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Fig. 1. Non-uniform sampling, which is inherent to most real-world point cloud datasets, has a severe impact on the convolved result signal. An input signal
represented as 1D function and as projected on a 3D sphere (top row) is convolved with an edge-detection kernel to obtain the output signal represented as
1D function and as projected on a 3D sphere (bo�om row). The four columns illustrate the impact of the sample distribution on the convolution result. The
ground truth continuous signal’s filter response (first column) is faithfully captured when convolving uniformly sampled point clouds (second column). In
the case of non-uniformly sampled point clouds, state-of-the-art convolutional methods severely deviate from the desired filter response (third column).
With our interpretation of non-uniform convolution as a Monte Carlo estimate in respect to a given sample density distribution (illustrated by the pink line),
we can compensate this deviation and obtain a filter response faithfully capturing that of the ground truth (fourth column).

Deep learning systems extensively use convolution operations to process
input data. Though convolution is clearly de�ned for structured data such
as 2D images or 3D volumes, this is not true for other data types such as
sparse point clouds. Previous techniques have developed approximations to
convolutions for restricted conditions. Unfortunately, their applicability is
limited and cannot be used for general point clouds. We propose an e�cient
and e�ective method to learn convolutions for non-uniformly sampled point
clouds, as they are obtained with modern acquisition techniques. Learning
is enabled by four key novelties: �rst, representing the convolution kernel
itself as a multilayer perceptron; second, phrasing convolution as a Monte
Carlo integration problem, third, using this notion to combine information
from multiple samplings at di�erent levels; and fourth using Poisson disk
sampling as a scalable means of hierarchical point cloud learning. The key
idea across all these contributions is to guarantee adequate consideration of
the underlying non-uniform sample distribution function from aMonte Carlo
perspective. To make the proposed concepts applicable to real-world tasks,
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we furthermore propose an e�cient implementation which signi�cantly
reduces the GPUmemory required during the training process. By employing
our method in hierarchical network architectures we can outperform most
of the state-of-the-art networks on established point cloud segmentation,
classi�cation and normal estimation benchmarks. Furthermore, in contrast to
most existing approaches, we also demonstrate the robustness of our method
with respect to sampling variations, even when training with uniformly
sampled data only. To support the direct application of these concepts,
we provide a ready-to-use TensorFlow implementation of these layers at
https://github.com/viscom-ulm/MCCNN.
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1 INTRODUCTION

While convolutional neural networks have achieved unprecedented
performance when learning on structured data [He et al. 2015;
Huang et al. 2016; Wang et al. 2017], their application to unstruc-
tured data such as point clouds is still fairly new. Early methods have
looked into fully-connected approaches and striven for permutation
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and rotational invariance [Guerrero et al. 2018; Qi et al. 2017a,b].
Unfortunately, a non-uniform sampling typically associated with
real-world point cloud data, such as for instance resulting from the
projective e�ect of a LiDAR scan, has not been a special focus of
previous research. As the underlying sampling results in severe im-
plications, as illustrated in Fig. 1, we propose a new approach which
has been developed with a special focus on non-uniformly sampled
point clouds, achieving at the same time competitive performance
on uniformly sampled data.
To make progress towards our goals, we take into account the

original de�nition of convolution: an integral in an unstructured
setting. By using Monte Carlo (MC) estimation of this integral, we
will show that proper handling of the underlying sampling density
is crucial, and will produce results surpassing the state-of-the-art.To
this end, we make four key contributions.
First, we represent the convolution kernel itself as a multilayer

perceptron (MLP). Since a convolution kernel maps a spatial o�-
set (Laplacian) to a scalar weight, representing and learning this
mapping through an MLP is a natural choice.
Second, we suggest using Monte Carlo integration to compute

