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PRACTICAL NUMERICAL ALGORITHMS

MONSTER MATRICES: THEIR EIGENVALUES

AND EIGENVECTORS

Ernest R. Davidson

Very large matrices are increasingly used in science and
engineering, so practical numerical algorithms for
determining their properties are continually being devel-
oped. It is becoming common to work with matrices
having a dimension N of 1 000 000 or more, and therefore
possibly containing as many as 10'* matrix elements, in
applications such as solving networks of differential
equations, determining the lowest vibrational modes of
mechanical structures, and finding the eigenvalues and
eigenvectors of quantum systems.

In many applications, constraint conditions (such as
interconnection limitations in mechanics) make the
matrix diagonal and sparse. Technically speaking, in a
sparse matrix the number of nonzero elements is propor-
tional to N rather than to N2 In quantum mechanical
applications to the many-body problem, the matrix is not
sparse in this sense, but typically fewer than 5% of the ma-
trix elements will be nonzero. This mitigates—but does
not resolve—such problems as holding the nonzero
elements in memory; for N = 10° at a sparsity of 1% there
are still 10" elements.

If the matrix is symmetric and real in addition to be-
ing sparse, a saving of a factor of 4 in storage is achieved,
and real (rather than complex) arithmetic produces a
speedup by a similar factor. Further, if eigenvalues and
their eigenvectors are needed, only the lowest 50 or so of
the N possible solutions may be of interest, corresponding
to the lowest vibrational frequencies of a structure or to
the lowest energy levels of a molecule or nucleus. Within
these simplifications, a vast array of techniques has been
developed for particular patterns of sparsity, as described
{(for example) in Refs. 1-3. Appendix D of Ref. 2 shows
many pictures of sparse matrices.

Our aim in this column is to describe how large
nonsparse matrices can be handled efficiently and to show
that computer hardware—especially storage and its
access—is a large determinant of the practicality of
implementation. The method discussed here was original-
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ly developed in the context of the quantitative solution of
the many-body problem in quantum mechanics, for which
the Rayleigh-Ritz variational method* is frequently used
to obtain an approximate expansion of the wave function
in an arbitrary set of functions. When large sets of
expansion functions are used, the computation is reduced
to finding a few eigenvalues and eigenvectors of a large
matrix.

Monster Hamiltonian matrices

Just as hydrogen is ubiquitous in the universe and its
electronic structure is the paradigm for quantum mechan-
ics of atoms, so water encompasses the earth, and the
electronic structure of H,O is the testing ground for
calculations of the electronic structure of molecules. For
bound states the Hamiltonian matrix elements are both
real and symmetric. In 1981, matrices for up to 256 473
configurations of the ten electrons in H,O could be
handled.® By 1990, dimensions of more than one billion
were achieved® by using an extension of the Davidson—Liu
algorithm described below.

Typically, the matrices that are encountered have
many zero matrix elements, but these zeros are randonly
distributed, and their number is proportional to the square
of the matrix dimension. Consequently, sparse-matrix
methods that rely on the bandedness of the matrix are of
limited use, whereas the algorithms to be described apply
Jjust as well when the matrix is fully nonzero, albeit at the
cost of storage and execution time.

The Davidson~-Liu algorithm

We now outline an algorithm first described by the
author,” modified by Liu® to reduce computational
bottlenecks, and subsequently improved by Murray,
Racine, and Davidson.” The matrix eigenvalue problem
may be written as

Hck =/{kck, k = 1,...,K, (1)

where the Hamiltonian matrix H is assumed to be real and
symmetric, and the eigenvalues A, are numbered in
increasing order. The number of eigenvalues desired X is
generally less than 50, while the matrix dimension N may
be very large. In the Raleigh-Ritz method for solving the
Schrodinger equation, the eigenvalues of the matrix are
upper bounds to the corresponding exact eigenvalues, and
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the vectors ¢, give the coefficients in series expansions of
the wave functions in the set of expansion functions.

For matrices of low dimension (such as N < 150),
there are efficient methods for finding all the eigenvalues
and eigenvectors. For example, the Householder-QL-
Wilkinson modification'® of the Givens method is built
into the EISPACK routines'' and is routinely used. The
computation time for any of these methods grows as N?
and the memory requirement grows as N 2. There is then
little advantage to limiting K to be much less than . In
the algorithm to be described for large matrices, an
efficient procedure for finding all the eigenvalues and
eigenvectors of small submatrices is assumed to be
available.

