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AND MICROLITHOGRAPHY
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Abstract

The methodology of Monte Carlo simulation for
electron scattering and energy dissipation in solid targets is
reviewed. The basic concepts of single and multiple elastic
scattering models are compared, and the continuous energy
loss model for inelastic scattering is discussed. Some new
developments in Monte Carlo simulation are reviewed,
including improvements in the elastic scattering model and
discrete models for inelastic scattering. A variety of
practical applications of Monte Carlo calculations in the
fields of electron microscopy, electron probe microanalysis,
beam lithography are reviewed. The
Monte Carlo computer program listings available in the
literature are also described

and electron
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I. Introduction

Due to the nature of
interactions in solids, a rather large scientific literature has
been generated which employs Monte Carlo calculations for
predicting the measurable signals from such interactions. A
Monte Carlo calculation is simply a theoretical simulation
of the three-dimensional trajectory path of the incident
primary electron (and any subsequent electron products) as
it decelerates within the solid target. The trajectory is
actually a series of straight line segments put end-to-end,
and the orientation of each segment is determined by the

complex electron-target

scattering angles associated with the equations used to
approximate the physical processes. The term
"Monte Carlo' arises from the use of random numbers to
select a particular angle (or some other variable) for a
particular segment, and digital computers are
employed to generate the appropriate random numbers and

hence

to perform other calculations necessary to describe the
trajectory. Because real electron beams are composed of
many electrons, a large number of electron trajectories must
be simulated within the target since no two electrons will
Hence, a Monte Carlo
'experiment’’, namely a
histogram of some signal intensity generated versus some
variable of interest with a particular histogram resolution in
that variable. The "noise' in the histogram is intimately
related to the number of electrons simulated.

The increasing popularity and variety of Monte Carlo
calculations in the literature is due to at least 4 factors:
(a) the capability to simulate
configurations such as film/substrate targets or

have identical trajectories.

calculation is essentially a statistical

trajectories in complex
small
particles, (b) the large variety of signals which can be
calculated such as backward and forward scattered electrons
with their angular/energy distributions, etc., (c) the
"physical” insight and ease of data interpretation obtained,
and (d) the ready availability of large digital computers and
fast processors. These factors will be described in more
detail later,

The main purpose of this paper is to educate the
novice in the methodology of Monte Carlo calculations for
electron microscopy, microanalysis, and microlithography.
Hence, it is tutorial in nature, rather than an original
contribution to the art and
calculations. A variety of literature is referenced, including
some of the original contributions by the author and his
colleagues. Because of the large literature encountered, it is

science of Monte Carlo




not practical to include all of it. Thus the references reflect
those which the author has found most helpful, and are not
necessarily all inclusive. In particular, an emphasis is placed
on work published within the last 10 years or so. However,
we should mention the relevant pioneering work of the past
such as Berger (11, Green (21, Bishop [31], Shinoda,
Murata, and Shimizu [4], Reimer [5], and Duncumb [6],
These results and successes encouraged many others to
adopt and adapt Monte Carlo calculations for a variety of
applications and we owe much to their early work.

In these references, there are several
groupings of Monte Carlo papers contained in the following

addition to
S0Urces:

1 NBS Special Publ. 460, ed. by K.
D, Newbury, and H. Yakowitz
(National Bureau of Standards, 1976).

Heinrich,

2. Proc. 8th Int. Congress X-Ray Optics and
Microanalysis, ed. by D. Beaman, R. Ogilvie,

and D. Wittry (Pendell Publ. Co., 1980).

3. Proc. 6th Int. Congre X-Ray Optics and
Microanalysis, ed. by G. Shinoda, K. Kohra,
and T. Ichinokawa (Univ. of Tokyo Press,
1971).

4. Microbeam Analysis - 1979, ed. by D. Newbury

(San Francisco Press, 1979).
The papers contained in these groupings represent much of

the status in Monte Carlo calculation today, and they are

highly recommended by the author for education and
review.
II. Basic Concepts in Monte Carlo Simulation
A Computer Generation and Utilization of Random
Numbers
As mentioned already, a Monte Carlo calculation
utilizes computer-generated random numbers to choose

particular values for parameters from the distribution of
allowed
completely "random”, since the random numbers are often
utilized within appropriate function to choose the
parameters which describe the trajectory results. There is
usually a need for a relatively large number of "random"
numbers. These numbers are used in various ways, e.g., to
pick a particular value of scattering angle at each scattering
point in Fig. 1. The term "uniformly distributed" random
numbers refers to the concept that there is equal probability
for number be within

values, However, an electron trajectory is not

an

any particular to generated, a
particular interval of numbers. Usually the interval is
between 0 and 1. There are many different ways to

generate a "uniformly distributed" random number and to
test for its randomness. The full treatment of this subject is
beyond the scope of this paper. However, one of the most
useful methods Monte Carlo simulation, and one
employed in the present work, is that of the congruential
method for generating pseudorandom numbers. The details

for

of this method can be found in Hammersley and
Handscomb [ 7] and in Knuth [8]. In such methods, one
starts  with an "initial" random number which s

subsequently utilized in a computer subroutine program to
trigger the calculation of a sequence of additional random
numbers.  The randomness and length of the random
number list is controlled by the input parameters in the
subroutine, The list of random numbers is subsequently

120
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Electron

Fig. 1: Geometry of the initial steps of electron scattering
T .- . = o .
and energy loss for a semi-infinite thick target.

used in simulation calculations as deseribed.  Interestingly
cnough, the list of random numbers can be duplicated at
will by simply using the same iniual random number as the
Hence, Monte Carlo calculations can be repeated
i
MNevertheless, the results of the calculation are sull based on
I'he that with the

randomness be repeated

trigger

exactly desired, with  the dentical statistics, elc

randomness and  statisties, point s

congruential method, the can

exactly. This appears to be a dichotomy at first, but is only
a detail which is of no concern for the present applications
In practice. one lists and divides up the electron trajectories
that

such a fraction of the total electron trajectories come

Irom only one list, In this way some additional randomness

can be incorporated into the calculations.  The choice of an
“initial” random number is not critical, and any simple
convenient scheme can be uwsed such as throwing dice or
suessing at a useful sequence of digits to form a number
I'here are also some types ol electronic calculators which

can generale a random number upon command.