convolutions on unstructured data. Key is the adequate handling
of the non-uniformity and varying-density of points from a Monte
Carlo point of view. Averaging weighted pairs of points formally
means to sample anMC estimate of an integrand.While MC requires
to divide by the probability of each sample, this can be neglected
in a uniform setting, as it would result in a division by a constant.
However, when dealing with a varying sample density as present
in non-uniformly sampled point clouds, failing to perform this nor-
malization leads to a bias and consequently reduced learning ability.
Therefore, we claim that our approach provides a new form of ro-
bust sampling invariance, where for instance simply duplicating a
point will not change the estimated integrand. Stating convolution
as MC integration allows us to tap into the rich machinery of MC
including (quasi) randomization [Niederreiter 1992] and importance
sampling [Kahn and Marshall 1953]. Consequently, the convolution
becomes invariant under point re-orderings and typically works on
receptive �elds with a variable number of neighboring points.

Third, we show how this allows generalizing convolutions which
use a single sampling pattern to convolutions that map from one
sampling pattern to a di�erent one with a higher or lower reso-
lution. This can be used to learn (transposed) convolutions that
change the level-of-detail for pooling or up-sampling operations.
Even more general, we introduce convolutions that map from mul-
tiple input samplings to the desired output sampling allowing to
learn combining information from multiple scales.
Fourth, we introduce Poisson disk sampling [Cook 1986; Wei

2008] as a means to construct a point hierarchy. It has favorable
scalability compared to the state-of-the-art Farthest Point [Eldar
et al. 1997] sampling and allows to bound the maximal number of
samples in a receptive �eld.

The usefulness of these novelties is demonstrated by comparing
our approach to state-of-the-art point cloud learning techniques
for segmentation, classi�cation, and normal estimation tasks. We
will show that we outperform the state-of-the-art when learning
on non-uniform point clouds, while we still achieve state-of-the-art
performance for uniformly sampled point clouds.

2 PREVIOUS WORK

A straight-forward method to enable learning on point clouds is
to resample them to a regular grid and then applying learning ap-
proaches originally developed for structured data. While extensions
to multiple resolutions exist, e. g., based on octrees [Wang et al.
2017], in this section, we will solely focus on those techniques
which enable learning directly on unstructured data.

PointNet [Qi et al. 2017a] pioneered deep learning on unstruc-
tured datasets. It used a fully-connected network together with a
clever machinery to achieve rotation and permutation-invariance.
PointNet++ [Qi et al. 2017b] added extensions to support localized
sub-networks, but was not yet fully convolutional. PCP Net [Guer-
rero et al. 2018] allowed the inference of local properties like curva-
ture or normals but was also not convolutional.
Klokov and Lempitsky [2017] presented a convolutional learner

which used a k-d tree. However, since the leaf nodes of the tree had
a �xed number of points, it was sensitive to varying density, being
tight to the logic of building and querying k-d trees. In contrast, our
approach uses a regular grid to access neighbors in constant time
and thus works on multiple scales.
Shen et al. [2017] also provided a translation-invariant but non-

convolutional method, where convolution was replaced with the
correlation of local neighborhood graphs and learned graph tem-
plates. While showing good performance on small problems, it
remained particularly sensitive to the underlying graph structure.

Dynamic Graph CNNs by Wang [2018] were convolutional. They
employed a general notion of learnable operations on edges of
a graph of neighboring points. In contrast to other approaches,
they changed neighborhoods during learning, making the approach
slightly more complex to implement and less e�cient on large point
clouds.

PointCNN [Li et al. 2018] was also convolutional, working on the
k nearest neighbors. They used an MLP on the entire neighborhood
to learn a transformation matrix which was used later to weight
and permute the input features of the neighboring points. Then, a
standard image convolution was applied to the transformed features.

