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Abstract
Monte Carlo methods have become important in analysis of nonlinear inverse
problems where no analytical expression for the forward relation between data
and model parameters is available, and where linearization is unsuccessful.
In such cases a direct mathematical treatment is impossible, but the forward
relation materializes itself as an algorithm allowing data to be calculated for
any given model.

Monte Carlo methods can be divided into two categories: the sampling
methods and the optimization methods. Monte Carlo sampling is useful when
the space of feasible solutions is to be explored, and measures of resolution and
uncertainty of solution are needed. The Metropolis algorithm and the Gibbs
sampler are the most widely used Monte Carlo samplers for this purpose, but
these methods can be refined and supplemented in various ways of which the
neighbourhood algorithm is a notable example.

Monte Carlo optimization methods are powerful tools when searching
for globally optimal solutions amongst numerous local optima. Simulated
annealing and genetic algorithms have shown their strength in this respect, but
they suffer from the same fundamental problem as the Monte Carlo sampling
methods: no provably optimal strategy for tuning these methods to a given
problem has been found, only a number of approximate methods.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

About a hundred years ago, it was recognized that integrals of the form

I =
∫
X

h(x) f (x) dx (1)
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where h(x) and f (x) are functions for which h(x) f (x) is integrable over the space X , and
f (x) is a non-negative valued, integrable function satisfying∫

X
f (x) dx =1 (2)

could, in principle, be evaluated numerically by generating random samples x1,x2, . . . ,xN

of x using f (x) as a probability distribution (see, e.g., Housholder (1951)). An approximation
to the integral could then be calculated as

I ≈ 1

N

N∑
n=1

h(xn). (3)

Practical use of this method has today become a reality through application of Monte Carlo
algorithms running on high-speed computers. Monte Carlo methods are numerical processes
that produce so-called pseudo-randomnumbers, that is, a series of numbers that appear random
if tested with any reasonable statistical test. The basic operation of a Monte Carlo algorithm
is generation of pseudo-random numbers uniformly distributed over the interval [0, 1]. Once
such a sample xi is produced, it can be transformed into a pseudo-random sample from any
given one-dimensional probability distribution f (x), using simple rules.

As long as we work in one dimension, the Monte Carlo method is inefficient, and hence
not a useful alternative to more direct methods for numerical evaluation of (1). If however, x
belongs to a high-dimensional space, the Monte Carlo method may become the only feasible
method. All other numerical methods, using N points x1,x2, . . . ,xN in an M-dimensional
space X to produce an approximation to, e.g., (1), have an absolute error that decreases no
faster than N−1/M , whereas the absolute error of the Monte Carlo method decreases as N−1/2,
that is, independent of the dimension of the space (see, e.g., Fishman (1996)).

The history of Monte Carlo methods is long, but their application to the solution of
scientific problems begins with von Neumann, Ulam and Fermi who used a Monte Carlo
method in nuclear reaction studies. The name ‘the Monte Carlo method’ was first used by
Metropolis and Ulam (1949), and 4 years later Metropolis et al (1953) published their Markov
chain-based algorithm for (asymptotic) sampling of Gibbs–Boltzmann distributions in high-
dimensional spaces. This algorithm, now known as the Metropolis algorithm, was in fact
the first major scientific algorithm to be run on a digital computer. It was a biased random
walk whose individual steps (iterations) were based on very simple probabilistic rules. One
important feature of the Metropolis algorithm was that full information on the distribution
p(x) to be sampled was unnecessary: as long as ratios p(xi)/p(x j) between the value of p
at any two selected points, xi and x j , could be calculated upon request (by some numerical
procedure), the algorithm worked.

Monte Carlo methods are becoming increasingly important for the solution of nonlinear
inverse problems in two different, but related, situations. In the first situation we need a
near-optimal solution (measured in terms of data fit and adherence to given constraints) to the
problem. In the second situation, the inverse problem is formulated as a search for solutions
fitting the data within a certain tolerance, given by data uncertainties. In a non-probabilistic
setting this means that we search for solutions with calculated data whose distance from
the observed is less than a fixed, positive number. In a Bayesian context, the tolerance
is ‘soft’: a large number of samples of statistically near-independent models from the a
posterior probability distribution are sought. Such solutions are consistent with data and
prior information, as they fit the data ‘within error bars’, and adhere to ‘soft’ prior constraints
given by a prior probability distribution.

Early examples of the solution of inverse problems by means of Monte Carlo methods
are abundant in geophysics and other disciplines of applied physics. Since Keilis-Borok and
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Yanovskaya (1967) and (Press 1968, 1970a) made the first attempts at randomly exploring the
space of possible Earth models consistent with seismological data, there has been considerable
advances in computer technology, and therefore an increasing interest in these methods.
Geman and Geman (1984) applied simulated annealing to Bayesian image restoration, and
derived an expression for the posterior distribution from the prior distribution, a model of
the image blurring mechanism, and a Gaussian noise model. Through an identification of
the posterior distribution with a Gibbs–Boltzmann distribution, they estimated a maximum
a posteriori model, using a simulated annealing algorithm. In their paper, they suggested
using the Metropolis algorithm, not only for maximum a posteriori estimation, but also to
sample the posterior distribution. This idea was taken up by Rothman (1985, 1986) who was
the first to employ importance sampling to solve a strongly nonlinear (that is, a multi-modal)
optimization problem arising in seismic reflection surveys. Later, Cary and Chapman (1988),
Landa et al (1989), Mosegaard and Vestergaard (1991), and Koren et al (1991) applied Monte
Carlo methods to seismic waveform fitting.

Cary and Chapman (1988) used the Monte Carlo method to analyse the seismic waveform
inversion problem in a Bayesian formulation. Waveforms and travel times from source to
receiver were used as data, and the model parameters defined a horizontally stratified Earth
with depth as a function of the seismic wave propagation velocity. They improved efficiency of
the sampling through a method described by Wiggins (1969, 1972) in which the model space
was sampled according to a prior distribution ρ(m).

Marroquin et al (1987) adopted an approach similar to that of Geman and Geman. How-
ever, they used the Metropolis algorithm to generate samples from the posterior distribution,
from which they computed model estimates.

Recent examples of using Bayes theorem and the Metropolis algorithm for calculating
approximate a posteriori probabilities for an inverse problem are given by Pedersen and
Knudsen (1990), Koren et al (1991), Gouveia and Scales (1998), Dahl-Jensen et al (1998),
Khan et al (2000), Rygaard-Hjalsted et al (2000), and Khan and Mosegaard (2001).

Not all Monte Carlo inversion adopted the Bayesian viewpoint. The initial introduction
of Monte Carlo techniques into geophysics by Keilis-Borok and Yanovskaya (1967) and Press
(1968, 1970a) was concerned with only uniform sampling of a parameter space, without taking
a Bayesian approach. These papers generated considerable interest, and also a debate over how
to interpret the resulting ensemble of Earth models, especially when extra constraints were
imposed, Haddon and Bullen (1969), Anderssen (1970), Anderssen and Senata (1971, 1972),
Anderssen et al (1972), Wiggins (1972), Kennett and Nolet (1978). In addition, uniform
random search techniques have been used for model optimization in geophysical inversion
(again without invoking Bayesian principles). Notable examples include: estimation of
seismic attenuation structure in the Earth, Burton and Kennett (1974a, 1974b), Burton (1977);
seismic surface wave attenuation studies, Biswas and Knopoff (1974), Mills and Fitch (1977);
estimation of seismic and density structure, Worthington et al (1972, 1974), Goncz and Cleary
(1976), Kennett (1998);magnetotelluric studies, Jones and Hutton (1979); estimation of mantle
viscosity, Ricard et al (1989); and plate rotation vectors, Jestin et al (1994).