B. Concept of Electron Scattering

an electron within a solid target is

I'he trajectory of
determined by scattering interactions with the target atoms

and their associated electrons Electron scattering is
classified into two types, namely elastic and inelastic. For
clastic scattering, the kinete energy of the scattered electron

the that before Fhis is a good

approximation for electron scattering by the atomic nuclei in

is same  as scallering.
the target for the energy regime of interest in this paper
(1-100kV),
of energy by the scattered electron as shown in Fig.
This for

scattering in several versions of Monte Carlo computer

-

i an approximation used clectron-electron

programs. In general, both elastic and inclastic scattering
processes are operating, and a sophisticated Monte Carlo
simulation will attempt to treat them both explicitly and

separately.  There is also an angular distribution associated
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Elastic Scattering

na

Inelastic Scattering

Fig. 2: Elastic electron-atom scattering and inelastic
£ < :
clectron-clectron scattering schematic
with each type ol scattering, and this distribution is

deseribed a differential

analytically
cross=section da(f)y=1(#)diL.

by scatterimg
I'here may also be more than
one type ol inelastic scattering process to consider within
simulation

In the case of one mechanism for clastic scattering
and one Tor inclastic scattering, the total eross-section oy

[or scattering is simply

Op = O+ Opet (1
where
¥ 20 .
o_ [T [T (42)ag (2)
= Jp=p Ye=0 dfl
= :’ﬁj ~ f(8) sin 840
#=0
since the differential solid angle d@=sinfldfide,.  Once the

electron is scattered (cither elasticically or inelastically),

then there s a straight-line path assumed to the subsequent
scattering point as illustrated in Fig. 1

In some ol the carly work on Monte Carlo simulation
of electron

scattering solids, a

n "multiple scattering"”
later work, the 'single
approximation was preferred to describe the

clastic scattering process.

approximation  was used In

scatterning
I'hese approximations will now
be described in more detail

| Multiple EE"_UEi_..

In  the multiple scattering  approximation, the
probability for scattering into the azimuthal angle ¢ is
uniformly distributed and selected by the relation

O, = 2R (radians) (3)
where R. is a random number between 0 and 1. The

1
probability for scattering into the zenithal angle # is often
! ZEna E

121

deseribed by a solution of the electron transport equation

due to Lewis [ 9

: _ 1 sy R 52
f0) = EEJW + 1)P,( cos H)pr(—f“.k,ds) (4)
where

K, 2;;..-\-'1":_{(9” 1-P,( cos B)] sin 640 (5)

and Pglcosl) is the Legendre polynomial I'he screened
Rutherford f(#) can used  within
Eq. (5), along with the approximation of the exponent as
KpAS, AS the length

points,

L'|'(I\\'HL'C1]‘H|] r('ll' hL‘

where is step between scattering

I'he somewhat arbitrary selection of the step length

AS is constrained by opposing factors. as described by

Shimizu and Murata [10] I'o accurately simulate the
electron scattering, small steps are desired.  However, to
obtain convergence in Eq. (4) large steps are necessary. In

addition, large (and equal) steps result in fewer steps per
trajectory and hence reduced computer time and cost per

simulated trajectory, This advantage of computer efficiency

with a multiple scattering model (compared to the single
scattering model in the next section) i1s somewhal negated
by the explicit assumption of an infinite medium as a target

which is inherently contained within the solution for the

transport equation.  Nevertheless, the multiple scattering

model has been  successfully utilized to  calculate  the
properties  of  backscattered  electrons and  the depth
distribution of X-ray production [e.g., see Ref. 41. With

the decreasing cost of computer calculations, the I11ll|[!p|l_'
scattering model has generally been replaced by the more

accurate single scattering model which is deseribed next

2 \il]l':'h' Seq
In the single scattering model, the step length between

lering
Lo hg

scattering points is given by the mean free path

\(em) ' - 5 (6)
ne N 1o
where n is the volume density of the target atoms (em™), A

is the atomic weight (gm/mole) of the scattering atom, and
¢ s the mass density (gm em?).

For elastic scattering of electrons by the target atoms,
the screened Rutherford differential cross-section has often

11,121:

been used
y 2.4
2nle

4E2(1- cos i +28)°

f(ih)

(7)

where E is the kinetic energy of the scattered electron, Z is
number ol

screening factor to account for electrostatic screening of the

the atomic the scattering atom, and 3 is a

nucleus by orbital electrons.  The total cross-section o is

casily obtained by using Eq. (7) in Eq. (2) to give
| *
R e Z(Z + 1)
i e TEELE k0D (8)
AEB(B+1)

Note that the factor 2= in Eqg. (7) has been replaced by the

factor Z(Z+1) in an attempt to account for inelastic
electron-electron  scattering  with  a  Rutherford-type
cross-section. The limitations of this approximation for
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inelastic scattering has been described by Fano [13], and
will not be treated here.

The scattering parameter ff is introduced in Eq. (7) to
keep the total cross-section constant. A derivation of f for
several atomic field functions is described in the appendix of
Ref. 4. Typically, an expression where fix72 3/E is used,
and very small values of f are encountered at the beginning
of an electron trajectory. As the electron decelerates and E
decreases, then 3 increases. However, since f<<1, it can be
seen that o«(1/E) and, Ax<E (approximately).
Thus, in such a "single-scattering” model, the step length
gets progressively smaller along the electron trajectory, and
the total number of steps per trajectory can be very large
compared to that in the multiple scattering model.

As described previously, random numbers are utilized
to choose a particular value of 6 from the distribution f(8)
given in Eq. (7). If F(#) is the indefinite integral of f(6)dQ
normalized by the total cross-section op. then a random
number R; can be used to specify a particular value of F(#)
and, hence, the 8.

hence,

scattering angle This concept is
illustrated in Fig. 3, and can be used with an analytic
description or a numerical description for f(#). The

indefinite integral of Eq. (7) can be found easily and results
in the relation

Rt
cos B = :{”(—B} (9)

1 + B-F(H)
where F(8)=R,. The atom specie which scatters the

electron in a mixed target is also chosen by another random
number, and is based its fractional
described in Ref. 12,

on cross-section as

C.  Concept of Energy Loss
Before going on to describe some of the newer
modifications employed in Monte Carlo calculations, we

shall describe a popular approximation used for energy
dissipation by energetic in targets. To
approximate the electron-electron inelastic scattering, which
is the dominant mechanism for energy loss, the continuous
slowing down formulation of Bethe [147 is often used in
the form

electrons

dE

[E 2-:.‘(-43:/_. g
ds

E

YE

n( 5 ) (10)
where y=(e/2)!/2 and J is the mean ionization energy for
the target. Conceptually, the electron loses energy at a
smooth rate dE/dS (eV/cm) along the path S. Since E
decreasing along S, then -dE/dS increases continuously with
decreasing  E, Between scaltering points in the
Monte Carlo simulation, the energy loss is continuous, and
hence, the energy at the end of a step length AS=A
depends on both the initial energy E of the scattered
electron and the mean free path A. In this way, a full
electron trajectory can be simulated by connecting together
a series of step lengths and their associated geomelry as
shown in Fig. 1. However, Eq. (10) cannot be used down
to arbitrarily small values of E, but is limited by the log
term to the region where yE/J>1. Since 1/Z is about
10-15eV where Z is the atomic number of the target, then

is

the limit of application also depends on the target. In
addition, the approximations used in the derivation of
Eq. (10) are less accurate at larger values of Z.

Nevertheless, this approximation for energy loss has been

used quite successfully within Monte Carlo calculations for
a variety of applications.

As an example, we show in Fig. 4, some electron
trajectories in Si, Cu, and Au with 90° incidence.
results were obtained with the Monte Carlo program
Kyser and Murata [15] which utilizes Eq. (7) to describe
elastic scattering and Eg. (10) to deseribe energy loss.