SPLATNet [Su et al. 2018] sought inspiration from the permutohe-
dral lattice [Adams et al. 2010] where convolutions can e�ciently be
performed on sparse data in high dimensions while the �lter kernels
are discrete masks in lattice space. Uneven sample distributions in
the lattice are addressed by “convolving the 1” [Adams et al. 2010]
i. e., repeating the convolution on a unit signal. Our work achieves
the same, but without the complication of creating a lattice.
Atzmon et al. [2018] use radial basis functions de�ned on a dis-

crete set of points to represent convolution kernels. The work is
computationally demanding but provides invariance under global
uniform resampling by construction. However, non-uniform sam-
pling settings are not considered.
In concurrent work, SpiderCNN [Xu et al. 2018] used step func-

tions to represent convolutions. The authors mentioned using MLPs,
as we do as well, but found them to perform worse than step func-
tions. Nevertheless, in our architectures, we found MLPs to perform
well. We acknowledge that further work shall explore di�erent
continuous representations to parametrize learned convolutions.
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Fig. 2. A k = 2-nearest neighbor receptive field (blue circle) in a scene
with non-uniform sampling of the same house-like geometry changes scale.

Groh et al. [2018] suggested using a linear function as a represen-
tation of an unstructured convolution kernel. With considerations
how dissimilar 2D convolution kernels are from linear functions, we
think an MLP to describe a kernel is worth exploring. Thanks to the
simplicity we share in our approach, they demonstrated excellent
scalability to millions of points, but the problem of non-uniform
sampling is not touched upon.

Most of the existing methods are based on convolving the k near-
est neighbors (using a hierarchical structure or not) [Groh et al.
2018; Klokov and Lempitsky 2017; Li et al. 2018; Shen et al. 2017;
Wang et al. 2018; Xu et al. 2018]. This approach is not robust in
non-uniform sampling settings, since adding more points into a
region in the space will reduce the k nearest neighbors to a small
volume around each point, capturing di�erent features from those
the kernel was trained on, i. e. it shrinks in densely populated areas
and grows in sparse ones. We see in Fig. 2 how this would prevent
constructing a sampling-invariant “house detector”. Aztmon et al.
[2018], although not considering non-uniformity in their paper,
transform the point cloud to volumetric functions which can be
robust to non-uniformly sampled point clouds. However, some com-
putations of their method are quadratic on the number of points
which makes their method not scalable. PointNet++ [Qi et al. 2017b],
on the other hand, computes features locally, which makes it scal-
able. Moreover, it was tested with non-uniformly sampled point
clouds by simulating the properties of LIDAR scans. Nevertheless,
their method selects a �xed number of random samples within a
radius around the points and thus does not consider the point den-
sity in its computations, which, as we will demonstrate, can lead to
errors.

3 CONVOLUTION KERNELS

Here, we will �rst recall the de�nition of a convolution (Sec. 3.1).
Then, wewill introduce a kernel representation usingMLPs (Sec. 3.2)
which shall allow e�cient and simple learning on irregular data.

3.1 Convolution as an integral

Recall the de�nition of a convolution as an integral of a product:

(f ∗ д)(x) =
∫

f (y)д(x − y)dy (1)

where f is a scalar function on R3 to be convolved and д is the
convolution kernel, a scalar function on R3. In our particular case, f
is the feature function for which we have a set S of discrete samples
xi ∈ S (our data points). If for each point no other information
is provided besides its spatial coordinates, f represents the binary
function which evaluates to 1 at the sampled surface and 0 otherwise.
However, f can represent any type of input information such as

x y x y x y z

g
1

g
1
g
2

g
1
g
2

g
3
g
4
g
5
g
6

g
7
g
8

a) b) c)

Fig. 3. Evolution of MLP kernels: a) A naïve solution would map one 2D
o�set x, y (blue dots) to one scalar result д (orange dots). b) We sug-
gest extending this to multiple outputs, e. g., д1 and д2, which speeds up
computation and reduces the number of learnable parameters. c) Our 3D
implementation uses two hidden layers of 8 neurons outpu�ing 8 kernel
values. In this example we require 2× 8× 8+ 3× 8 = 152 operations to learn
and compute while a naïve approach needs 8 × (3 × 8 + 8 × 8 + 8) = 768.

color, normals, etc. For internal convolutions, i. e., those which are
subsequent to the input layer, it can also represent features from a
previous convolution.

Translation-invariance. As the value of д only depends on relative
positions, convolution is translation-invariant.

