphere and other component 

models, and realistic simulation of the Atlantic me-

ridional overturning circulation (AMOC). The IITM-

ESMv2 also has good representations of the Arctic 

sea ice cover and ENSO–monsoon teleconnections, 

among other important modes of climate variability 

(Swapna et al. 2018; Krishnan et al. 2019).

Data assimilation. Sustained observations are vital for 

data assimilation to provide robust initial conditions 

for dynamical models. ESSO-INCOIS contributed 

to MM by operationalizing NCEP’s Global Ocean 

Data Assimilation System (GODAS) based on the 

GFDL’s MOM4.0 and a three-dimensional varia-

tional (3DVAR) data assimilation scheme (INCOIS-

GODAS; Ravichandran et al. 2013). The 3DVAR 

assimilation scheme is used to assimilate observed 

temperature and salinity profiles, in the top 700 m, 

from observational platforms like Argo, moored 

buoys, and ship-based observations. GODAS is 

forced with four-times-daily atmospheric fluxes from 

NCMRWF at a spectral resolution of T574, which 

amounts to a spatial resolution (0.25° × 0.25°). MM-

supported enhancements include GODAS analyses 

with improved model resolution, a shorter assimi-

lation window, and a shorter relaxation time scale 

(5 days), with additional data in the Indian Ocean 

through their ocean observations and assimilation 

system (Ravichandran et al. 2013). This system’s 

outputs are being used to initialize the MM coupled 

models. Most of the observed features of temperature, 

anomalous sea surface height (SSHA), and currents 

are reflected well in the tropical Indian Ocean at both 

intraseasonal and interannual time scales. Further 

R&D will improve these products by incorporating 

a local ensemble transform Kalman filter (LETKF) 

technique in the plume of 3DVAR. A coupled data as-

similation system based on CFS-LETKF (Sluka 2018) 

has been set up at ESSO-IITM. The system at pres-

ent is a weakly coupled system. A strongly coupled 

ocean–atmosphere data assimilation system (Sluka 

2018) is a challenge, being addressed by ESSO-IITM 

with active collaboration and coordination with the 

University of Maryland and ESSO-INCOIS. Initial 

2-yr outputs show that the root-mean-square error 

has reduced by about 0.2°–0.4°C globally as compared 

to the NCEP GODAS (P. Sreenivas 2019, personal 

communication), except in the extratropics. Taking 

advantage of the HPC resources set up under MM, 

the atmospheric data assimilation system along with 

the model frameworks used have been upgraded from 

time to time (Table 3; Prasad and Johny 2016; Prasad 

et al. 2016). To support these high-resolution assimi-

lation systems, the data reception systems have been 

strengthened by establishing direct data connectivity 

with bulk meteorological satellite operators, such as 

the National Oceanic and Atmospheric Adminis-

tration (NOAA)/National Environmental Satellite, 

Data, and Information Service (NESDIS) and the In-

dian Space Research Organization (ISRO). This is in 

addition to the meteorological observations from all 

TABLE 3. Evolution of model frameworks used at NCMRWF for 

atmospheric data assimilation.

Year Model Analysis

2008 T254L64 GSI

2010 T382L64 GSI

2011 T574L64 Eulerian (EL) Hybrid GSI with T254L64 EnKF

2016 T1534L64 semi-Lagrangian (SL) Hybrid GSI with T574L64 EnKF

2017 T1534L64 (SL) 4D-ENS-VA
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over the globe that are received at the Regional Tele-