I'hese

of

There is no explicit accounting for inelastic scattering except
as described previously. Note that in order to compare the
trajectory distribution, a distance scale in units of mass
thickness px has been used in order to normalize out the
differences in mass density p. This is allowed because the
mean free path A scales linearly with p via Eq. (6). The
numerical values of J/Z recommended by Berger and
Seltzer [16] were used in Eq. (10). As illustrated in
Fig. 4, the onset of a random distribution occurs closer to
the surface with Au than for Cu, and for Cu than for Si
T'his illustrates the strong effect of atomic number Z on
electron scattering distributions. In addition, the electron
backscatter yield n is higher for Au than for Cu and Si
With a tilted surface, the yield 5 also increases. All of these
effects are clearly seen in such trajectory plots, and much
insight can be gained from them.

Since both the spatial position of each electron and its
associated rate of energy loss is calculated, the spatial
distribution of energy deposition can be plotted also in the
form of equi-energy density (eV/cm?) contours, For the
targets shown in Fig. 4, the corresponding contours are
shown in Fig. 5. The change in the shape and location of
such contours with target Z is apparent. These distributions
have subsequent consequences such as spatial resolution in
microscopy, microanalysis, and microlithography which will
be mentioned later.

D.  Sequence of Monte Carlo Calculation

T'he initial sequence events in trajectory
simulation is illustrated in Fig. 1. An electron with energy
E is incident at the origin on a flat target, the x-y plane
being the surface. The first scattering event can be at the
surface or distributed in some fashion below the surface.
I'he mean free path Ay for scatlering can be calculated via
Eq. (6). If both elastic scattering and inelastic scattering
are explicitly simulated, then the type of scattering is chosen
with random number R; such that if
Rl*'_in“- /o the scattering is elastic. If Rl'-er,.. o9 the
scattering is inelastic. The zenithal angle of scattering 8, is
also with another random number R, via the
distribution such as that shown in Fig. 3. 1 he azimuthal
angle of scattering ¢ is chosen with another random
number Ry via Eq. (4). With Ay, 8, and ¢ determined,
the spatial position 1 the next scattering point is
determined by trigonometry via directional cosines, and
using the incident axis as a reference axis. The electron
energy al position 1 is determined by decrementing the
energy with respect to its value at position 0 via Eq. (10)
where dS=A and E is the initial energy. At point | the
sequence is repeated, using E| to calculate .-'\l and U]. ete.
The sequence is repeated until the electron energy has
decreased to some value near to, but greater than, J/y. If
the electron escapes the surface, the trajectory is terminated
and counted as a backscattered electron. Many electrons
are simulated in succession to achieve a desired statistical
I'he standard deviation of

of a

a4 Be neraled

chosen

of

precision in the desired result.
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Fig. 3: Selection of scattering angle with indefinite integral of the differential scattering cross-section and a random

number.
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Projection of 100 electron trajectories in thick Fig. 5: Equi-energy density contours for the absorbed
targets of (a) Si, (b) Cu, and (¢) Au with 25kV energy. energy density (eV cm?) corresponding to Fig. 4. The
I'he scales are in microns, and have been normalized with contour values are relative to the same absolute value in the
the relative mass densities 2.33, 8.96, and 19.32 gm ‘em3, ratio 16:8:4:2.
respectively.
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= "
VN where N is the
the relative

the statistical result is given by o =
number of trajectories simulated, _
standard deviation o, = o/N = 1/V N,

For quantitative calculations of characteristic X-ray
production in the target, an additional relation must be
introduced to describe the ionization rate for a particular
atomic level along the electron path. Along the step length
ds between scattering points, the electron is assumed to
have constant energy E. Then the number of ionizations
produced for atomic specie i is dn;=Q,(E)ds where Q;(E) is
the cross-section for ionization and dS=A. The number of
X-ray photons is then p;=wdn; where w is the fluorescent
yield. The contribution from all step lengths is summed, as
well as that from all electron trajectories. This choice of an
analytic expression to describe the cross-section Q;(E) is
still of some concern in quantitative analysis. There are a
variety of formulas proposed, and these have been discussed
by Powell [ 171].

Hence

I1I. Recent Developments in Monte Carlo Models

As expected, the results obtained with Monte Carlo
calculations depend on the the used.
Usually it is not possible to consider explicitly all of the

the
more

details of model
individually, especially
inelastic scattering inclusion of
scattering processes will also increase the computational
sary belween accuracy

possible scattering processes

processes. The
time, and some compromise is nec
and cost. In addition, there may be a lack of theoretical or
experimental work to fully simulate particular processes.

Hence a variety of approximations are utilized, and the
particular combination of and
utilized varies in the literature of Monte Carlo calculations
I'he status of Monte calculations  for
microanalysis as of 1975 was presented by Bishop [18]
I'wvo major approximations were identified which needed
some improvement, namely (1) The Rutherford scattering
cross-section and (2) The Bethe energy formula,
especially for high Z targets. Krefting and Reimer [19]
have utilized the more exact Mott
cross-section, coupled with a single scattering model for

processes treated models

Carlo

loss

elastic scattering
energy loss, to obtain better agreement with experimental
backscattered and transmitted electrons. In a
paper, Reimer and Krefting [20] their
complete model as consisting of the followin

results for

later describe

single elastic electron-atom scattering with the

(a)
exact Mott cross-section for larger angle
scattering (>10%) instead of the Rutherford
cross-section;

(b} treatment of small angle scattering (<10°) by a
mean angular deviation with the Lewis formula
for multiple scattering;

(c) single inelastic electron-electron scattering (for
secondary electrons >200eV) with a formula due
to Gryzinski;

(d) continuous energy loss with the Bethe formula,
and subtracting the energy loss due to single
inelastic scattering in (c).

In an attempt to remove some of the limitations

inherent in the use of the Bethe formula for the mean

energy loss, both Henoc and Maurice [21] and Shimizu

et al. [22] incorporated a distribution for energy loss

about the Bethe mean value. Henoc and Maurice chose to
use the Landau theory lor statistical energy loss distribution,
while Shimizu chose to use an exponential distribution for
energy loss

JAE) = (1/AE) exp (-AE/AFE) (11)
where AE is assumed to be equal to the mean ionization
energy J in the for energy loss. The
exponential distribution was introduced as a speculation,
and provides a distribution of AE about the mean value AE.
The actual value of AE used to calculate the energy loss in

Bethe equation

an inelastic scattering event is given by

AE = -(AE)enR (12)

where R is a random number between 0 and 1. This results
in the distribution of Eq. (11). The choice of
inelastic scattering is based on the relative cross-sections
and a random number as usual, and where

elastic or

Aoy = AE/AE/ds) (13)

inef

The use of this simple change in the Monte Carlo model
provided much better agreement between theory and
experiment for the distribution of
through of Al [22

expected since the previous use of an e

energy electrons

transmitted thin foils I'his was

1slic scattering
process only, coupled with the continuous energy loss model
of Bethe, resulted in finite energy loss of all the electrons
All the electrons would have travelled at least a
distance As=t, the foil thickness, and suffered a minimum
loss AE=(dE/ds)st to the foil.  With the
an inelastic scattering process as an

transmitted
energy exit
explicit inclusion of
alternative to elastic scattering, and an associated statistical
distribution of energy loss, then some of the electrons could
be transmitted with very little energy loss. This behavior
was in agreement with experimental measurements on thin
foils.

the

foils was

A further improvement in the accuracy of
transmitted energy distribution for Al
obtained by Shimizu et al. [23] with a more fundamental
approach to the the
Monte Carlo Bethe
Eq. (10) to simulate the mean rate of energy loss with path
length, they utilized theoretical expressions for the inelastic
mean free paths due to scattering of fast electrons by
(a) conduction band electrons, (b) L-shell orbital electrons,

electron

loss in
the

simulation of energy

model. Instead of utilizing

and (c) plasmon excitations. The elastic scattering is still
described by the screened Rutherford cross-section, and
random numbers are used to select the type of scattering in
the usual manner. The success of this method depends
greatly on the availability of good theoretical data for the
individual inelastic scattering cross-sections, and hence is
somewhat limited for application to a wide variety of
targets.