Most of the applications of genetic algorithms (Holland 1975) within geophysical inverse
problems are also non-Bayesian. That is, they are Monte Carlo techniques that generate an
ensemble of samples from a parameter space, which must then be made use of in some way.
The introduction of genetic algorithms into geophysics occurred in the early 1990s (Stoffa and
Sen 1991, Gallagher et al 1991, Wilson and Vasudevan 1991, Sambridge and Drijkoningen
1992, Scales et al 1992, Sen and Stoffa 1992, Smith et al 1992). They have since been applied
to a wide range of geophysical problems. (Many references on geophysical applications
can be found in Gallagher and Sambridge (1994) and Sambridge and Mosegaard (2001).)
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More recently a new class of ensemble-based Monte Carlo search technique known as a
neighbourhood algorithm (Sambridge 1999a) has been developed for geophysical inverse
problems. This approach follows a non-Bayesian approach for sampling of a parameter space,
but can be used within a Bayesian formulation for analysing the resulting ensemble (Sambridge
1999b).

Monte Carlo methods are essentially practical tools for dealing with (usually complicated)
probability distributions, and this is the main reason for their usefulness in inverse problem
analysis. Solutions m to inverse problems can usually be described by a function f (m) over
the model space, measuring the model’s ability to fit the data and/or given a priori constraints.
In this paper, we will call f (m) the fitness function, a term borrowed from the theory of genetic
algorithms.

In Bayesian inversion the fitness function is the so-called posterior probability distribution
given by

f (m) = C f L(m)ρ(m) (4)

where C f is a normalization constant, L(m) is a likelihood function and ρ(m) a prior
probability distribution. The likelihood function is usually of the form

L(m) = CL exp(−S(m)) (5)

where CL is a constant, and S(m) is a misfit function, measuring the deviation of the observed
data from the data calculated from m. The prior distribution assigns a data-independent weight
to m depending on how acceptable it is according to other available information.

In a non-probabilistic context, the function may be an indicator function describing which
models are acceptable according to data, and which are not. For instance, for a given positive
constant S we may define

f (m) =
{

1 if S(m) � S

0 if S(m) > S.
(6)

As mentioned in the introduction, another way of using Monte Carlo methods for analysis
of inverse problems is for model construction, that is, finding a set of model parameters that,
in some sense, gives a (near-) optimal fit to data and prior information. Model construction is
an optimization problem, which in a Bayesian context can be formulated as a search for the
model(s) where f (m) attains its maximum. In a non-probabilistic context, the problem can
be formulated as a search for the minimum of the misfit function S(m).

Theoretically, the model construction problem can be viewed as a special case of the more
general sampling problem: sampling, e.g., a likelihood function (5), where we have artificially
decreased the standard deviation of the data uncertainties, corresponds to minimizing the misfit
S(m). We shall therefore begin the next section with a review of the essential Markov chain
sampling theory. Later we will specialize this to cover the model construction problem. The
heuristic methods, simulated annealing and genetic algorithms, designed to improve the speed
of model construction will then be covered. This order of presentation is not in accordance
with the historic development, but it reveals some of the fundamental strengths and weaknesses
of the Monte Carlo methods, and hopefully points in directions where future research efforts
should be made.

2. Monte Carlo methodology

Monte Carlo methods are natural when solving inverse problems within a purely probabilistic
framework. The reason for this is the following: the fundamental building blocks of the
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theory are probability densities, and these objects can be viewed mathematically as limits of
histograms (normalized, and with vanishing column widths) generated by a random process,
e.g., a Monte Carlo algorithm. For this reason, any probability distribution can be represented
by a group of Monte Carlo algorithms, namely the Monte Carlo algorithms that sample it.
On the other hand, to every Monte Carlo algorithm there is a probability distribution, namely
the one that it samples. Most conceivable operations on probability densities (e.g., computing
marginals and conditionals, integration, combining independent information, etc) have their
counterparts in operations on/by their corresponding Monte Carlo algorithms. In this way,
Monte Carlo algorithms provide a way of manipulating probability densities—even densities
that cannot be expressed mathematically in closed form.

Our first task will be to describe which distribution is sampled by a given Monte Carlo
algorithm, and how a Monte Carlo algorithm can be made to sample a prescribed probability
distribution.

2.1. Sampling known one-dimensional probability distributions

If random rules have been defined to select points such that the probability of selecting a point
in the volume element dx1 . . . dxN is p(x)dx1 . . . dxN , then the points selected in that way are
called samples of the distribution p(x). Depending on the rules defined, successive samples
xi ,x j ,xk, . . . , may be dependent or independent.

Before going into more complex sampling situations, let us briefly review a few methods
for sampling a probability distribution that is ‘completely known’ in the sense that it can be
described by an explicit mathematical expression. Two important methods are given below
(formulated for a probability distribution over a one-dimensional space).

Method 1. Let p be an everywhere nonzero probability distribution with distribution function
P , given by

P(s) =
∫ x

−∞
p(s) ds, (7)

and let r be a random number chosen uniformly at random between 0 and 1. Then the random
number x generated through the formulae

x = P−1(r) (8)

has probability distribution p.

More special, yet useful, is the following way of generating Gaussian random numbers.

Method 2. Let r1 and r2 be random numbers chosen uniformly at random between 0 and 1.
Then the random numbers x1 and x1 generated through the formulae

x1 =
√

−2 ln r2 cos(2πr1) (9)

x2 =
√

−2 ln r2 sin(2πr1) (10)

are independent and Gaussian distributed with zero mean and unit variance.

These theorems are easily demonstrated, and straightforward to use in practice. They can
be extended to higher dimensions.
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2.2. Sampling ‘unknown’ probability distributions

For most practical inverse problems, the model space is so vast, and evaluation of the fitness
function f (x) is so computer intensive, that only algorithms which evaluate f (x) once (or
only a few times) in each iteration, are useful. In such cases we will say that, for the algorithm,
values of f (x) ‘are only available on request’.

If p(x) is a multi-dimensional probability distribution over X whose values are only
available on request, it is still straightforward to design a random walk that samples it. Imagine,
for instance, that we have a number M satisfying

M � max(p(x)). (11)

Then, the following algorithm will sample p(x).

Algorithm 1 (the primitive algorithm). In the nth step of the algorithm, choose a candidate
sampling point xcand,n randomly (using a uniform distribution over the sampling space) but
accept it only with probability

paccept = p(xcand,n)

M
. (12)

The set of thus accepted candidate points are samples from the probability distribution p(x).

However, this algorithm would not be useful in practice, because in many problems p(x)
could have narrow maxima, (which contribute significantly to integrals over p(x)), but are
sampled rarely (or not at all) when only a limited number of samples can be taken. One of the
things that slows down the primitive algorithm is that the ratio

p(x)

M
(13)

is very small almost everywhere in X , especially when p(x) has large values only in a small
part of the space X , and hence the likelihood of acceptance is very small.

The Metropolis algorithm, an example of an importance sampling algorithm, works
around this problem by comparing p(xcand,n), not with a large number M , but with the smaller
number p(xcurrent,n), where xcurrent,n is the current point being visited. The probability of
accepting the candidate point xcand,n in the Metropolis algorithm is

paccept =



p(xcand,n)

p(xcurrent,n)
when p(xcand,n) � p(xcurrent,n)

1 otherwise.
(14)

Furthermore, in this algorithm xcand,n is often chosen from a relatively small neighbourhood
around xcurrent,n so as to further reduce the chance that the ratio p(xcand,n)/p(xcurrent,n) is
small.