communication Hub (RTH), New Delhi, through the 

Global Telecommunication System (GTS). Further, 

the European Organisation for the Exploitation of 

Meteorological Satellites’s (EUMETSAT) terrestrial 

reception system (EUMETcast) was also established 

to receive data from EUMETSAT. This terrestrial 

reception system supports data reception from Japan 

and China as its third-party services. Thus, the data 

being assimilated at ESSO-NCMRWF has grown 

immensely due to the efforts under MM, improving 

the quality of the analysis hence generated. After 

data thinning (satellite data) and quality control, ~5 

gigabytes (GB) of data were being assimilated in the 

GFS-based assimilation cycle, and the same has now 

increased to ~17 GB. Using the atmospheric ICs from 

NCMRWF and oceanic ICs from INCOIS, the season-

al forecast model is integrated for 9 months using a 

lagged ensemble method. The perturbed atmospheric 

ICs and oceanic ICs are used for extended-range fore-

casts. The atmospheric initial conditions (perturbed 

atmospheric ICs) from NCMRWF are used for deter-

ministic (probabilistic) short-range forecasts as well.

Technical advancement. As discussed at the outset, 

MM emphasized the need for HPC resources not only 

for operational multiscale predictions and climate, 

but also for R&D to improve the models for all these 

ranges of predictions. In 2013, two HPC systems 

[790 teraflops (TF) “Aaditya” HPC at ESSO-IITM 

and 350 TF at ESSO-NCMRWF] have been success-

fully procured and utilized as illustrated above. It is 

thus clear that adequate computational infrastruc-

ture is a necessary condition for better forecasts. 

Transformatively, the next upgrade took place in 

February 2018 with two new HPC systems (4006 TF 

“Pratyush” at ESSO-IITM and 2808 TF “Mihir” at 

ESSO-NCMRWF) were added, keeping the program’s 

science and operational goals feasible technically as 

expertise keeps growing.

R&D toward improving ISMR prediction and predictability. 

The nationwide distribution of the 40 research proj-

ects funded under MM is shown in Fig. 5. In addition 

to carrying out some sensitivity experiments, various 

national and international projects funded through 

MM studied the hindcast products and long control 

simulations of the MM model. Biases and processes 

in the simulation of SST, rainfall, intraseasonal 

oscillations, ENSO–monsoon relationship, cyclone 

tracks, and other phenomena have been explored. 

Experiments with embedded regional models at 

weather and cloud-resolving scales have illuminated 

multiscale variability and its implications for predict-

ability. Downscaling (at 10-km resolution) of seasonal 

monsoon forecasts using stand-alone and region-

ally coupled (ocean–atmosphere) models have been 

studied to understand the local and remote drivers 

of regional monsoon vari-

ability. Different ocean–

land–atmosphere coupling 

and initialization strate-

gies were tested to improve 

monsoon prediction in the 

model. Such studies have 

improved the understand-

ing and representation of 

various processes at short, 

medium, and long ranges 

contributing to global sci-

ence as well as for the ben-

efit of the Indian public.

One of the major short-

comings of the models 

t hat MM targeted was 

simulat ing the MISOs, 

with the other being to 

reduce the systematic bi-

ases in the model. MISOs 

are considered to be the 

bui ld ing blocks of the 

Indian summer monsoon 

FIG. 5. A pie diagram showing the countrywide distribution of the 40 research 

projects funded under the MM. The numbers in parentheses denote the num-

ber of projects allocated to that country.
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(Goswami et al. 2006), with implications 

extending to the seasonal mean bias. The 

prediction of MISOs at extended-range 

time scales had remained a challenging 

problem for the operational monsoon 

forecast community. The extended-

range prediction group came up with a 

multimodel ensemble prediction system 

that could improve the spread–error re-

lationship in the forecasts (Abhilash et al. 

2015a,b). The multimodel ensemble, as 

well as its individual contributing mod-

els, have reasonable skill in predicting 

the JJAS rainfall over various homog-

enous regions throughout India [viz., 

central India, the monsoon zone of India 

(Rajeevan et al. 2010), northeast India, 

northwest India, and the south peninsula 

(Abhilash et al. 2014a,b,c, 2015a,b; Sahai et 

al. 2013, 2015a,b)]. The skill of the EPS in 

predicting extreme rainfall events during 

summer monsoon has been reported in 

Joseph et al. (2015a). It is also known that 

cloud microphysics plays an important 

role in the organization of convection 

on the MISO scale (Kumar et al. 2017). 