An extension of the fundamental approach in Ref. 23
was made later by Shimizu and Everhart [24] via explicit

account for the inelastic scattering by valence band
electrons. I'his extension was made by utilizing the
cross-section  equation for scattering by atomic core
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electrons due to Gryzinski [25] with an empirical mean
binding energy Ep such that the equation

| aB) = (%)  —(4E) (4

. .
ds Bethe L core

E {o(AE
f AE| ¢ n(._‘._):]
'FH r“..\f.)

“B

was satisfied. The term in brackets within the integrand is
the Gryzinski function, and AE is the energy loss. For Al a
value of EH = 4eV provided such agreement. A more
detailed discussion of this extension is contained in the
Ph.D. Dissertation of Adesida [26].

In some completely independent work, Green and
Lecky [27] have also investigated the transmitted electron
energy distribution in Al foils with a "direct” Monte Carlo
model which also avoids the use of the Bethe equation for
energy loss. For elastic scattering, a Thomas-Fermi model
is used to obtain the total cross-section. For inelastic
scatttering, both collective (plasmon) and individual
excitation of conduction band electrons is tested, as well as
core level excitations. While the details of this approach are
different from those of Shimizu et al. (23], similar
improvements in the agreement with experimental results
were also obtained.

Following the work of Krefting and Reimer [ 19,20],
some additional work has been reported by Shimizu et al
[28-31] on the use of the Mott partial wave expansion
method  (p.w.e.m.) to calculate the elastic scattering
cross-section rather than the Rutherford method. The new
method for calculation involves numerical procedures, as
described by Yamazaki [32]. The partial wave expansion
better

provides elastic

dccuracy lor the

method

40 Al

L
(=]

(d0 A0 Partial Wave
(d0/d0)Screened Ruhertord
~a
o

o

0L K L L 1 L 1
0 30 60 90 120 150 180
SCATTERING ANGLE (deg.)

Fig.
Lie:

cross-section, especially in the region of small scattering
angle, low energy, and large atomic number. A comparison
between the elastic cross-section calculated with the partial
wave method and the screened Rutherford method is shown
in Fig. 6 for Al and Au. Additional results with the Mott
cross-section have been described by Kotera et al. [33] for
electron scattering in Au. Again, improved agreement with
experimental data is obtained for electron scattering yield
and energy distribution,
Further attempts to circumvent the limitations ol the
Bethe formula for energy loss have been reported by
Murata et al. [34.35]. In Ref. 34, the Spencer-Fano
361 equation  was utilized to  better describe  the
interaction ol an electron near the boundary surface of a
semi-infinile  target A comparison of the Bethe and
Spencer-Fano results for an organic target is shown in
Fig. 7. Note the divergence of the results at the surface
where some of the larger inelastic scattering and energy loss
process is suppressed in the Spencer-Fano theory. In
Rel. 35, as well as in Ref, 33, the equation of Kanaya and
Okayama [37] was utilized for energy loss, and some

improvement at low energy was observed
Very recently, Murata et al. [38] utilized the discrete
inelastic scattering cross-section of Moller [39] within a

Muonte Carlo calculation to simulate the production of
“fast” secondary electrons explicitly. Elastic scattering with
a screened Rutherford formula and energy loss with a
modificd Bethe formula was retained.  The trajectories of

both the primary and secondary electrons were calculated,

and a typical example lor an organic target is shown in
Fig. 8. Since most of the "fast” secondary electrons are
low kinetic energy. their trajectory lengths are much smaller
than the higher c¢nergy  primaries However,  such
_ L/ 7.5 ke
'll.llx/|
[ 10 kew

40

w
o

(d0 A0)Portial Wave
(d0/d0)Screened Ruthertord
~
o

(=]
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6: The ratio of scattering cross-sections obtained by the partial wave expansion method and the screened

Rutherford method versus scattering angle for (a) Al and (b) Au (Shimizu et al.,, Ref. 30).
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multiple scattering I'his hybrid program combines the
advantage of the rapid calculation time of the multiple
scattering model with the better accuracy of the single
scattering model for the description of electron and X-ray

signals.

IV. Some Practical Applications of Monte Carlo
Calculation

Since the Monte Carlo approach to electron trajectory
simulation involves the fundamentals of electron scattering
and energy loss, it should not be surprising that there is a
corresponding variety of practical applications. On the one

hand, some of the research has been directed towards
improving the fundamental input to the simulation process
such as that described earlier. On the other hand, an ever

Fig E: Comparison of the reciprocal stopping power for increasing quantity of literature has described numerous
PMMA obtained with the theories of Spencer-Fano and applications in the general fields of microscopy,
Bethe (Murata et al., Ref. 34). microanalysis, and microlithography. In fact, it appears that |

== = 4 much of the Monte Carlo literature in recent years has bee
centered around the very practical field of electron beam

» X (um) lithography, and this will be discussed more in a later
8.00 8.00 section.
0.0 ! J | EEEL I'he variety of applications which had been treated
2 00l with Monte Carlo calculations of ¢lectron beam signals was
reviewed in an excellent paper by Newbury and Yakowiiz
| 4.00 [41]1. Another good review was also presented by Shimizu
v L [42]1. These references describe the applications up to
E 6.00} ! _ (! about 1975 or so. In particular, the following applications
g & - were described;
N 8.00F ) Primary ' 20 keV/ I extent of the primary electron interaction
by £ PMM A volume
10.,00——— 2 lateral and depth distributions of backscattered
% i) . clectrons . -
a0 8.00 | 4.00 0.0 4.00 8.00 : ;_HTE]‘,[.] ,.‘!,“d‘, I.LI1\'|_L__\ distributions  of
T T y . . - e S ackscattered Llulrnn:w
_ = 4. lateral and depth distributions of secondary
2.00 k » 3 electrons
. . 5 angular and energy distributions of secondary
v 4.00 by e ol clectrons
- 6.00 5 6. extent 1?| \!L\ IEL‘I]L:'l'ii.lIUI‘I volume
7 depth distribution of X-ray production.
' 8.00 1} 20 ke Ilcu:cu, I'm this section we will cml_\l L“WLWT some newer
- (b) Secondary PMMA applications of Monte Carlo calculations which have been
10.00 o described within the past 5 years or so I'he author has

s A . . T : arbitrarily chosen to put these into 3 categories: namely,
Fig. 8: Projection of electron trajectories for the primary
(a) and Tast secondary (b) electrons obtained for a thick
PMMA target (Murata et al., Ref. 38).