Importance sampling allows us to sample the space with a sampling density proportional to
the given probability density,without excessive (and useless) sampling of low-probability areas
of the space. This is not only important, but in fact vital in high-dimensional spaces, where
a very large proportion (approaching 100%) of the volume may have near-zero probability
density. Figure 1 illustrates the superiority of the Metropolis algorithm over the primitive
algorithm, even in a one-dimensional example.

3. Sampling through random walks

In the following, we shall describe the essential properties of random walks performing
importance sampling.
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Original distribution

Primitive algorithm after 1000 iterations

Metropolis algorithm after 1000 iterations

Figure 1. A probability distribution (top) were sampled 1000 times by the primitive algorithm
(middle) and the Metropolis algorithm (bottom). The superiority of the Metropolis algorithm over
the primitive algorithm is seen even in this one-dimensional example. In the Metropolis case all
1000 iterations yielded a sample contributing to the final result, whereas for the primitive algorithm,
only 42 samples were accepted for histogram building.

A random walk is a Markov chain. This means that the probability of moving from a point
xi to a point x j in the space X in a given step (iteration) is independent of the path travelled
by the ‘walker’ in the past. Let us define the conditional probability distribution Pi j(xi |x j) of
visiting xi , given that the walker currently is at point x j . We will call Pi j(xi |x j) the transition
probability distribution, and for simplicity in the following we will drop the double subscript
and write P(xi |x j). P is a probability distribution with respect to its first argument, so we
have ∫

X
P(xi |x j) dxi = 1. (15)

As a special case, P may be a discrete distribution, in which case we imagine the set of
points x j (i = 1, . . . , J ) to be a discrete, finite subset of X . The random walk we are about
to construct here will then only be allowed to visit points in the considered grid, and P(xi |x j)

will be a discrete distribution over the grid points.
Given a random walk defined by the transition probability distribution P(xi |x j). Assume

now that we have a distribution sn(x) describing the position of the random walker after n steps.
Each step of the random walk will modify this distribution, and if sn(x) → p(x) for n → ∞
we say that p(x) is an equilibrium (or stable) probability distribution for the random walk.
That p(x) is an equilibrium distribution means that if it is the distribution of the position of the
random walker at one time, it remains the distribution of its position after one more step (and
hence, forever). Technically, this can be expressed by the fact that p(x) is an eigenfunction
with eigenvalue 1 of the linear integral operator with kernel P(xi |x j):∫

M
P(xi |x j)p(x j) dx j = p(xi). (16)
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If the random walk, for any initial distribution s0(x), equilibrates to the same distribution p(x),
we say that p(x) is the (unique) equilibrium distribution for P(xi |x j).

The next section describes the basic idea behind importance sampling by the Metropolis
algorithm, which is designed to have any chosen function p(x) as its unique equilibrium
distribution.

3.1. Design of random walks with given equilibrium distributions

A random walk with a given equilibrium distribution p(x)must satisfy the condition that once
the sampling distribution s(x) is equal to p(x) it must remain equal to p(x). This equilibrium
can also be expressed through the following condition.

Condition 1 (microscopic reversibility). The probability, at any time, that the random walker
enters an infinitesimal neighbourhood N j , surrounding the point x j , equals the probability
that it leaves N j .

There are infinitely many ways of satisfying the above requirement. As we shall see in a
later section, the way a genetic algorithm establishes microscopic reversibility (equilibrating
to its unknown stable distribution) is rather complex. In contrast, the Metropolis algorithm
and the Gibbs sampler rely on a very simple principle, summarized in the following condition.

Condition 2 (detailed balance). For any pair of points x j and xi , the probability, at any time,
that the random walker jumps from the infinitesimal neighbourhoodN j , surrounding x j , to the
infinitesimal neighbourhood Ni (of the same volume), surrounding xi , equals the probability
that it jumps from Ni to N j .

From this last principle, an algorithm that has a given distribution p(x) as an equilibrium
distribution can easily be derived.

Consider two points in X , say x j and xi . Detailed balance means that the transition
probability distribution satisfies the following symmetry condition:

P(xi |x j)p(x j) dx j dxi = P(x j |xi)p(xi) dxi dx j (17)

where p(x) is the desired equilibrium distribution, which we will, without loss of generality,
assume to be nonzero everywhere in X .

Equation (17) means that P(xi |x j) must satisfy

P(xi |x j)

P(x j |xi)
= p(xi)

p(x j)
. (18)

There are, of course, infinitely many solutions P(xi |x j) to the above equation, but we shall
try to design an efficient algorithm by keeping the transition probabilities everywhere as large
as possible between pairs of points.

The first question is now: how can we implement an algorithm with transition probability
densities satisfying (18)? The answer to this question is interesting, as it reveals two important,
and conflicting, characteristics of random-walk-based algorithms.

In the so-called Metropolis algorithm, (18) is implemented through two randomized
operations which, together, form an iteration:

(i) The exploration step. The first operation consists of proposing a ‘candidate’ point xi

using a so-called proposal distribution U(xi |x j), where x j is the currently visited point.
The proposal distribution is symmetric:

U(xi |x j) = U(x j |xi), (19)
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but otherwise it is arbitrary, in the sense that its form is chosen before running the algorithm,
and is, in principle, independent of any knowledge on p(x). U(xi |x j) embodies the
‘strategy’ by which the algorithm explores X , when searching for new samples from the
distribution p(x).

(ii) The exploitation step. The second operation is to decide if the candidate point should be
accepted as the next sample. Any acceptance probability of the form

paccept = ψ(xi ,x j )/p(x j), (20)

whereψ(xi,x j ) is a symmetric function, can be used. The simplest acceptance probability
(and the one giving the highest transition probabilities for given U(xi |x j)) is obtained by
puttingψ(xi ,x j ) = min(p(xi), p(x j)). This gives the traditional Metropolis acceptance
probability

paccept =



p(xi)

p(x j)
for p(xi) � p(x j)

1 otherwise.
(21)

If the candidate point is rejected, the current point is repeated (thus counting one more
time). The acceptance probability describes the ‘greediness’ of the algorithm. The smaller
paccept is for p(xi) � p(x j), the more ‘greedy’ the algorithm is.

The above procedure means that

P(xi |x j) = U(xi |x j)paccept (22)

giving

P(xi |x j)

P(x j |xi)
= U(xi |x j)

U(x j |xi)

ψ(xi ,x j)

ψ(x j ,xi)

p(xi)

p(x j)
. (23)

Due to the imposed symmetry (19) on U(xi |x j) and ψ(xi ,x j), equation (23) is the detailed
balance condition (18).

It can be shown (see, e.g., Kaipio et al 2000) that if our transition probability distribution
P(xi |x j), satisfies two particular conditions (in addition to microscopic reversibility), then
p(x)will be the only equilibrium distribution for the algorithm, and so it will converge towards
p(x) no matter what the starting distribution is. The two conditions are:

(i) Aperiodicity. The probability that an iteration of the algorithm results in the trivial move
x j −→ x j is non-zero. That this is clearly satisfied, can easily be seen from the form (21)
of the acceptance probability.

(ii) Irreducibility. It is possible to go from any point x j to any other point xi in X , given a
sufficient number of iterations. It is up to the designer of the proposal distribution to make
sure that this requirement is satisfied.