Scale-invariance. Since evaluating the integral in Eq. 1 over the
entire domain can be prohibitive for large datasets, we limit the
domain of д to a sphere centered at 0 and radius 1. In order to
support multiple radii, we normalize the input of д dividing it by
the receptive �eld r . In particular, we choose r to be a fraction of
the scene bounding box diameter b, for instance r = .01 · b. Doing
so results in scale-invariance. Note, that this construction results in
compactly-supported kernels that are fast to evaluate.

Rotation-invariance. Note, that we do not achieve and seek to
achieve rotation-invariance. Typical image convolutions are not
rotation invariant either and succeed nonetheless.

3.2 Multilayer perceptron kernels

We suggest to represent the kernel д, by a multilayer perceptron.

De�nition. The multilayer perceptron (MLP) takes as input the
spatial o�set δ = (x− y)/r comprising of three coordinates, normal-
ized dividing them by the receptive �eld r . The output of the MLP
is a single scalar. To balance accuracy and performance, we use two
hidden layers of 8 neurons each (see Sec. 8 for more details). We
denote the hidden parameters as a vector ω.
For layers with a high number of input and output features, the

number of kernels and therefore the number of parameters the
network has to learn is too high (#inputs × #outputs). To address
this problem, we use the same MLP to output 8 di�erent д’s, thus
reducing the number of MLP’s by a factor of 8. Fig. 3 presents an
illustration of such an MLP, which takes three coordinates as input
and outputs 8 di�erent д’s.

Back-propagation. For back-propagation [Rumelhart et al. 1986],
the derivative of a convolution with respect to the parameter ωl of
the MLP is

δ f ∗ д
δωl

=

∫

f (y)δд(x − y)
δωl

dy. (2)
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x r
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Fig. 4. Steps of our MC convolution. For a given point x (a) the neighbors within the receptive field r are retrieved (b) to be used as Monte Carlo integration
samples (c). For each neighboring point yj , its probability density function, p(yj |x), is computed using Kernel Density Estimation [Parzen 1962; Rosenbla�
1956] (d). Based on the bandwidth used (pink disk), the neighboring points have di�erent e�ects on the computation of p(yj |x) (pink gradient).

3.3 Single- and multi-feature convolution

Our convolution consumesM input feature functions and outputs L
convolved feature functions. Based on the way the convolved feature
functions are calculated, we de�ne two types of layers: Single-feature
spatial convolution and Multi-feature spatial convolution. Single-
feature spatial convolution outputs a scalar feature by convolving
a scalar input feature. Therefore, in these layers, the number of
output features is equal to the number of input features, M = L,
and the number of kernels д is also equal toM . The multi-feature
convolution, on the contrary, is similar to the layers used in stan-
dard convolutional neural networks where each output feature is
computed as the sum of all input feature functions convolved:

fo =

M
∑

i=0

fi ∗ дo,i (3)

These layers are more computationally demanding since they have
to learnM × L convolution kernels д.

4 MONTE CARLO CONVOLUTION

In this section, we will show how convolutions can be stated as a
Monte Carlo estimate by relying on a sample’s density function,
which ultimately makes learning robust to non-uniform sample
distributions.

4.1 Monte Carlo integration

In order to compute the convolution in each sample point, we have
to evaluate the integral of Equation 1. Since we only have a set of
samples of our function f , we propose to compute this integral by
using MC integration [Kalos and Whitlock 1986], which uses a set
of random samples to compute the value of an integral.

De�nition. In our case, these samples comprise of the input data
points or a (quasi) random subset. Therefore, an estimate of the
convolution for a point x is

(f ∗ д)(x) ≈ 1

|N(x)|
∑

j ∈N(x)

f (yj )д
(

x−yj
r

)

p(yj |x)
, (4)

where N(x) is the set of neighborhood indices in a sphere of radius
r (the receptive �eld), and p(yj |x) is the value of the Probability

Density Function (PDF) at point yj when the point x is �xed, i. e.,

the convolution is computed at x. Fig. 4 provides an illustration of
this computation.
Please note that, since our input data points are non-uniformly

distributed, each point yj will have a di�erent value for p(yj |x). It
is also worth noticing, that the PDF depends not only on the sample
position yj but also on x: How likely it is to draw a point does not
only depend on the point itself, it also depends on how likely the
others in the receptive �eld r are.