So, efforts were focused on changes to 

convection parameterization [utilization 

of revised Simplified-Arakawa–Schubert 

(SAS) scheme]. Wide-ranging and novel 

approaches were explored under MM sup-

port, including stochastic multicloud parameteriza-

tion, application of superparameterization schemes 

and cloud microphysics schemes, and many more. 

CFSv2 is known to simulate a systematic dry bias 

over Indian landmass (Saha et al. 2014). Goswami 

et al. (2015) reported that the synoptic variance is 

underestimated in the model compared to ISO vari-

ance, and pointed toward possible deficiencies in the 

convection parameterization schemes. Therefore, 

experiments were carried out using a revised SAS 

scheme based on Han and Pan (2011). The revised 

convection parameterization scheme (CPS) has 

shown improvements in the annual seasonal cycle, 

onset, and withdrawal and the rainfall probability 

distribution function (PDF) due to the better diur-

nal cycle of convection and associated convective 

rainfall (Ganai et al. 2015). Improvements are also 

noted in the diurnal features of monsoon during 

active and break phases (Ganai et al. 2016). To ad-

dress the unresolved features of organized tropical 

convection, a stochastic multicloud model (MCM) 

was developed by Khouider et al. (2010). This was 

implemented in CFSv2 (Goswami et al. 2017b). 

CFS-MCM shows improvement in the synoptic 

and intraseasonal variability, MJO, convectively 

coupled equatorial waves, and the Indian summer 

MISO (Goswami et al. 2017a,c). Taking into consid-

eration the systematic biases of CFSv2 in simulating 

observed Boreal summer intraseasonal oscillation 

(BSISO) features and to test the observation-based 

hypothesis of Jiang et al. (2011) and Abhik et al. 

(2013), Abhik et al. (2017) revised the cloud processes 

in the model by employing the revised CPS and 

by incorporating a six-class hydrometeor scheme 

(WSM6; Hong and Lim 2006) suitably modifying the 

critical mean droplet radius in the rain autoconver-

sion formulation following the in situ observations 

of the Cloud-Aerosol Interaction and Precipitation 

Enhancement Experiment (CAIPEEX; Kulkarni et 

al. 2012), enabling the model to generate gridscale 

tendencies of cloud hydrometeors. These changes 

resulted in a realistic simulation of BSISO over the 

Indo-Pacific region, reduction in systematic biases in 

CFSv2, convective–stratiform rainfall distribution, 

FIG. 6. Taylor diagram showing the skill of ISMR prediction using 

reforecasts from the control run (CTL) and the developmental 

activities under MM, namely, the revised microphysics (WSM6) 

along with revised convection (SAS2) and a modified radia-

tion scheme, new cloud physics parameterization (MC), the 

new snow model (SN) and MC together (SN-MC), the revised 

convection parameterization scheme (SAS2), and SAS2 with 

a revised shallow convection scheme (SAS2sc). The improve-

ment in skill over the CTL run is notable in the experiments. 

The period of the hindcast is 1981–2010.
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and reproduction of the observed relation of MISO 

and cloud hydrometeors (Ganai et al. 2019). This 

modified version (at T126 resolution) shows the skill 

comparable to CFSv2 T382, though the interannual 

variance is slightly overestimated (Fig. 6). Hazra 

et al. (2017) the used observations from CAIPEEX 

(Kulkarni et al. 2012) and made major modifica-

tions to the existing Zhao and Carr (1997) cloud 

microphysics scheme in the CFSv2. This was un-

dertaken to address the inadequacy of the model in 

simulating the mixed-phase hydrometeors and the 

ratio of convective to stratiform rainfall, which has 

a bearing on the simulation of MISOs. The modified 

microphysics of Hazra et al. (2017), revised SAS of 

Han and Pan (2011), and observation-based modified 

critical relative humidity (De et al. 2016) was tested 

in retrospective forecast mode, and improvements 

in the seasonal forecast skill were reported (Pokhrel 

et al. 2018). Another major monsoon-affecting bias 

was the excessive snow simulation over the Eurasian 

region by CFSv2, which reduced the north–south 

temperature gradient and resulted in the simulation 

of a weak monsoon (Saha et al. 2013). Replacing the 

single-layer snow scheme with a six-layer surface 

snow model and implemented in the CFSv2 yielded 

a more realistic simulation of snow over Eurasia and 

an improved Indian summer monsoon (Saha et al. 