The majority of Monte Carlo methods used in practice satisfy the above two conditions,and
therefore converge toward (equilibrate at) a unique distribution. In this paper we describe three
algorithms belonging to this category: the Metropolis algorithm (described above), the Gibbs
sampler and the genetic algorithm. The first two algorithms equilibrate at known distributions
(and they are, in fact, designed to equilibrate at these distributions), whereas the equilibrium
distribution of the genetic algorithm, defined in terms of the parameters of the algorithm, has
not yet been found.
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Convergence issues. The second important question is now: How do we maximize the
efficiency of our algorithm? Unfortunately, a definitive answer to this question has not yet
been found, although it is of utmost importance for the practical applicability of the Metropolis
algorithm. The proposal distribution U(xi |x j) embodies the complete search strategy of the
algorithm, so the problem of efficiency can, e.g., be formulated in the following way.

Given a measure of distance dist(p1, p2) in the space of probability densities over X , and
a (usually small) positive number M . Find an irreducible proposal distribution U(xi |x j) that
minimizes the expected number of iterations needed to obtain

dist(s, p) � M, (24)

where s(x) is the sampling distribution and p(x) is the equilibrium distribution. A possible
distance measure can, e.g., be

dist(p1, p2) = max
x∈X

|p1(x)− p2(x)|. (25)

In the special case where X is a discrete space with a relatively small number of points
x j , and the algorithm can be described by a completely known transition probability matrix
P = {P(xi |x j)}, the convergence speed may be estimated through an eigenvalue analysis of
Pi j . However, this situation virtually never occurs in practice. Knowing P completely would
require knowing p(x j) for all j , and in that case the inverse problem is already solved!

Andresen et al (1988) showed that an approximate eigenvalue analysis can be made by
lumping points of similar values of p(x) into a small number of ‘states’ between which tran-
sition probabilities can be estimated empirically. For a given choice of U(xi |x j) an initial run
of the algorithm is used to monitor the frequency of transitions between the lumped states. The
matrix of (normalized) transition frequencies is then used as an approximation to the transition
probability matrix for transitions between lumped states. Finally, the second largest eigenvalue
of this transition probability matrix is used to estimate the relaxation time for the algorithm (the
time taken by the algorithm to reduce the distance between its sampling distribution s(x) and its
equilibrium distribution p(x) by a factor 1/e). The relaxation time is related to the convergence
time we are looking for, although the authors do not explicitly explore this relationship.

Lacking theoretical guidance, it has become common practice to tune U(xi |x j) empir-
ically (Hastings 1970). An acceptable proposal distribution must keep the so-called burn-in
period for the algorithm at a minimum. The burn-in period is the time it takes for the algo-
rithm, from its initial state, before it reaches a point where its outputs (probability densities
of sampled models, parameters of sampled models, frequency of accepted models, etc) are
approximately stationary over the considered number of iterations. Experience has shown
that a frequency of accepted models (after the burn-in period) of 25–50% indicates that the
algorithm is performing well (Gelman et al 1996).

Multistep iterations. Often, it is convenient to split up an iteration into a number of substeps,
having their own transition probability densities. A typical example is a random walk in an
N-dimensional space where we are interested in dividing an iteration of the random walk into
N substeps, where the nth move of the random walker is in the direction parallel to the nth
axis.

The question is now: if we want to form an iteration consisting of a series of substeps, can
we give a sufficient condition to be satisfied by each substep such that the complete iteration
has the desired convergence properties?

It is easy to see that if the individual substeps in an iteration all have the same distribution
p(x) as their equilibrium distribution (not necessarily unique), then the complete iteration
also has p(x) as an equilibrium distribution. This follows from the fact that the equilibrium



Monte Carlo analysis of inverse problems R39

distribution is an eigenfunction with eigenvalue 1 for the integral operators corresponding to
each of the substep transition probability distributions. Then it is also an eigenfunction with
eigenvalue 1, and hence an equilibrium distribution, for the integral operator corresponding to
the transition probability distribution for the complete iteration.

If this transition probability distribution is to be the unique equilibrium distribution for
the complete iteration, then the random walk must be irreducible. That is, it must be possible
to go from any point to any other point by performing iterations consisting of the specified
substeps.

If the substeps of an iteration satisfy these sufficient conditions, there is also another way
of defining an iteration with the desired, unique equilibrium distribution. Instead of performing
an iteration as a series of substeps, it is possible to define the iteration as consisting of one of
the substeps, chosen randomly (with any distribution having nonzero probabilities) among the
possible substeps. In this case, the transition probability distribution for the iteration is equal
to a linear combination of the transition probability densities for the individual substeps. The
coefficient of the transition probability distribution for a given substep is the probability that this
substep is selected. Since the desired distribution is an equilibrium distribution (eigenfunction
with eigenvalue 1) for the integral operators corresponding to each of the substep transition
probability distribution, and since the sum of all the coefficients in the linear combination is
equal to 1, it is also an equilibrium distribution for the integral operator corresponding to the
transition probability distribution for the complete iteration. This equilibrium distribution is
unique, since it is possible, following the given substeps, to go from any point to any other
point in the space.

Of course, a substep of an iteration can, in the same way, be built from sub-substeps, and in
this way acquire the same (not necessarily unique) equilibrium distribution as the sub-substeps.

The Gibbs sampler. In the Gibbs sampler, one iteration consists of a number of substeps, each
having its own transition probability distribution. In a typical implementation of the Gibbs
sampler, operating in a K -dimensional model space, each iteration consists of K substeps,
one for each parameter. The kth substep perturbs only the kth parameter, and it has its own
transition probability distribution Pk(xi |x j). The kth substep runs as follows:

(i) The proposal distribution is defined as

Uk(xi |x j) =



p(xi)∑
xk∈N k

j
p(xk)

xi ∈ N k
j

0 otherwise
(26)

where N k
j is the set of points deviating from x j only in the kth parameter.

(ii) The acceptance probability is

paccept = 1 (27)

for all the proposed candidate models.

In each substep of the Gibbs sampler, no more than one parameter is perturbed (or is
possibly left unchanged), so after completion of one iteration (consisting of all K substeps),
all parameters have been perturbed.

That this algorithm samples p can be seen in the following way: the transition probability
distribution for each substep is given by

Pk(xi |x j) = Uk(xi |x j), (28)
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which satisfies detailed balance equation (18), since if xi ∈ N k
j , then

Pk(xi |x j)p(x j) = Uk(xi |x j)p(x j) (29)

= p(xi)∑
xk∈N k

j
p(xk)

p(x j) (30)

= p(x j)∑
xk∈N k

i
p(xk)

p(xi) (31)

= Uk(x j |xi)p(xi) (32)

= Pk(x j |xi)p(xi) (33)

where we have used that N k
j = N k

i . Since each substep of an iteration satisfies microscopic
reversibility, so does the entire iteration, and the algorithm samples the target distribution p
asymptotically.

The advantage of the Gibbs sampler is that the acceptance probability is always 1, so there
are no rejected moves. The disadvantage lies in the construction of the proposal distribution.
In contrast to the Metropolis algorithm, Uk(xi |x j) is here constructed directly from the desired
equilibrium distribution by evaluating p(x) ‘along a line’ in X . This is feasible when calcula-
tion of p(x) is computationally inexpensive, but this is not the case in many practical inverse
problems. When evaluation of p(x) is computer intensive, the Metropolis algorithm may be
a better choice. An example of the use of a Gibbs sampler in a case where p can be efficiently
evaluated for all perturbations of a single model parameter can be found in Rothman (1986).