(a) microscopy, (b) microanalysis, and
(¢) microlithography

secondaries can be very effective in radiation chemistry - w-\— . . — .
processes such as electron beam lithography. The ultimate One particularly ”Hur“lmél_ ...l|};3]iL'.l[HJ|l “.1
spatial resolution is determined by such secondary electrons, Monte L M_lf’ calculations is that of Type Il magnetic
and this will be described later in more detail contrast, This contrast mechanism is due to the Lorentz

force applied to an electron travelling in a magnetic field or
magnetized material. The direction of the force depends on
the relative directions of the electron velocity v, and the
magnetic field B. The magnitude of the force F = e(Vx B)
acting over a time t=A/v for each mean free path length

Lastly, a hybrid Monte Carlo calculation procedure
for electron trajectory simulation has been described by
Newbury et al. [40]. These authors developed a
Monte Carlo program which incorporates both single and
multiple elastic scattering. Single scattering is used for the

initial 5% of the energy loss, and multiple scattering for the will ‘perturb the electron trajectory and modulate the

balance of the trajectory. Energy loss is simulated by electron backscatter yield. The yield will be modulated as |
C - = s £ L ¢ ¥

discrete inelastic scattering during the single scaltering shown qualitatively in Fig. 9. Following the original work |

portion of the trajectory and continuous energy loss during of Newbury et al. [43] and Ikuta and Shimizu [44 1, some
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. Primary 7
Elgclron E.: energy
- E0EN ol Incident Y I
" angle K =

Fig. 11: A qualitative display of the volume analyzed in a
foil. relative to that in a thick target (Kyser, Ref. 49).

Sample

Surface number of trajectories can be calculated easily for high

statistical precision. In addition to the characteristic X-ray

Fig. 9: Schematic illustration of the perturbed electron production, the continuum X-ray production can also be
1D

trajectories within a magnetic material with saturation calculated [48]. These results show that the peak to
magnetization M. (Ikuta et al., Ref. 45) backeround ratio (P/B) increases with increasing beam
vollage E With regard to spatial resolution for
microanalysis in AEM, some results obtained by the author
:|.:1d:tn\r|:1| work has been presented by Ikuta et al. [45] for Cu foils are shown in Fig. 12 Note that even for a
These new calculations show how the spatial resolution of vanishingly small electron beam diameter, there is still a
Fype Il magnetic microscopy changes with (a) incident limited spatial resolution due to forward electron scattering
beam velocity and (b) detection angle. Some examples of o
; : : . — ]
their results are shown in Fig. 10. The authors concluded ( -
that (a) spatial resolution decreases with increasing beam .
voltage and (b) spatial resolution increases with detection
of the low-loss electrons only, i.e., the forward-scattered
clectrons
Another interesting application of Monte Carlo
calculations is that for predicting the spatial resolution in
analytical electron microscopy (AEM) of their foils with
X-ray microanalysis. Following the original work by Kyser
and Geiss [46], additional results were presented by .
Newbury and Myklebust [47], Geiss and Kyser [48], and ezt . ST T R TR T
Kyser [49]. With such thin foils (£0.2um) and high beam
voltages (2100kV) the volume ol X-ray production is very Fig. 12: Composite of Monte Carlo results for 0.1 micron
small, as illustrated in Fig. 11. Monte Carlo calculations foils of Cu at various beam voltages and Gaussian beam
are very advantageous for this application since very little diameters (Kyser, Ref. 49).
computer time per trajectory is required, and hence a large : S .
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in the foil. The resolution expected for a variety of foil
materials and thicknesses at Ey=100kV is given in Table 1.
Note that resolution degrades with increasing atomic
number and foil thickness. Further insight into spatial
resolution can be obtained by simply plotting electron
trajectories, such as those shown in Figs. 13 and 14 for Cu
and Au foils with normal and 45° beam incidence.

In such spatial resolution, the
Monte Carlo model has some unique advantages relative to

calculations of

alternative models:
iz any foil thickness can be treated

2 any beam distribution incident can be simulated
3 any beam angle incident can be simulated
4, any X-ray take-off angle can be treated
5. X-ray absorption correction included
6. any multi-element target can be treated
7 atomic number effects on X-ray production
included.
TABLE 1

Summary of Monte Carlo calculations defining
the cylinder diameter d(A) which contains 90%
of the total X-ray production within the foil
for E4=100 keV, a=0. L
The values in parenthesis are for a=50A.
Film i |
Material | Film Thickness (A)
and X-ray 1000 2000

400 4000

C (Ka)-- ---- 50 (200) | 130 (230) 250 (300)

{Kn)fﬁ!] (195) 90 (220) | 200 (250) 460 (460)

(Ka) [40 (205)[ 160 (250) | 550 (550) 1400 (1400)

(La) |80 (220)|380 (400) {1300 (1300)| 4500 (4500)

a-a.se .46 9.30 P.20 0.19 0.20 @.19 0.20 8.30 9.40 @.5@

Cu-100kV

R T T T TR S Y
=

X SCALE FACTOR-1022 -1
8.58 9.40

W SCALE FRCTOR-1831
; e.8a @.1@

R O A R N
=

RN N
Fig. 13: Projection of 400 electron trajectories in

0.2 micron foils of (a) Cu and (b) Au for a 100kV point
source beam, normal incidence. The vertical and lateral
scales are in microns, but unequal by 4X (Kyser, Ref. 49).
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B. Microanalysis
Monte Carlo calculations have been utilized
quantitative chemical microanalysis of particles, thin films,

for

and bulk samples. For particle analysis, theoretical
calibration curves of X-ray production versus particle
diameter have been generated for particles of known
composition [50,511]. However, due to the complex

procedures required for the analysis of unknown particles, it
is recommended that Monte Carlo calculations be used
mainly to guide and test the design of more simple methods
for analysis.

Following the original work of Kyser and Murata
[15] for electron probe microanalysis of alloy films on
thick substrates, there has been additional work described.
Utilizing the Monte Carlo program of Ref. 15, Cvikevitch
and Pihl [52,53,54] have extended the applications to
refractory thin films of Ta-W and Ti-W on silicon [52],
films of Sn-O and Pb-O on Pb and Sn [53], and films of
Au-Pd-Cu [54]. These authors have demonstrated that
Monte Carlo calculations are very practical for thin film
analysis, and have also shown that the data analysis can be
accomplished with relatively few trajectories simulated for
each case in the calibration curves. This work has also
established such Monte Carlo calculations for. practical thin
film analysis as the only nondestructive technique for true
microanalysis, i.e., quantitative analysis of small areas.
With increasing availability of Monte Carlo programs, this
technique will become more widespread in the microanalysis
community. Additional work on thin film analysis with
Monte Carlo calculations has been described by Murata
et al. [35].