Clearly, matrices of dimension exceeding 10° cannot
be stored in the central memory of most computers. If the
number of nonzero elements does not exceed 10% it is
usually possible to store the matrix on disk. For even
larger matrices, the matrix cannot be stored, and its
elements must be recomputed as needed. In any case,
relatively few matrix elements are available at any time in
central memory, and usually these are most conveniently
produced in an order very different from any standard
pattern for storing matrices. Consequently, the only
matrix-arithmetic operation that is easily performed is a
matrix—vector product. For example, given the column
vector x, we may produce vector y, having elements y,

that are given by

N
yi= z Hyx; 2)

ji=1
because its computation can be formulated as:

(A) Clear all of y to zero.

(B) Fetch some elements of H into memory along
with their i indices.

(C) For each H in memory, sequentially replace y,
by y; + H;x;.

(D) Repeat from step B until all nonzero elements
of H have been processed.

This procedure can process the matrix elements in
any order. For a serial computer, the computer time is di-
rectly proportional to the number of nonzero matrix
elements. Parallel processing can speed up the arithmetic
involved in Eq. (2), because different blocks of H can be
processed in different CPUs and the partial sums can be
combined at the end.

All methods that have been suggested for the large
matrix problem can be viewed as variants on one basic
idea: An intermediate set of vectors is established in terms
of which the actual eigenvector can be expanded. If this in-
termediate set of vectors {b,; p=1,..,P} is cleverly
chosen, then the expansion for x, to the true eigenvector
¢, expanded in the form

P
X, = 2 bpapk (3)

p=1

will converge to ¢, even when P is much less than N and
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when {b} is a very incomplete set of basis vectors. If these
basis vectors are organized as the columns of a matrix B,
and the expansion coefficients are placed in a column
vector a,, then the variational approximation to the
solution of the matrix eigenvalue problem (1) in the
subspace becomes

B'HBa, = ufB"Ba,, k=1,..,P, (4)
in which the superscript T denotes matrix transpose. If the
eigenvalues u; of this reduced problem are numbered in
increasing order then, by the Hylleraas—-Undheim-Mac-
Donald variational principle'? (which states that as the
size of the basis increases, each eigenvalue tends to the
true eigenvalue), the eigenvalues of the original problem
(1) satisfy

Ay <pl, k=1,.P. (5)

Further, if {b} is simply augumented by an additional
vector, then

uf <t~ k=1,.,P—1. (6)

Hence, a general strategy is possible in which the
eigenvalues {uf;k = 1,..K;P= K,K + 1,...} form mono-
tonic nonincreasing sequences that converge to the desired
exact eigenvalues {A,;k=1,..K}.

If x, is an approximation to ¢, then the correction
8, =¢, —x, is given by solving

l’k e (H —ikl)xk,

(H—1,1)5, = —r,. (7

The correction 8, may be approximated by replacing 4,
by the Rayleigh quotient

pi = X HX, /%%, (8)

and approximating the inverse of (H—p,1) by
(D —p,1)~', where D is the diagonal of H. Thus,

8.~ — (D—p, 1) 'r,. (9)

Simply adding 8, to x, to get a new estimate of ¢, is found
not to work well. If, however, x, is the result of a
variational calculation in a subspace B, as described
above, then 3, is a good choice for the next addition to
{b}. This procedure is iterated until a suitable conver-
gence criterion is met. In the original paper by Davidson,’
only one vector was added to B at each iteration. The
modification suggested by Liu® was to add a correction
vector for each desired root on each iteration. In practice,
due to limitations in computer memory, a compromise is
made, and corrections to as many vectors as possible are
added each time.

The basic algorithm based on these concepts is
outlined in Box 1. In this algorithm, it is assumed that {b}
is orthonormal, so that B"B is a unit matrix. Also it is as-
sumed that the vectors in {b} and the vectors in {h} given
by

h, = Hb

P P

(10)



from previous iterations are retained on disk, and the new
ones for the current iteration are retained in memory.
Computer memory is assumed to be adequate for holding
J vectors plus additional small arrays. If 2K <J then the
number Q of additional b vectors added on each iteration
will be K. Otherwise, only Q = J /2 additional b vectors
can be included each iteration.

For large matrices most of the computer time is used
in step F of Box 1. Notice that this is the only step requir-
ing access to the H matrix, and it is needed here just to
form matrix—vector products. In particular, the residuals
in step C are formed without reference to H by using the
{b} and {h} sets of vectors. The truncation in step D is
also formulated entirely in terms of linear transformations
and scalar products involving these sets of vectors.