3.2. Bayesian inference

We mentioned in the introduction that in a Bayesian formulation, the fitness function is the
so-called posterior probability distribution over the model space, given by

f (m) = C f L(m)ρ(m).

This distribution carries all information available on models originating from the data, and
from data-independent prior information.

If a Monte Carlo algorithm (typically the Metropolis algorithm or a Gibbs sampler) is
used to generate a large number of samples m1, . . . ,mN from f (m), we can use these
samples to estimate averages over the model space. Any average of a function h(m) over
the model space M (e.g., an expectation or a covariance) can be approximated by (3). The
mean 〈mi 〉 of the i th model parameter mi can be estimated by putting h(m) = mi , and the
posterior covariance between the i th and j th model parameters is approximated by putting
h(m) = (mi − 〈mi 〉)(m j − 〈m j 〉). If we wish to calculate the probability of an event E in M,
containing all models in model space with a given feature, it is done by putting h(m) equal to
the indicator function

h(m) =
{

1 if m ∈ E
0 otherwise.

(34)

As an example, E may be all sampled models of the Earth containing a sharp boundary
(appropriately defined) in a certain depth interval. Finally, it should be mentioned that samples
from the one-dimensional marginal f (mk) are obtained simply by collecting values of mk from
samples m = (m1, . . . ,mk, . . . ,m M) of f (m).

The above procedure is general and simple, but the practical problem is often to discover
model features that have a high probability. In classical terminology, these features are well
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Figure 2. This figure shows a Lunar three-component seismic record from a meteoroid impact
recorded at station 16 on day 319, 1976. The seismogram at the top is the N–S component
(S positive), the middle is E–W (W positive) and the seismogram at the bottom is the vertical
component (up positive). The seismograms commence at 23 h 16 min 50 s.

resolved. Simply looking at the Monte Carlo-generated samples from f (m) is often the most
efficient way to discover such structure. Well-resolved structure is seen as a structure that occurs
frequently in the output, and the simplest way to discover it, is to plot all output models side by
side, or on top of each other. Another way is to display all output models sequentially as pictures
in a movie, preferably with different degrees of smoothing (Mosegaard and Tarantola 1995).

3.3. Example: inversion of seismic travel-time data from the Moon

Khan et al (2000) used the Metropolis algorithm to reanalyse the Lunar seismic data from the
Apollo project, 1969–1977. The problem was to infer Lunar P- and S-wave velocity structure
from observed arrival times of seismic disturbances, generated by moonquakes, meteorite
impacts and artificial impacts (spacecraft modules hitting the Moon surface). Figure 2
shows a sample Lunar three-component seismic record from a deep moonquake, recorded on
February 2, 1970. First arrival times for the P- and S-waves were read from 177 seismograms,
and a spherically symmetric P- and S-wave velocity model, as well as source locations and
epicentre times (time of seismic energy release), were sought to explain this dataset. The P-
and S-wave velocity models were assumed to be piecewise linear functions of radius, with 56
break points each (the Lunar radius is 1738 km). Depths and velocities at these break points
were used as the unknown model parameters of the problem, together with the source locations
and epicentre times for 80 seismic events. All in all, the total number of unknown parameters
for this problem was 450.
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The a priori probability density was defined as follows: each velocity parameter
was allowed to vary in the interval between 1 and 50 km s−1, its logarithm
assigning a uniform distribution between these values. Ray theory requires a certain
smoothness of the model, which was realized by assuming a minimum layer thickness
(distance between two consecutive break points) of 5 km. Source coordinates were
unconstrained.

This problem has the typical ‘pathology’ that no analytical relation between data and
model parameters exists. Only a rather computer intensive algorithm, tracing rays through
any given P- and S-velocity model, is available, so Monte Carlo analysis is the most suitable
method for this problem.

The Metropolis algorithm used in this case updated one velocity (or source-) parameter
at a time. The likelihood function was given by (5), where

S(m) =
∑

n

|d(n)obs − d(n)(m)|
σn

d(n)obs denoting the observed data (travel times), d(n)(m) synthetic data, computed (by ray
tracing) from the model m, and σn is the uncertainty (standard deviation) of the nth datum.
The uncertainty was 1 s for artificial impacts, between 4 and 7 s for deep moonquakes, and
between 4 and 26 s for shallow moonquakes and meteorite impacts.

The proposal distribution was defined as follows: in each iteration, a new model parameter
was chosen at random. It was then perturbed using a uniform distribution centred at the
current value, and having a half-width of 1.1 km s−1 for velocities, 2 km for the upper 11
layer boundaries, 8 km for the lower 45 layer boundaries, 1◦ for source longitudes/latitudes
and 4 km for source depths. Layer boundary perturbations were, however, modified so as to
maintain the ordering of boundaries. This was done by appropriate reduction of the half-width
of the distribution of proposed boundary depths.

The chosen proposal distribution gives a burn-in time of approximately 1000 iterations
(out of 1 370 000 iterations in total) and a subsequent average frequency of acceptance of
about 40–50%. Marginal a posteriori frequency distributions of P- and S-wave velocities are
shown in figure 3. A certain layering of the Lunar velocity structure is revealed, of which
an ‘upper mantle’ thickness of about 560 km and a crustal thickness of approximately 45 km
were the most surprising features (see Khan et al (2000) and Hood and Zuber (2000), for a
further discussion of these results). However, it is evident from the figure that the marginal
uncertainties are large, and that the output should be interpreted with great care.

Another instructive example of Monte Carlo analysis of an inverse problem, this time
from electrical impedance tomography, can be found in Kaipio et al (2000). This paper also
gives further details on the theory of Monte Carlo methods.

3.4. Random walks in non-Bayesian ensemble inference

Although random walks are at the heart of every Monte Carlo algorithm, they are not only
useful within a Bayesian formulation of an inverse problem. Many authors have used random
walks to sample parameter spaces without defining a posterior probability distribution (4). As
mentioned above, the earliest Monte Carlo algorithms used in geophysics were non-Bayesian.
An example is the work of Press (1978, 1970a), which consisted of a series of nested uniform
random searches in parameter space. A convenient way to view non-Bayesian ensemble
inference is in terms of a two-stage approach,consisting of a search stage and an appraisal stage.

In the search stage, an algorithm (based on random walks) is used to collect samples,
and the predictions of these models are compared to the data. In many cases the search
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Figure 3. Marginal posterior velocity distributions for the velocity structure of the Moon.
50 000 models were used in constructing the two results. For each kilometre in depth, a
histogram reflecting the marginal a posteriori probability distribution of sampled velocities has
been computed. These marginals are lined up, and contour lines define nine equal-sized probability
density intervals for the distributions.

process is adaptive, i.e. it makes use of the samples collected to guide the search for new
models. Clearly, there is a strong connection with optimization problems, and indeed many
direct search (i.e. non-derivative based) optimization algorithms have been used as search
algorithms in inverse problems. Examples include simulated annealing, genetic algorithms
and evolutionary programming techniques, and the neighbourhood algorithm (see below).
Since many of these overlap with the area of global optimization we defer a discussion of them
to the next section.
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In the appraisal stage the objective is to make use of the complete ensemble of parameter
space samples to draw inferences from the data. If an optimization algorithm has been used in
the search stage to maximize a likelihood function (5), then the temptation is often to select the
best data fitting model only and examine it in detail. However, this is almost always insufficient
because of the noise in the data and the non-uniqueness of the underlying inverse problem.
Even within a finite-dimensional parameter space one usually finds that if one model fits the
data to an acceptable level (taking into account noise in the data), then an infinite number will,
and so the best data fit model may well be mis-leading. (Just as in a Bayesian formulation the
maximum of the posterior is seldom representative of the overall ensemble.)