For quantitative microanalysis both the film
composition and film thickness, the Monte Carlo model is

of

utilized to generate theoretical calibration curves of
intensity ratio k; versus weight fraction C; with mass
thickness pt as a parameter. An example of such a

9.0 ©0.94 @9.88 @9.12 0.16 9.20 ©.24 0.28

8.32 9.36 9.40

Cu- 100 kV

® o9 9% @00 e o
=

6 |
8 |
10}
12 |
14 E
6\
18 |
20 L

T e T O DD D DO S

Fig. 14: Projection of 400 electron trajectories in

0.2 micron foils of (a) Cu and (b) Au for a 100kV point
source beam, 45° incidence. The scales are in microns, and
are equal for vertical and lateral directions (Kyser,

Ref. 49),
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calibration curve is shown in Fig. 15 for a Mn-Bi alloy film
on  Si0, substrate. As described in Ref. 15, the
exprimental k; are iterated within these calibration curves to
converge on unique solution for C; and pt This
convergence can be accomplished graphically as shown in

a

Fig. 16. The technigue can also be applied to ternary films.
0.3 — - 0.3
MnBi on 5i0.,
20 kV
y=525" .
r: :\ ]
pt=100 (ugicm?) .
‘: t=100 - _
s ' i
13 75
0.1 . T
50
I 16 =
0 L= i

Fig. 15: Monte Carlo-generated calibration curves for Mn
and Bi X-ray production in thin Mn-Bi films on SiO,
substrates (Kyser and Murata, Ref. 15).

MnBi on $i10,
30
20 KV
200 =m0 7
2 l 0.0515 3
] k., 0.0226
10 k .
v
= 0 T .
- 10 20 30 40
-| 10 P Cum
o
53 pglen
'0 ! P
M~ €2
30
L]
Fig. 16: Graphical convergence of experimental data k
from Mn-Bi film within the calibration curves of Fig, 15

(Kyser and Murata, Rel. 15)

When the film composition is known, or in the case of
a single element film, the Monte Carlo calculation of X-ray
production can be utilized to generate theoretical calibration
curves of k; versus beam voltage Ej and film thickness gt
Very careful experimental with
well-characterized samples were utilized by Reuter et al.
[55] and agreement with Monte Carlo
calculations were obtained. An example of the agreement
for Al films on Si is shown in Fig. 17.

For quantitative electron probe microanalysis of bulk

measurements

excellent

samples, Love et al. [56,57,58]1 have utilized the
simplified Monte Carlo program of Duncumb [6] to
generate improved correction for matrix effects. In

Ref. 56, the Monte Carlo model was utilized to generale
the depth distribution of X-ray production ¢(pz) for a wide
range of analytical conditions. Based on this theoretical
data, an analytic for the depth was

expression mean
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Fig. 17: Normalized Al(Ka) measured for four Al films on
bs The solid circles are the
Monte Carlo results for the same film thickness (Reuter

et al., Ref. 55).

Si substrate versus beam voltage.

deduced and compared with a previous expression I'he
new form gives the correct dependence on electron energy,
while the older form did not. In Ref. 57, the Monte Carlo
results were utilized to deduce an improved expression for
the atomic number correction in guantitative electron probe
Lastly, Ref. 58 described the behavior of
()

microanalysis
the ionization
Monte Carlo calculations. These papers show the powerful
Monte Carlo theoretical
improvements in the accuracy of quantitative microanalysis

surface function as deduced with

use of results as a guide to

via analylic expressions. Hence, the benefits can be
realized by a wider community of analysts

Very recently, Ichimura et al [31] have
demonstrated capability for quantitative Auger electron
microanalysis  with Monte Carlo calculations. The
Monte Carlo calculations provide the quantitative

correction necessary for the Auger electron production due
Lo backscattered electrons,

5 Microlithography

As mentioned the practical
applications of Monte Carlo calculations have been made in
the field beam lithography. In such
microlithography, a very thin film (~lpm) of polymeric
material is spun onto the surface of a substrate which is to
be pattern exposed by a scanning electron beam. Due
the interaction of the electrons with the film, the solubility
or etch rate of the film is modified and the pattern exposed
by the beam can be developed in the film. The substrate
material can then be subsequently patterned through this

previously, many of

of electron

Lo

resist film mask by processes such as chemical etching, ion
milling, etc., used in VLSI technology.

Since the density of the polymeric resists utilized are
typically low (- lgm:’um?’l the high-energy primary eiectrons

(~20kV) easily penetrate into the substrate. Spatial




the both the

lorward scattering of the electrons and by backscattering

resolution ol exposure is determined by

Irom the substrate. Such electron scattering and energy loss

" £y . :
leads  to proximity effects in  electron  beam

(EBL), and Monte Carlo
proven to be very useful in understanding and calculating

also

lithography caleulations have

the magnitude of the proximity effect. The Monte Carlo
model is able to deal quantitatively with the discontinuous
matertal boundary between the film and substrate, and

without having to segment the problem into two separate

models, 1.e.. one model for forward and another flor

backward scattering.  Within the Monte Carlo model, there
15 no such separation and electron scattering is calculated
with the same model regardless of the scattering direction

In some carly work, both Kyser and Murata [59] and
Hawryluk et al. [60]

the spatial distribution of energy deposited by an electron

utilized Monte Carlo calculations for

beam into a thin polymer on a Si substrate.  Both of these
the
An example of the radial distribution of energy
Fig: 18:
approximated by a

papers  utilized single  scattering model discussed

previously

deposition by a point source beam is shown in

I'his type of distribution has been

superposition of two concentrie Gaussian distributions, with
i and relative
I'his Gaussian approximation is often called a

appropriate values for the standard deviation 3
arcas
Uproximity function” . and is written in the following form:

f(r) = klexp (-r/B)" + 0(B,/B)" exp (-r/B)°] . (15)

This Torm can then be utilized in o comptuer program such
as "SPECTRE" [ 61 I 1o
modulation necessary to compensate for proximity effects in
EBI Monte Carlo calculations of (r) like Fig. 18

been made by Parikh and Kyser [62] for a variely of cases,

calculate the electron exposure

have

o

and some typical results are shown in Table 2 for the

Gaussian parameters of Eqg. (15) derived by a least-squares
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Fig. 18 Radial distribution of the energy deposited in a

I micron PMMA Tilm on Si substrate by a 25kV beam.
Ihe constant A=(8/7)x 10" eV /em3 /electron (Parikh
and Kyser, Rel. 62)
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TABLE 2

Compendium of the three parameters
that define f(r) for PMMA-Si

(Note: All parameters are evaluated at z=t)
=. T . 1 e === |
Eo | ¢ | B | B, | R
(keV)| (pm) | (pm) | g (pm) | (pm) | By/R
10 | 0.5 [ 022 | 051 | 0.65 | 1.58| 0.41
o | T B L)
15 | 05 013 | 051 | 1.14 |
, 1.0 | 044 | 052 | 141 | 312 045
25 | 0.5 | 006 | 051 | 2.6 |
25 1.0 0.22 0.49 2.9 7.36 | 0.39
15 1.5 0.43 (.52 2.9 |
' |
40 | 05 [ 004 | 042 | 6.0 |
40 ! 1.0 0.11 0.45 6.0 16.22 | 0.37
40 | 1.5 | 022 | 044 | 62
|
fit o the Monte Carlo distribution.  Such Monte Carlo

calculations have also

[63

the latent mage |H'|Ji|lILL'L1 l‘}' clectron

been utilized by Kyser and Pyle
for the description of

exposure of thin films, and the subsequent time-evolution ol
the developed pattern by a solvent, An example of the dose
a lpm film of PMMA on
19 (from Ref. 65).