Step B requires computer time proportional to P>,
and step C requires time and data storage proportional to
NP. Hence, it is important that a limit be set on P so that
these time requirements remain small compared to the
time needed in step F, and so that the data storage for {b}
and {h} does not exceed the space available on disk.

The truncation procedure to 2K vectors in step D is
almost equivalent to the conjugate gradient method®
when the eigenvalues are nearly converged. Hence,
frequent truncation does not slow convergence of the
eigenvector once the eigenvalue is close.

The Lanczos algorithm

The other algorithm commonly used for large matrices is
due to Lanczos,"? also described in Chap. 13 of Ref. 1. In
this method, the {b} vector space is chosen to span the
same space as the set {H” ~'g; p = 1,...,P} for some fixed
arbitrary vector g. This sequence of vectors is known as
the Krylov space (Ref. 1, Chap. 12). Sequential orthogon-
alization gives the set actually used by Lanczos. The major
advantage of the Lanczos method is that the matrix
B HB is tridiagonal, which simplifies finding the eigen-
values. Also, a simple recursion relation for B"HB can be
found, so that the eigenvalues (but not the eigenvectors)
can be found without storing all of {b}. Although this ap-
pears at first sight to be very different from the method
discussed above, the two methods are closely related in
one special case. [For more on the Lanczos method, see
Computers in Physics, Jul/Aug 1993, p. 400—FEd.]

If the Davidson algorithm is initialized with the
Krylov space for p = 1,...,K, if the denominator is omitted
in step E, and if truncation is not done, then the two meth-
ods are identical. In this case, when {b} contains P
vectors, all the residuals r, are contained in the space
spanned by {b} plus the additional vector H'g. The
dimension of {b} is therefore increased by only one at each
iteration, even when Q= K. Further, the residuals are
easily shown to be the gradients of the Rayleigh quotients
(8), which are vectors composed of the derivatives of the
Rayleigh quotient with respect to the components of x,.
The Lanczos method is thus equivalent to a gradient
method for all eigenvalues. By contrast, the Davidson-Liu
method is a Newton—Raphson method with an approxi-
mation to the matrix of second derivatives. Whereas a
gradient procedure will always proceed to an optimum, it

is a first-order method. A true Newton—Raphson step, by
contrast, has only second-order errors and will converge
much more rapidly once the algorithm is close to a
solution. The relative rates of convergence of the two
methods, therefore, depend on the error at any stage and
the improvement gained by use of an approximate second-
derivative matrix.

There is also a variant of the Lanczos method that be-
gins with an arbitrary set of vectors {g,; p = 1,....K} and
forms the sequence H*{g}. This is known as the block-
Lanczos method and is similar to the Davidson-Liu
method in its use of blocks. There also exists a variant of
the Lanczos method that occasionally truncates and
restarts with the current estimate of the eigenvectors as
the initial set {g}. This is usually called subspace iteration
(Ref. 1, Chap. 14). Thus, the Davidson-Liu and Lanczos
methods differ essentially only in the use of the energy de-
nominators in step E.

Table I: Comparison of algorithms for very large matrices, sizes
108 x 108 for the first three matrices, and dimensions 4'° and 48 for
the last two. Variants of the Davidson-Liu algorithm are A and B, and
the Lanczos method is C. The required number of products of matri-
ces with vectors is given in the rightmost column.

Number Number of Number of
Matrix Method? of roots iterations products
Vn A 1 5 5
C 1 6 5
A 5 20 72
B 5 20 70
n A 5 5 21
B S 6 24
C 1 >50
n’ A 5 4 17
B 5 4 18
C 1 >350
4'0 B 1 12 12
4% B 3 26 58

2Methods: (A) Initial {b,; p=1,....K} obtain by diagonalizing the
10 10 matrix containing lowest 10 diagonal elements. (B) Initial
{b,; p=1,..K] contains unit vectors corresponding to lowest K
diagonal elements. In both cases {b} was truncated to 2K vectors
when dimension reached 25 for the first 3 matrices, and 19 for the
last two. (C) Lanpzos algorithm.