An alternative to taking single ‘best fit’ models is to try and characterize the subset of
data acceptable models in the collected ensemble, which may be useful if the search algorithm
has sufficiently explored the parameter space. The earliest efforts in this direction consisted
of simply directly comparing the acceptable models in the ensemble. This was the approach
taken by Press (1968, 1970a, 1970b), however in that case just six Earth models were found
from 5 million which fit all of the available seismic data and prior constraints.

Another way of characterizing an acceptable ensemble is to look for particular properties,
or features, which all data acceptable models share, e.g. ones which have the least structure, or
detail, as measured by some particular criteria. This extremal model approach was proposed
by Parker (1977) in the context of nonlinear inverse problems, and can also be applied to
the appraisal problem. Again the degree to which one can sensibly draw inferences from
the ensemble depends crucially on the type of sampling performed during the search stage.
Therefore, just as in a Bayesian approach, the search and appraisal stages are linked. For
example, to generate many data acceptable models one needs the search algorithm to first find
and then ‘map out’ the regions of parameter space where the fit to data is acceptable (which
is often a difficult task, see Sambridge (2001)); while for the extremal model approach one
needs the search stage to optimize a combination of data fit and model property, (often called
a regularizing property).

Other methods have been proposed for characterizing a multi-dimensional ensemble of
data-acceptable models. A summary can be found in Sen and Stoffa (1995). Examples
include Vasco et al (1993) who used cluster analysis techniques, while Douma et al (1996)
used a projection onto empirical orthogonal functions to determine the common features in
their data-acceptable ensemble of Earth models (seismic wave speed as a function of depth).
Another popular approach has been through semi-graphical methods (Basu and Frazer 1990,
Nolte and Frazer 1994, Lomax and Snieder 1995, Kennett 1998). A draw back of many of these
techniques is that they are best suited to the situation where the acceptable ensemble forms a
single cluster, and not multiple unconnected clusters in parameter space. Recently, Sambridge
(2001) has proposed a technique to map out the acceptable ensemble which is applicable to
the multiple cluster case.

3.5. Design of random walks for optimization

3.5.1. Simulated annealing: Metropolis and Gibbs as optimizers.

The simulated annealing algorithm. When crystalline material is slowly cooled through its
melting point, highly ordered, low-energy crystals are formed. The slower the cooling, the
lower the final lattice energy. This physical process is a natural optimization method where
the lattice energy E is the objective function to be minimized. Large numerical systems can be
run through a similar optimization process if we identify parameters of the system with state
space variables, and the objective function of the optimization problem with the energy E .
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Thermal fluctuations in the system are simulated by randomly perturbing its parameters, and
the size of the fluctuations are controlled by a temperature parameter T .

The simulated annealing algorithm (Kirkpatrick et al 1983) is a specialization and modi-
fication of the Metropolis algorithm, in that the desired equilibrium distribution for a constant
value of the temperature parameter is the Gibbs–Boltzmann distribution

pB(x) = exp(−E(x)/T )Z(T ) (35)

where 1/Z(T ) is a normalization constant. This is the distribution over the state space of a
statistical mechanical system in equilibrium with a heat bath of temperature T , and this is the
kind of system we wish to simulate with this algorithm. Simulation of chemical annealing
is now performed by gradually lowering the temperature T from a high value to near-zero.
Close to T = 0 the Gibbs–Boltzmann distribution approximates a delta function at the global
minimum for E(x) (if it is unique).

Simulated annealing can also be realized by generating samples from the Gibbs–
Boltzmann distribution by means of a Gibbs sampler. Rothman (1986) solves the so-called
residual statics problem of reflection seismology in this way.

The Nulton–Salamon annealing schedule. Strictly speaking, simulated annealing is only
guaranteed to work for infinitely slow ‘cooling’. The practical problem is therefore: How can
we decrease the temperature of the system in a finite number of steps, such that the final value
of E , on average, is as close as possible to the global minimum for E?

Nulton and Salamon (1988) proposed an annealing method based on the idea that the
numerical system should be kept as close to ‘thermal equilibrium’ as possible at all times. This
was done by keeping the actual mean value 〈E〉 of the objective function at a constant distance

v = 〈E〉 − 〈E〉eq

σE (T )
(36)

from the theoretical (but never realized) equilibrium mean value 〈E〉eq . In (36) σE (T ) is the
standard deviation of E(x) which, of course, fluctuates from iteration to iteration. v is known
as the ‘thermodynamic speed’ and sometimes also as the ‘thermodynamic distance’. The
following differential equation for the annealing temperature schedule T(t) can now be derived:

dT

dt
= − vT

ε(T )
√

C(T )
(37)

where C(T ) is the heat capacity of the system, and ε(T ) is its relaxation time. Andresen
et al (1988) estimate an approximate, temperature-dependent, transition probability matrix
PE (T ) for transitions between ‘energy levels’ by monitoring transition frequencies during the
annealing process. For each temperature, the heat capacity C(T ) can be evaluated from the
eigenvector of PE (T → ∞)with eigenvalue 1, and the relaxation time ε(T ) can be calculated
from the second largest eigenvalue of PE (T ).

The thermodynamic speed v in equation (37) is calibrated, through some initial
experimentation, to the problem at hand, such that the annealing schedule is close to zero
after a predetermined number of iterations. The total number of iterations is, of course, limited
by the available computer resources (Jakobsen et al 1988, Andresen et al 1988, Koren et al
1991).

In a more direct approach, the so-called ensemble-based simulated annealing (EBSA),
heat capacities and relaxation times are estimated using the statistics of a set (ensemble,
population) of parallel simulated-annealing walkers at the same temperature. In contrast to
genetic algorithms, the individual members of an EBSA ensemble/population do not interact
directly. Instead, thermodynamic properties of the problem are calculated from ensemble
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averages, and optimal annealing schedules can be calculated on-the-fly or after an initial test
run (Salamon et al 2002, Mosegaard and Vestergaard 1991).

3.5.2. Genetic algorithms. Genetic algorithms were originally devised as a model of
adaptation in an artificial system, by Holland (1975). Early reference works are by Davis
(1987), Goldberg (1989), and a useful tutorial can be found in Whitley (1994). Genetic
algorithms fall into the class of Monte Carlo techniques because they also use random numbers
to control the sampling of a parameter space. In contrast to simulated annealing which uses an
analogy with a physical optimization process, genetic algorithms are based on analogy with
biological evolution.

Within the past decade genetic algorithms have been applied in a wide range of the areas
within the physical sciences, and for a range of purposes, only one of which is optimization.
Many excellent references and web pages exist describing genetic algorithms and their variants
(see the above works and references cited therein). Here we describe a simple genetic algorithm
and compare it to other Monte Carlo importance sampling techniques by examining how it
might be used to sample a particular probability distribution.

A key feature of genetic algorithms is the representation of physical variables of interest
by a simple string data structure, and usually a binary string. It is straightforward to
represent many optimization problems involving real-valued variables into a set of binary
string representations. For a single variable, xi , the simplest approach would be to choose
upper and lower bounds, ui and li , together with a discretization interval, and assign a binary
number to each value the variable could take. For example, one might encode a real variable
xi into a binary number bi , using

bi = B

{
xi − li

ui − li
(2l − 1)

}
(38)

where l is the length of the binary string produced, and we have introduced the operator B{y}
to indicate taking the binary value of y after rounding down to the nearest integer.