2017). These results are also summarized in Table 4. 

Through such efforts, progress has been steadily 

made on many fronts.

To test the impact of the progress made under 

MM, a series of hindcast experiments were carried 

out using seven versions of the MM model with 

mixed physics configurations, namely, 1) the stan-

dard CFSv2 at T126 resolution with standard physics 

(CTL; Saha et al. 2014), 2) with the high-resolution 

(T382) MM model (Ramu et al. 2016), 3) with revised 

SAS, improved cloud microphysics (WSM6) and 

radiation (Abhik et al. 2017), 4) with old snow model 

but new cloud microphysics parameterization (MC; 

Hazra et al. 2017), 5) with new snow model combined 

with new cloud microphysics (SN-MC; Saha et al. 

2019), 6) with the revised convection parameteriza-

tion scheme (SAS2; Han and Pan 2011; Krishna et al. 

2019), and 7) the revised convection parameteriza-

tion scheme and revised shallow convection scheme 

(SAS2sc). These hindcasts were carried out for the 

period 1981–2010. Thanks to the HPC capacity, the 

control runs reported in Ramu et al. (2016) could 

be carried out again to match the hindcast period 

of the rest of the runs. Results from these massive 

seasonal reforecast experiments (Fig. 6) indicate that 

all these modifications contributed to improvement 

of the skill of seasonal forecasts of ISMR, with scores 

approaching ~0.71, much higher than the skill of the 

original model with which we started MM (CTL run, 

R ~ 0.49, all the skill scores are reported with respect 

to IMD 1° gridded data; Rajeevan et al. 2006). It is 

also worthwhile to note that the high-resolution MM 

run reproduces an interannual variability very close 

to observations, in addition to simulating a high 

ISMR prediction skill (0.63). This is ref lected in 

reforecasting extreme drought years in 2002, 2004, 

and 2009 in Ramu et al. (2016). This highlights the 

importance of using a high-resolution model for 

droughts as well as pluvial signals, as was originally 

envisioned at the outset of MM. The reforecast with 

the revised version of CFS at coarser resolution 

(CFSv2T126; Abhik et al. 2017) also shows a skill 

score of 0.62 (WSM6 in Fig. 6), though the interan-

nual variability is slightly overestimated (1.09, ratio 

of standard deviation of simulated ISMR to the 

observed), which demonstrates that even a coarser-

resolution model with improved cloud, convection, 

and radiation physics parameterization can achieve 

enhanced skill. SN-MC (Saha et al. 2019), SAS2sc 

(Krishna et al. 2019), and MC (Hazra et al. 2017) 

also simulate higher skill scores of 0.62, 0.65, and 

0.71, respectively, which demonstrates an improve-

ment over the control run, even though the interan-

nual variance is underestimated. Some of the model 

development activities mentioned above are in the 

process of being incorporated in the high-resolution 

MM model, and we hope that their inclusion will 

further enhance the country-averaged ISMR predic-

tion skill and the spatial skill of the model, although 

the possibility of compensating errors requires that 

this be tested carefully. Developmental activities 

conducted both in-house and by various partici-

pating institutes, which led to the abovementioned 

scientific improvements, are tabulated in Table 5. 

Interestingly, the MM model has a reasonably good 

skill for the country-averaged rainfall, as well as the 

homogenous regions of India, except for southern 

peninsular India (Ramu et al. 2017).