Comparing Davidson-Liu and Lanczos
methods

We now compare these two algorithms for the lowest
eigenvalues and eigenvectors of some monster matrices.
Table I compares for three sparse matrices the Lanczos
method with variants of the Davidson-Liu method. These
matrices are of dimension 10° and have off-diagonal
elements equal to either 0 or — 1. The nonzero values oc-
cur for i<10 or j<10, or for |i—jl<2 or
|i —j] <10° — 12, inclusively. Although these test matri-
ces are not particularly similar to those in quantum
applications, they were chosen to give well-defined
matrices that could be tested later by other researchers
using methods yet to be invented. The nonzero elements
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Box 1: The Davidson-Liu algorithm for estimating the lowest
eigenvalues and eigenvectors of very large matrices.

Step A: Initialize {b} as unit vectors {e, (p),p = 1,...,K} correspond-
ing to the K lowest diagonal elements of H. Initialize {h,,} as
{He, (p)} which are just the corresponding

columns of H. Initialize: (B"HB)pg as H, (p)j(g).

Step B: Get eigenvalues u and eigenvectors a of B"HB.

Step C: Form residuals r, = 2(h, —p, b, )a,,. Test for conver-
gence. Stop if all are converged. Else select up to Q residuals of
maximum norm for improvement.

Step D: Check if addition of Q vectors to {b} would exceed practical
limits on the size of this set. If so, replace the set with current

{xf; k= 1,...,K}. If limits on the set size permit, also retain in the
new {b} unconverged members of {x! '; k = 1,...,K} orthogona-
lized to {x[}. Replace {h} by the corresponding hi*™™ = Zh3"f,,,
where the new {b} is related to the old set by the transformation
coefficients f,,, and replace (B" HB)pg by the new bgh, .

Step E: For each of the Q vectors targeted for improvement form &,
asd, =d ;'ry, whered, = |D, —p,|for D, — p,|>e€>0and

d,, = esign(D, — p, ) otherwise. Orthogonalize this set of 8, to

the previous {b} and to each other and append them to {b}.

Step F: Form h = Hb for each of the added b and append these to
{h}. Border B” HB by the additional rows and
columns formed from the added b and all of the h.

Step G: Iterate to step B.

occupy only a fraction of ~3X 107° of the 10'* elements.
The diagonal element H,,, for the three cases were chosen
to be (a) V/n, (b) n, or (¢) n°. For matrix dimension ¥,
these give second-order perturbation estimates of the
lowest eigenvalue that (a) diverge as v/, (b) diverge as
In(N), and (c¢) converge. The last case is most favorable
for the algorithm discussed here. The least favorable case
for this algorithm would be constant diagonal elements,
where this method (for a single root) is just an awkward
implementation of the Lanczos method. Second-order
perturbation in this case would diverge as N, and
convergence (not shown in the table) is a little slower
than in case (a).

The last two matrices in Table I were formed as direct
products of 4 X 4 matrices to give nonsparse matrices of
dimension 4'° = 1 048 576 and 4® = 65 536, respectively.
Details of these matrices, which have a much higher
fraction of nonzero elements than in (a)—(c), are given in
Ref. 9. All matrices were regenerated at each iteration.
Matrices (a)-(c) were relatively fast to generate, while
regeneration of the direct-product matrices took most of
the computing time. These last two cases are more typical
of many applications, where generating the matrix is
relatively slow compared to a matrix—vector product.

The Lanczos method performed poorly for all
matrices except case (a). It was abandoned for cases (b)
and (c) after 50 iterations did not produce a single
converged eigenvalue. Similarly, it was abandoned after
10 iterations for the 4'° dimension matrix because there
was little progress toward convergence.
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The algorithm described in Box 1 is labeled B in
Table I. In most cases it produces the fewest accesses to
the H matrix and is preferable when access to the matrix is
time-limiting. Adding only one vector at a time to {b} pro-
duces fewer matrix—vector products, but more total
iterations. Restarting {b} with only the current guesses of
the eigenvectors, rather than the last two guesses, slows
convergence by about 10%. Starting with an improved
initial guess for {b} obtained by diagonalizing a larger
submatrix of H, shown in the table as case A, produces
only a small savings.

Several implementations of variants of this method
have been published, with a recent one being Ref. 14,
where vectorization of the method—with modifications
for atomic structure calculations—for Cray X-MP and
Alliant FX/8 computers is described. Very significant
speedups are produced by using the Davidson-Liu
algorithm rather than traditional full-matrix eigenvalue
methods.

From this brief discussion of eigenvalue methods for
very large matrices, we see that there are many ingenious
methods for handling them. As affordable computer
memory and speed continue to increase, and as computer
systems for simultaneous processing develop, we can look
forward to being able to solve conveniently and efficiently
many problems involving monster matrices.
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