The genetic algorithm uses the bit string data structure to manipulate an ensemble of
parameter space samples at each iteration. Here we restrict ourselves to a description of the
basic three-operator genetic algorithm. Many variants exist, details of which can be found in
the references cited.

Selection. From the initial population π = (x1, . . . ,xN ), of N strings an interim population
of N parents is generated by randomly selecting strings with replacement,where the probability
of selection, ps , is a function of the fitness of each string. A common choice is

ps(x j) = A exp[− f (x j)/B] (39)

where A is a normalizing constant,

A−1 =
∑

i

exp[− f (xi)/B] (40)

and B is some measure of the spread of fitness values in the current population, e.g. the standard
deviation. Since the population size is unchanged, the selection operator will generate multiple
copies of some models in xi at the expense of others, which may be extinguished completely.
It is in this stage that the fitness of each string influences its chances of survival.

Crossover. From the parent population of N strings a new generation of N strings is produced
by mixing pairs together. All of the parents are randomly paired to produce N/2 couples.
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A cross-over probability pc is assigned and each pair of strings is chosen for crossover with
probability, pc. If crossover is selected then the two strings are cut at a uniformly random point
along their paths and two new strings are formed by interchanging the sub-strings. If crossover
is not selected then the two parent strings are passed unscathed to the next generation.

Mutation. The final stage involves the process whereby any bit in an individual string is
allowed to flip between 0 and 1 with probability pm . This allows some degree of local diversity
to be introduced into the population.

The action of the three types of process is to produce a new generation of N bit strings each
of which has a new fitness value and the whole process can be repeated. After many iterations
the population has the potential to evolve towards a fitter on average state. In general there
appears to be no clear theory on how to choose the values of control parameters ps , pm N and
B , to obtain an optimal performance for particular problems. Usually some level of empirical
tuning is common. More sophisticated versions of genetic algorithms may also introduce extra
control parameters, e.g. using different types of mapping from fitness to survival probability
in (39), or perhaps different forms of crossover involving multiple string cuts.

The fundamental theorem. A theoretical analysis of the way genetic algorithms process
information was performed by Holland (1975), which resulted in the fundamental theorem.
Goldberg (1989) discusses the theorem in detail and shows how it explains the processing of
Schema over each iteration. Schema are simply patterns within the binary strings representing
each sample in parameter space. For a bit string of length seven (l = 7) an example of a
schemata would be,

H = ∗11 ∗ 0 ∗ 1 (41)

where the asterisk represents either a 1 or 0. H is the subset of bit strings differing in only
the 1.0, 4.0 and 6.0 bits, and clearly represents many different possible combinations of bit-
strings. Two properties of schema can be defined. The first is the order, represented by the
operator o(H ), which gives the number of fixed positions (i.e. the number of 1 s or 0 s in the
schemata), and the second is the defining length, δ(H ), which is the distance between the first
and last specified string position. For example, the schemata in (41) would have,

o(H ) = 4, and δ(H ) = 5.

These quantities appear in the fundamental theorem which predicts how the number of schema
changed between iterations of a genetic algorithm due to the three basic operations of selection,
crossover and mutation. If we define m(H, t) as the expected number of examples of schema
H at iteration t , then the fundamental theorem says,

m(H, t + 1) � m(H, t)
f (H )

f

[
1 − pc

δ(H )

l − 1
− o(H )pm

]
(42)

where f (H ) represents the average fitness of all strings in the current population that
correspond to schema H , and f is the average fitness of the population. Since each bit-string
in a population belongs to many schema the genetic algorithm manipulates many schema in
parallel at each iteration. The main conclusion that follows from (42) is that short, low-order,
above-average schemata receive exponentially increasing numbers of copies in subsequent
generations. Most theoretical analysis of genetic algorithms performance in optimization has
centred on the way in which schema are created and destroyed.

During the 1990s, convergence properties of genetic algorithms were studied extensively.
Conditions for guaranteed convergence towards optimal solutions were worked out for
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important classes of algorithms, and convergence rates in terms of control parameters were
estimated. Here, we shall not elaborate further on this interesting topic, but readers who want
further details may, e.g., consult papers by Gao (1998) and Greenhalgh and Marshall (2000).

Genetic algorithms and sampling of probability distributions. Genetic algorithms were not
designed to sample given probability distributions, but the efficiency of these algorithms for
optimization has led researchers to search for ways of modifying them, so that they could
be used for sampling (see, e.g., Sen and Stoffa (1995)). Here we shall take a close look at
the problems we are facing when we try to develop GAs for sampling, and explain why the
problem has not yet been solved.

A genetic algorithm is not based on a single random walk in X . Instead, it is based on
an ensemble of, say, N random walkers, operating simultaneously, and dependent on each
other. This process can be understood if we consider a new space P = X N , the population
space, whose points are all possible populations consisting of points (here called individuals)
from the original space X . Note that, traditionally, X is a discrete space where the points are
represented by strings of binary numbers. In P we define the probability of a population as
the product of the probabilities of the individual points in the population.

We now re-examine each of three operators in a simple genetic algorithm, to determine
whether they can be designed to sample P uniformly (that is, with a constant probability
distribution). If this is the case then it is a simple matter to modify the GA such that it samples
a given distribution p(x) over P . The reader can easily verify that the following algorithm
will indeed sample p(x):

(i) Given a point x j ∈ P currently visited by the algorithm. Use the uniform sampler to
propose a point xi as a candidate to be the next sample.

(ii) Accept only xi with probability

paccept =



p(xi)

p(x j)
for p(xi) � p(x j)

1 otherwise.
(43)

As we shall see, it is straightforward to design the mutation and the crossover substeps
to give a uniform distribution, but not the selection substep. We will consider them in reverse
order.

The mutation substep. The mutation substep is easy to design such that it has the uniform
distribution over P as its equilibrium distribution. In this substep we select one individual
x j from the population space π = (x1, . . . ,xN ), uniformly at random (that is, giving each
individual probability 1/N of being chosen). We now generate a new candidate individual
xi using an irreducible proposal distribution over X that is uniform in a neighbourhood
surrounding (and including x j ). Finally, we accept it with probability 1. This operation
is one step of a random walk in X that, should it be iterated, would sample X uniformly. It is
also clear that the entire population will, in this way, sample the population space P uniformly.

The crossover substep. In crossover we select one pair of individuals, ξq = (x j ,xk) from
the population, uniformly at random, and generate a new candidate pair ξr = (xi ,xl) using a
proposal distribution U(ξr |ξq) overX 2 (which in this case is not irreducible) that assigns equal
probability to all possible pairs ξr obtained by choosing an integer 1 � ν � dim(X ) uniformly
at random, and then replacing the first ν components of x j with the first ν components of xk ,
and vice versa. Finally, we accept the new pair ξr with probability 1.
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This operation is one step of a random walk in X 2 with the uniform distribution over
X 2 as an equilibrium distribution. It is also clear that the corresponding move of the entire
population is one step of a random walk in P with the uniform distribution over P as an
equilibrium distribution.

The selection substep. The problems arise in the selection substep. It is tempting, from the
population π j of N individuals to generate a new population πi of N individuals by selecting
models from π j with uniform probability of selection, i.e. set ps(π j ) equal to a constant rather
than using (39). As stated above this will generate multiple copies of some models in πi at the
expense of others, which may be removed completely.