In the ocean, the parameterization of vertical 

mixing is a challenge in complex scenarios such 

as the low-salinity regions in the Bay of Bengal 

(BoB). A key science question is how the enormous 

amount of freshwater introduced at the surface in 

the north BoB from local rain as well as from the 

major rivers like Ganga–Brahmaputra discharge gets 

transported to the south by the mesoscale eddies and 

gets mixed with deeper layers in the highly stratified 

background. Using the data from the observational 

campaigns funded under OMM, new insights have 
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TABLE 4. Summary of model developments.

Publications Targeted process Changes/implementation Improvements

Ramu et al. (2016, 2017);  

Pillai et al. (2017)

Seasonal mean ISMR  

and its interannual variability

Cold SST bias in the tropical 

Indian Ocean

Tropospheric temperature 

gradient

IOD-ISMR teleconnection

High-resolution atmospheric 

model [from T126 (~110 km)  

to T382 (~38 km)]

Improved seasonal mean  

precipitation

Reduced SST bias in the tropical  

Indian Ocean

Reduced bias in IOD–monsoon 

teleconnection pattern

Improved teleconnections  

associated with El Niño Modoki

Ganai et al. (2015, 2016)

Systematic dry bias over  

India

Underestimated synoptic 

variance

Revised SAS scheme based on 

Han and Pan (2011)

Improved annual cycle, monsoon  

onset and withdrawal, rainfall 

probability distribution function

Improved diurnal cycle of convection 

and associated convective rainfall and 

diurnal features of monsoon during 

active and break phases

Goswami et al. 2017b

Unresolved features of 

organized tropical  

convection

Stochastic multicloud model 

developed by Khouider et al. 

(2010)

Improved synoptic and intraseasonal 

variability, MJO, convectively coupled 

equatorial waves

Improved simulation of Indian summer 

monsoon intraseasonal oscillations

Abhik et al. (2017)

Systematic biases of CFSv2  

in simulating observed  

BSISO processes

Six-class hydrometeor scheme 

(WSM6) (Hong and Lim 2006)

Spatial and vertical distributions of 

cloud hydrometeors

Realistic propagation of BSISO

Well simulated northwest–southeast 

rainband

Reduced systematic biases in rainfall

Hazra et al. (2017)

Mixed-phase hydrometeors

Ratio of convective to 

stratiform rainfall

Spatial and temporal  

structure of MISOs

Modifications to the existing  

Zhao and Carr (1997) cloud 

microphysics scheme based on 

cloud observations (Konwar  

et al. 2012; Kulkarni et al. 2012)

Improved simulation of high cloud 

fraction, convective to stratiform rain 

fractions

Improved lead–lag relationship  

between convective and stratiform  

rain at ISO time scales

Improved ISM rainfall, monsoon  

onset, and realistic annual cycle

Pokhrel et al. (2018)

Seasonal forecasting of the 

ISMR

Large dry bias over the  

CI region

Cloud formation processes

Modified microphysics of  

Hazra et al. (2017)

Revised SAS of Han and Pan 

(2011)

Observation-based modified 

critical relative humidity  

(De et al. 2016)

Improved AISMR skill and spatial 

distribution of precipitation,  

amplitude of the annual cycle of ISMR

Improved skill of Niño-3.4 index

Saha et al. (2017)

Excessive snow simulation  

over the Eurasia region by  

the CFSv2

Reduced north–south 

temperature gradient

Weak monsoon

Six-layer surface snow model

Better simulation of snow over  

Eurasia improved Indian summer 

monsoon
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emerged from a recent study (Sree Lekha et al. 2018) 

indicating the key role of the monsoon subseasonal 

oscillations in this process. The annual freshwater 

input from monsoonal rains and rivers creates a 

stable upper-ocean stratification which is known 

to inf luence the air–sea interaction in the region 

(Shenoi et al. 2002; Vinayachandran et al. 2002; 