vast literature in the lield of EBL, it is

compensation factor predicted for
Stosubstrate is shown in Fig,

Because ol the
not possible to reference all of it which pertains 1o
stimulation caleulations, including Monte Carlo caleulations.
I'he interested reader will find most of the references in the
Adesida 26
Monte
simulation.  In addition,

[67,681 should be ol

Iheses of Lin [64]. and

Stephanmt [66]1 who have
fon

recent Doctoral

utilized Clarlo calculations

clectron trajectory the recent

papers of Adesida et al interest

1 T
.
f 1
s
|
. el 0
- .
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-
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Fig. 19 Dose compensation factor for various linewidths

].I_hi ;'\I[\\'||£|l|1‘- }‘fL'l“\.'[L'\l h_\ simuliation of LiL‘\L'Il‘pL‘{l pJ'nli!L'\
in PMMA (Neurcuther ¢t al,, Ref, 65).
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V. Input/Output of Monte Carlo Programs

A. Computer Programs Available

Due to the variety of approaches, there is not a unique
computer program for Monte Carlo simulation of electron
scattering and energy loss in solid targets. A brief history
of approaches taken before 1975 was given by Bishop
[18]. Because a detailed listing of each computer program
and its associated input/output is nol appropriate here, we
will instead refer to those programs which have been
published in the literature. A simple program, including a
detailed explanation of its use, is contained in Curgenven
and Duncumb [6]. A somewhat more sophisticated
program is conlained in the appendix of Shimizu [69]. A
very detailed report, including the computer code and some
examples, 18 contained in Henoc and Maurice [21]. A
program for microlithography applications is contained in
Hawryluk [70]1 and also in Lin [64]1. Based on the
information in these five sources, along with Murata et al.
[11,121, anyone with access to a computer facility should
casily be able to implement a Monte Carlo program.

B. Computational Time and Its Control

One common objection to Monte Carlo calculations is
their alleged high cost due to long computations on a digital
computer. However, the actual cost is completely within
the control of the user, and is primarily determined by the
model used, the target configuration, and the number of
electrons simulated N, For simple calculations, the model
of Curgenven and Duncumb [6] can be used. As
described previously, the foil application is more economical
than the bulk application. Finally, the desired statistical
certainty sets the wvalue for N. Since Monte Carlo
calculations are not meant to be used for rapid on-line
analysis or control, there can be a reasonable time delay
between program submission to a computer and the output
calculations. Many programs can wait until low-load
computer times to be run. For debugging a program, only a
few trajectories need to be simulated to check the operation
and output calculations for reliability. A high-precision
Monte Carlo program should only be run after establishing
its reliability. The output of any Monte Carlo calculation
can be saved for subsequent use in other applications.
However, one must then decide in advance the output
variety desired and anticipate the need.

[l Condensation and Output of Results
I'he wvariety of output data available from a
Monte Carlo simulation of electron trajectories and energy
loss is quite large. It includes the following:
1 electron trajectories plotted for qualitative
distribution
backward scattered and forward scattered
electron yield
3. backward scattered and forward scattered energy
distribution

(5]

4 backward scattered and forward scattered
angular distribution

5. spatial distribution of energy deposition

6. spatial distribution of X-ray production.

Of course, the gquantitative accuracy of such calculations
depends intimately on the accuracy of the physical model

employed. This is true of any model, and the Monte Carlo
method does not avoid this necessity. However, the
Monte Carlo model is a very intuitive and easy model to
simulate physical processes with, once the output desired is
identified. l'he angular, energy, and number yield of
backward scattered electrons from foil targets is of some
interest, and has been discussed recently by Niedrig [71].
The spatial distribution of energy deposition and its
relevance to eclectron beam lithography has been discussed
by Kyser and Viswanathan [72]. The value of
Monte Carlo calculations for spatial
quantitative microanalysis has already been discussed. In

resolution  and

cases S and 6, the output histogram can be in I, 2, or 3
dimensions as desired The Monte Carlo model is not
limited to flat surfaces or homogencous targets. Specific

boundary conditions on the target can easily be
accommodated and incorporated. In some cases, just a
simple graphical plot of the electron trajectories will suffice

to provide some qualitative or semi-quantitative information.

D Monte Carlo Simulation of lon Beams

In addition to the work on Monte Carlo simulation of
electron beam interactions, there is also some considerable
results published for ion beam interactions in solids
Although it is beyond the intent of this paper to review such
work, the interested reader will find the following references
useful. Utilizing the single scattering model, Ishitani et al.
[73,74,751 have calculated the ion range, ion backscatter
yield, energy distribution of ions transmitted through a thin
foil, and depth resolution in SIMS due to atomic mixing.
More recently Kang et al. [76,771 have utilized
Monte Carlo methods to calculate the sputter yield of Si
with Art ions and the depth resolution in SIMS profiling.
An alternative approach to Monte Carlo simulation of
energetic ions in amorphous targets has recently been
published by Biersack and Haggmark [78] Iheir
Monte Carlo program was developed for determination of
ion range and damage distributions with depth, as well as
angular and energy distributions of backscattered and
transmitted ions. I'heir computer program provides
particularly high computer efficiency, while maintaining a
high degree of accuracy.

VI, Summary

Monte Carlo simulation of electron scattering and
energy loss is a very powerful tool for both qualitative and
quantitative design and interpretation of experiments. The
accuracy of a Monte Carlo calculation is dependent on the
accuracy of the physical approximations used in its design,
and there is a continuing research effort to identify the
areas which need better approximation. However, the
Monte Carlo method is a very "physical” one in which the
basic concepts are easily grasped and interpreted, and there
i1s a wealth of output available in the form of electron
energy, angular, and number distributions for adsorbed,
backscattered, and transmitted electrons

Several versions of a Monte Carlo program are
available in the literature, and the serious user is encouraged
to start a project on Monte Carlo simulation and tailor it to
the application desired. Many applications demand a good
model for interpretation and experimental design, and
Monte Carlo methods are probably the most flexible and




adaptable, especially for quantitative interpretation. The
technical insight and subsequent rewards to be gained are
very worthwhile.
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Discussion with Reviewers

H. Niedrig:  You guote the work of Reimer and Krefting,
who showed that by utilizing the more exact Mott elastic
scattering cross-section in Monte Carlo calculations, better
agreement with experimental results for backscattered and
transmitted clectrons is obtained, especially for films ol high
atomic number.  On the other hand, Fathers and Rez
(Scanning Electron Microse./1979:1; p. 55) stated that
from their transport equation calculations for backscattering
from bulk solids, "the details of the cross-section for very
small or very large angles is relatively unimportant.”  Could
vou comment on this? Is there a diserepancy, or does the
higher Mott cross-section for wide angle scattering mainly
affect the backscattering from films and not so much from
bulk solids?