The problem is now that the selection substep so defined violates microscopic reversibility
and therefore has a non-uniform equilibrium distribution. The point is that selection is
irreversible: it can only remove individuals from the population, not create them again. Hence,
our results concerning multi-step iterations do not apply. Forming complete iterations by
combining mutation, crossover and selection will not lead to a uniform sampling, and no
modification in selection probabilities will make it do so.

These observations do not mean that it is impossible to find mutation-, crossover- and
selection-substeps that, taken together in each iteration, will sample the population space
uniformly. It only means that these three substeps cannot be designed independently. Some
mechanism must be built into the mutation- and crossover substeps that compensate for
the irreversibility of the selection substep, such that microscopic reversibility is restored.
Unfortunately, no solution has yet been found to this intricate problem. If it can be found, it
will no doubt have great practical significance.

It is sometimes claimed that a GA who ‘has a desired distribution as an approximate equi-
librium distribution’ is a sufficiently good solution to the above-mentioned problem, because
even a Metropolis algorithm designed to sample the distribution will only give approximate
solutions (due to limited sampling time). There are two reasons why this argument is incorrect:

(i) A clear definition what is meant by ‘an approximate equilibrium distribution’ is usually
lacking.

(ii) A genetic algorithm with only an ‘approximately correct’ equilibrium distribution will,
asymptotically, deviate more and more from the desired equilibrium distribution (and
nobody knows how much). In contrast to this, a Metropolis algorithm having the desired
equilibrium distribution will, asymptotically, sample this distribution.

This reasoning points to a clear difference between genetic algorithms and other Monte
Carlo sampling methods.

3.5.3. The neighbourhood algorithm. The neighbourhood algorithm is a recently developed
Monte Carlo search algorithm that has found a number of applications in seismic inverse
problems (Sambridge 1998, 1999a, 1999b, 2001). This is an ensemble based search technique
that uses concepts from computational geometry to guide the sampling of a parameter space.

The basic idea is that at each iteration the multi-dimensional parameter space is partitioned
into a set of Voronoi polytopes constructed (uniquely) about the samples generated from
previous iterations,x j , ( j = 1, . . . , n). Voronoi polytopes (cells) are simply nearest-neighbour
regions, as determined by a suitable distance measure. An L2-norm is a common choice. More
formally, any new point x, lies within the i th Voronoi cell if,

‖x − xi‖ < ‖x − x j‖ ( j = 1, . . . , i − 1, i + 1, . . . , n). (44)

Voronoi cells have some useful properties in that they are always unique, space filling, and
adapt to the density of the samples about which they are constructed (one per cell), i.e. as the
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local sampling density increases the size of each Voronoi cell decreases. Since each Voronoi
cell forms a neighbourhood about one of the previously generated samples, they can be used
to guide further sampling. One choice is to place samples uniformly randomly in selected
Voronoi cells. A Gibbs sampler is ideal for this purpose. For example, if the j th Voronoi
cell were chosen for sampling then a random walk would begin from model x j . The proposal
distribution for the Gibbs sampler at the kth substep, is to be given by (26), with

p(xi) =
{

1, ‖xi − x j‖ � ‖xi − xl‖ (l = 1, . . . , n)

0, otherwise
(45)

and the acceptance probability is unity. Selection of cells to re-sample can be made either
deterministically or probabilistically on the basis of the fitness function evaluated at the
corresponding samples. A simple choice would be to re-sample only, say, the 10% of cells with
the higher fitness values. The number of cells chosen, nr , would become a control parameter
of the algorithm. Since these cells are not necessarily neighbours of each other, sampling can
be performed in multiple regions simultaneously.

An alternative to re-sampling chosen Voronoi cells is to again use a standard Gibbs sampler
to generate new samples distributed according to the neighbourhood approximation of the the
fitness/objective function. This is formed by setting the fitness to a constant inside each Voronoi
cell. When a Gibbs sampler is applied to the neighbourhood approximation, it is equivalent
to setting the fitness function, f (x), of any point equal to that of its nearest point among the
current set, i.e. we have,

fN A(x) = f (x j) {x j : min(‖x − xl‖) (l = 1, . . . , n)}. (46)

In this case the proposal distribution for the Gibbs sampler becomes (26), with

p(xi) = fN A(xi). (47)

Note that the Gibbs sampler is used to sample from the neighbourhood approximation of the
fitness function (47), or the Voronoi cells directly (45), and in both cases no further fitness
evaluations are required for the random walks. An iteration is complete when the required
number of new models, ns , are selected from the chain of samples produced by the random
walks. Only then is the fitness of each new sample calculated and the Voronoi cells (updated
to included the latest ns samples) for the next iteration. (Note that ns is a second control
parameter.) In each of the two scenarios represented by (47) and (45), multiple random walks
can be performed in parallel starting from the previous samples f (x j)( j = 1, . . . , n).

Like a genetic algorithm the neighbourhood approach generates a new ensemble of samples
at each iteration, but does so using the Voronoi cell concept to identify ‘promising regions’ of
parameter space. It also has similarities with other Monte Carlo methods, since it makes use
of a Gibbs sampler. We note here that one could equally well make use of the neighbourhood
approximation of the fitness function within other optimization procedures like simulated
annealing or genetic algorithms, i.e. to intermittently replace expensive evaluations of the
fitness function, with cheaper but more approximate evaluations of f N A(x). Sambridge (1999a)
has shown that the neighbourhood algorithm can result in quite a complex ‘self-adaptive’ search
process in global optimization.

In addition to searching a parameter space for optimization the neighbourhood algorithm
may also be used in the appraisal problem, i.e. analysing the resulting ensemble. Sambridge
(1999b) has shown how one can use the neighbourhood approximation within a Bayesian
formulation to estimate resolution and parameter covariances from an arbitrarily distributed
ensemble of samples. Initial results with this technique for both search and appraisal are quite
promising but more experience is required. In addition it is not yet known whether the search
algorithm could be applied to combinatorial optimization, because of the lack of a general
definition of a Voronoi cell (nearest neighbour region) for combinatorial problems.
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4. Conclusions

Monte Carlo methods provide a systematic way of dealing with (discrete) inverse problems for
which we have incomplete knowledge of the relationship between data and model parameters.
This is the case, e.g., for many highly nonlinear problems, where the forward relation is in-
susceptible to mathematical analysis, and is only given by a complex algorithm. Monte Carlo
methods can be divided into two groups, the first of which is devoted to sampling from a prob-
ability density, and the second is designed to search for near-optimal solutions to the problem.

The most widely used sampling algorithms are the Metropolis algorithm and the Gibbs
sampler, which are used in cases where a thorough resolution and uncertainty analysis is called
for. Although the equilibrium theory of these algorithms is simple and well mapped-out, many
theoretical and practical problems concerning their ‘speed of equilibration’ remain to be solved.

The dominating stochastic optimization algorithms are simulated annealing and the genetic
algorithms. In many applications, the genetic algorithm has shown its strength as a search
method. Attempts at constructing a sampling algorithm from the same principles as the genetic
algorithm has failed so far, but if the problem can be solved, it will no doubt be a great step
forward in many practical applications.

In this paper we have covered the basic Monte Carlo algorithms currently in use in
applications. Several variants of these algorithms exist, many of which are adaptations of
the basic methods, or exploit special properties of the problem considered. The readers are
referred to the literature for information on these methods. Important examples are reversible
jump MCMC (Green 1995) and Simulated Tempering (Geyer and Thompson 1995, Marini and
Parisi 1992). Readers who wish to dive into the basic theory of Markov chains may consult
Kemeny and Snell (1976), or Seneta (1981).
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