Rao et al. 2011). The shallow fresh layer persists in 

the BoB for nearly three seasons until winter. The 

dispersal of the river water is closely related to the 

changes in the monsoonal subseasonal winds (quasi-

biweekly). When the monsoon winds strengthen, a 

shallow (10 m deep) wind-driven Ekman flow moves 

the river water to the north and east, while in the 

phase of weak winds, the river water is moved mainly 

by the mesoscale eddy flow (Fig. 7). To understand 

the submesoscale and microstructure of temperature 

and salinity, several campaign mode observations 

were made. A moored buoy with highly sophisticated 

instruments for high-frequency continuous mea-

surements was deployed in the north BoB supple-

mented by several unmanned aerial vehicle (e.g., 

gliders) transects. These observations have brought 

out fascinating new details about the mesoscale and 

submesoscale processes in the BoB, providing chal-

lenges and guidance for parameterizations. This data 

are being utilized to improve the representation of 

these processes in the ocean models. Many of these 

observational findings are reported in a special issue 

of Oceanography (2016, Vol. 29, No. 2). This has also 

highlighted that the freshwater fluxes into the ocean 

are an important component of the Earth system 

and are closely associated with monsoon processes, 

especially in the BoB. Therefore, the inclusion of 

this coupling in the MM model is an emphasis in 

the second phase of MM.

TABLE 5. Developmental activities under Monsoon Mission.

Proposed activity

Completed during  

Monsoon Mission Ongoing

Setup of CFSv2 prediction 

system

High-resolution (T382) seasonal prediction system 

(Ramu et al. 2016)

Grand MME prediction system for extended-range 

prediction of monsoon (Sahai et al. 2013, 2015a,b)

A very high-resolution T574 and T1534 (semi-

Lagrangian core) Global Ensemble Forecast  

System (GEFS) for short-range forecasts

CFSv2 seasonal forecast model transformed into an 

Earth system model (IITM-ESM) suitable for long-

term climate change studies (Swapna et al. 2015, 2018; 

Krishnan et al. 2019); although not formally funded 

under MM, the development of IITM-ESM is  

essentially a by-product of sustained in-house climate 

model development efforts at the CCCR, IITM

Developmental activities to 

improve the original model 

performance

New convection parameterization scheme (SAS2,  

Han and Pan 2011; Ganai et al. 2015, 2016; Krishna 

et al. 2019) to replace the original SAS scheme

Modified cloud microphysics (ice and cloud 

microphysics, Phani et al. 2016, Abhik et al. 2017,  

Hazra et al. 2017, Saha et al. 2018, Pokhrel et al. 2018)

Super parameterization in CFS (SP-CFS,  

Goswami et al. 2015)

Multilayer snow scheme in the land surface model 

(Saha et al. 2017)

Stochastic parameterization  

(Goswami et al. 2017a,b,c)

Weakly coupled data assimilation system  

(Sluka et al. 2016)

New high-resolution ocean model

EnKF-based coupled data  

assimilation system
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SUMMARY AND CONCLUSIONS. Motivated 

by India’s need for global models to represent its 

monsoon better, in order to improve forecast and 

gain skill that was known to be possible to achieve, 

the MM program was launched in 2012. In less than a 

decade, fueled by leaps in HPC and its use by creative 

researchers in league with motivated institutions, the 

successful implementation of the Monsoon Mission 

resulted in the following achievements:

• A high-resolution global coupled model is now 

issuing operational seasonal forecasts of Indian 

summer monsoon rainfall with high skills (>0.6) 

over the Indian land region (Fig. 6, Table 2).

• A new operational extended-range coupled predic-

tion system yields prediction skills comparable 

with the leading operational centers in the world 

(Fig. 2b).

• A very high-resolution probabilistic short-range 

prediction system based on GEFS (~12.5 km, 

Table 2) and a deterministic GFS (semi-Lagrangian 

at 12.5 km) are providing skillful forecasts.

• A strongly coupled data assimilation system based 

on LETKF has been set up and is being optimized 

to provide better initial conditions for the opera-

tional models.