Author: I'he conclusion of Fathers and Rez is not
necessarily in quantitative disagreement with the view of
Reimer and Krefting, since Fathers and Rez make only a
gualitative  statement  about the role of scattering

cross-section details upon the backscatter yield from bulk
targets

One of the most severe tests of any scattering theory
is that  of  comparing results on  transmitted and
backscattered electrons for thin foil targets and for a wide
range of foil thickness. If the Mott cross-section is justified
in the present applications, then Figure 6 shows that the

dynamic range of cross-section  with small and large
scattering angles should be important, especially for high Z

Kyser, David F

targets,  For very thin foils, where only a few scatlering
events can occur, the details of the scattering cross-section
are very important. It would be very interesting to calculate
the electron  transmission  and  backscatter  yields and
categorize the results with restricted ranges ol scattering
angles along cach trajectory.  Such calculations are casily
accomplished with Monte Carlo methods lor trajectory
simulation, and we believe the Monte Carlo method is more
tractable and offers more insight into the physics of electron
scattering than any other method

D.E. Newbury:  When implementing one of the Monte

Carlo programs available in the literature, a user would be
wise o test the caleulated results with experimental data to
ascertain that the caleulation is i fact doing what it should
do.  Can you recommend a logical series ol comparisons
against experimental data with which a novice 1o the lield
could test a new Monte Carlo program?

Author: In the opinion and experience of the author, @

great deal of confidence in a new Monte Carlo program can
be gained by simply observing some of the electron
lrajectories on a plotter or video display terminal such as
those presented in Figure 4. Any wild deviations o1
aberrations will be apparent immediately After that, a
series ol quantitative tests can be made with the [ollowing
theoretical and experimental data

I depth distribution of energy deposition (dE /dz)

and X-ray production (pz).

2 dependence of electron backscatter number vield
() wpon targel atomic number (Z), beam
vollage tl'”J. and incidence angle (1)

3 encrgy and angular distribution of backscattered
electrons,

4 energy and angular distribution of transmitted
clectrons,

3 quantitative e¢lectron  probe  microanalysis ol

known compounds

When making such comparisons, one must keep in mind that
any experimental result has an associated error, and some
experimental results may differ with other results,  Hence
the comparison must be made very carefully when looking
for details.  Some Monte Carlo programs may be designed
tor particular target configurations such as thin lilms on
substrates, particles, discontinuous media, stepped surfaces,
cte. It s just such difficult boundary conditions as these
which can only be treated accurately with Monte Carlo
simulation of electron scattering.  However, the input data
which describes the target geometry can usuully be set to
some limit such that the caleulated results can be compared
with the experimental data which is usually obtained from
simpler targets such as semi-infinite. flat, or continuous
media.
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Additional discussion with reviewers of the paper
Microanalysis, and Microlithography'

D, |

Newbury
Carlo technique is an "adjustable parameter” which must be

Deep in the heart of nearly every Monte
good match between a caleulated result and
Can
adjustable
parameters and comment on the physical reality (or lack

chosen Lo give a
the trusted experimental value, e.g., backscatter yield.

vou describe a procedure for selecting these

thereofl) of these parameters?  Usually the parameter is a

multiplicr on the step length,

Author: 1t s certainly true that some Monte Carlo models

contain some form of "adjustable parameter” to provide a

systematic correction to some variable (such as step length
\ooor

screening parameter (i) which results in the best

al

ement with experimental data on some arbitrary s

such as g, G(pz), ete. However, the correction is usually

very small, and simply represents a lack of full theoretical

knowledge about the wvarious components of the model
which comprise a complete Monte Carlo simulation ol
electron scattering and cnergy loss Or the "adjustable
parameter’  may be  required  because  of  some

approximations made to minimize the computational time or

some other practical mitation.  This does not invalidate the

use ol the technique Tor important applications, but does

represent o challenge to the theoretical physicists and

applicd mathematicians whao are concerned about the purity
and fundamental nature of the method

(1) 1 have always found Reference |
helpful as an introduction to the practical aspects of Monte

Bishop most

Carlo caleulations. 1 would strongly recommend everyone

reading it before preparation of any computer program
(2) The paper by F. James, "Monte Carlo in Theory and
Practice.” Rep. Prog. Phys, 43, 1145 (1980) gives a formal
discussion ol the mathematical basis of the Monte Carlo

approach and also contains a useful discussion on random
numbers,  (3) The improvement in accuracy of the "single
full

shorter

scattering”  model  over  the "multiple  scattering’

the

the single scattering approach

approach i1s due to the step length From

computational point ol view
has the additional advantage that the scattering angle can be

calculated from Eq. (9) rather than having to store tables

ol multiple scattering distributions for each energy step
(4) The comment about the convergence of Eq. (4) is not
necessarily true It the equation is recast to exclude the
unscattered portion of the distribution (see References 3

and 21}, then there s no great problem with convergence,

certainly for energies below 30 keV (5) As a rule ol
thumb, the screened  Rutherford  cross-section  gives
reasonable results above the K ojonization energy of the
clements involved

Author I want to thank this reviewer for these helplul

comments, and especially Tor the reference to the recent

paper by James of which we were not aware

"Monte Carlo Calculations for Electron Microscopy,

H. E. Bishop: As many Monte Carlo calculations are now
made Tor the TEM, should relativistic effects be included in
the theory?

jﬂl_]nll Yes,

included in the scattering and energy loss equations for such

the relativistic electron effects should be
high energies.
H. E. Bishop: Why the in

Fivure 6 deviate from the sereencd Rutherford cross-section

do partial wave solutions

at small angles?
ol

scattering

I'he method partial wave expansion for

calculation of elastic cross-sections s very

complex. and is beyond the intent of the present paper. A
ol he

as well as a description of the relativistic

desceription the method found in

32,

Rutherford scattering formula.

detailed can
Reference
Basically, the partial wave
method includes the phase shift of the scattered electron

R. B. Bolon: Would you comment on the magnitude of the
effect of the production of fast secondary clectrons in

reoard to their relative number and the resulting effect on

the and  spatial distribution of characteristic
X-rays? Do any Monte Carlo models consider these
elfects?

Author Although cach primary electron can generate o
lary number ol \L‘L‘Hl]d.il'_\' electrons, and the secondary

clectrons can generate tertiary electrons, ete., the dominant

lactor for characteristic X-ray production by secondary
clectrons is the energy distribution  of the  scecondary
clectrons produced As described in Reference 38, the
scattering cross-section greatly favors the production of
lower energy secondary clectrons,  In order to affect the
production of charactenstic X-rays, the fast secondary

clectron must be produced with an initial encrgy of at least
1Lht 0]

0
the fast second clectrons would be important to consider

ionization energy | an inner shell ¢lectron,  Hence

only for soft X-ray production (E_ <1 keV), and even then

it is probably a negligible effect. The author is not aware ol
any detailed Monte Carlo calculations of secondary electron

-1 ay
Reference

production, although the

38

elfects on characteristic

Monte Carlo

investigate the magnitude ol

model of could be used to

the effect.
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