• Numerous model developmental activities have 

been carried out, not only to reduce the systematic 

model biases but also to improve the prediction 

skill of the monsoon weather and climate.

• Phenomenological studies have illuminated pro-

cesses from mixing to MISOs from both observa-

tional and model perspectives.

• Development of ESM for climate projections.

A comparison of the resolution of MM models 

with those operational at leading climate research 

centers is tabulated in Table 2. The MM project 

supports its motivating hypothesis that the skill of 

seasonal prediction of ISMR cannot only approach 

old potential predictability estimates, but also raise 

that ceiling through estimating PPL with improved 

models. Specifically, within a span of 7 years, MM has 

brought the skill of ISMR prediction to 0.71, which is 

above the older PPL estimate of 0.65. ISMR is much 

more potentially predictable, and that potential is 

achievable.

Beyond the aforementioned developmental activi-

ties of the MM, operationalization of a state-of-the-art 

dynamical seasonal prediction system (~38-km atmo-

spheric resolution), an extended-range prediction sys-

tem for active and break spells (~110-km atmospheric 

FIG. 7. River water from the Ganga–Brahmaputra (blue colors) in a map of sea surface salinity (SSS) 

from the SMAP satellite on 15 Aug 2015. When monsoon winds are low, river water is moved by the flow 

between two mesoscale ocean eddies (current vectors; gray). The 30.5-psu contour moves by nearly 

200 km in 6 days (speed = 0.35 m s–1) between 15 Aug (red contour) and 21 Aug 2015 (black contour).
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resolution), a high-resolution ensemble prediction 

system (~33-km resolution), and a very high-resolution 

deterministic prediction system (~12.5-km resolu-

tion) for short- and medium-range weather took place 

together with the development of an ESM. Monsoon 

Mission was launched in the country at a time when 

the monsoon research community in India did not 

have access to significant HPC resources or dynamical 

models for research. Basic monsoon research was be-

ing carried out by various centers across India without 

proper coordination or focus. Therefore, a big chal-

lenge was to procure HPC resources and dynamical 

models to conduct research. The most important step 

was to identify the systematic biases in the model that 

are important at the different time scales in which we 

were interested. After the identification of system-

atic biases, the major challenge was to reduce them. 

Reduction in dry bias resulted from an increase in the 

atmospheric model resolution. However, this change 

resulted in slightly warm bias in tropical ocean basins. 

Similarly, changes to convection parameterization 

schemes resulted in an improvement in the mean 

monsoon rainfall but also resulted in a cold SST bias 

in tropical ocean basins. Therefore, the challenge has 

been to keep the systematic biases in ISMR simula-

tion to a minimum. Another aspect of MM has been 

to improve the space–time characteristics of MISOs, 

as they are expected to provide twofold benefits of 

improving the skill of extended-range prediction as 

well as that of the seasonal prediction. Compared 

to the base version of the model, the various model 

development activities have shown improvements in 

space–time characteristics of MISOs and reduction 

in dry bias over land at various levels, vindicating our 

hypothesis. It was also important for the prediction 

system to be self-sufficient. Setting up an in-house data 

assimilation system was intended in this direction. 

Various parameterization schemes were developed 

using the observations collected in other regions of the 

globe. MM identified the importance of atmospheric 

and oceanic observational studies in Indian region to 

improve these parameterizations. Therefore, various 

observational programs were supported to understand 

physical processes. This success is only the beginning: 

there remains considerable scope for improving the 

predictions systems and India now has the talent and 

capabilities to be globally competitive in that quest. 

Therefore, continuous and dedicated work would be 

required to keep upgrading the prediction systems in 

the future.

This success required cooperation between opera-

tional entities and R&D institutes within the MoES, 

as well as academic efforts from national and inter-

national grant projects totaling hundreds of scientists 

and staff. These institutions with different primary 

mandates came together to work closely to achieve 

the objectives of MM.

Based on this success, MoES has launched the 

second phase of the MM in 2017, with a focus 

on predicting extreme weather and climate and 

advancing applications.
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