Please �nally note that, here and in the following, x is an arbitrary
output point that might not be from the set of all input points yj .
This property will later allow re-sampling to other levels or other
irregular or regular domains.

Back-propagation. Back-propagation [Rumelhart et al. 1986] with
respect to the MLP parameters ωl can also be estimated using MC:

(

δ f ∗ д
δωl

)

(x) = 1

|N(x)|
∑

j ∈N(x)

f (yj )
p(yj |x)

δд
(

x−yj
r

)

δωl
. (5)

4.2 Estimating the PDF

Unfortunately, the sample density itself is not given but must be
estimated from the samples themselves. To do so, we employ Kernel
Density Estimation [Parzen 1962; Rosenblatt 1956]. The function
estimated is high where the samples are dense and low where they
are sparse. It is computed as

p(yj |x) ≈
1

|N(x)|σ 3

∑

k ∈N(x)

{

3
∏

d=1

h

(

yj,d − yk,d

σ

)

}

, (6)

where σ is the bandwidth which determines the smoothing of the
resulting sample density function (we use σ = .25r ), h is the Density
Estimation Kernel, a non-negative function whose integral equals 1
(we use a Gaussian), and d is one of the three dimensions of R3.

The PDF of a point yj in respect to a given point x is always rela-
tive to all other samples in the receptive �eld. Therefore, density can
not be pre-computed for a point yj since its value will be di�erent
for each receptive �eld de�ned by x and radius r . Note that in a
uniform sampling setting p would be a constant.

5 MC CONVOLUTION ON MULTIPLE SAMPLINGS

Our construction does not only allow handling varying sampling
densities but also to perform convolution between two (Sec. 5.1) or
even multiple di�erent samplings (Sec. 5.2).
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Fig. 5. Monte Carlo convolution for the same / di�erent sampling (hor-

izontal) and a single / multiple feature channels (vertical). Samples are
denoted as dots, whereby lines indicate if samplings match. Colors indicate
the samplings A, B and C.

Convolution involving a single sampling is illustrated in Fig. 5
(a). Here, the sampling A of the input and the output is identical.
While the previous section has detailed how to account for varying
sampling density, we will show in this section how MC convolution
can seamlessly handle two or more samplings.

5.1 Two samplings

A more generalized setting is shown in Fig. 5 (b). Here, the input
sampling is still A, but the output is on a di�erent sampling C.
The illustration shows a mapping from a lower sampling to a

higher sampling (also called upsampling, transposed convolution
or deconvolution). The same principle can be used to reduce the
sample resolution (pooling), as necessary for example when an
entire point cloud is successively reduced in resolution to produce a
single scalar classi�cation value. We will make use of combinations
of up- and downsampling in a U-net / encoder-decoder architecture
[Ronneberger et al. 2015] for our segmentation application.

Previous work also operated using di�erent samplings in a multi-
resolution hierarchy, but using �xed, non-learned interpolation,
e. g., inverse-distance weighting [Qi et al. 2017b] for upsampling
operations. Our approach allows learning these mappings instead.

The procedure explained in the previous section simply works in
the two-sampling case, as the kernelsд are de�ned on all continuous
o�set vectors xC −yA , that can be computed at any output position
xC in sampling C, and input position yAj in sampling A. Note, that

a density estimation has to be performed respectively to A, the
input, as explained in the previous section.

5.2 Multiple samplings

Another unique advantage of our construction is to relax the sam-
pling requirements not only between the input and output sampling
A and C, but also between the di�erent inputs. The case of multiple
input channels is seen in Fig. 5 (c) and (d). For Fig. 5 (c) the sampling
remains identical (A) between two input channels and the output.

Layer i-2

Layer i-1

Layer i

x

f
i-2

p
i-2

f
i-1

p
i-1

g
i-2

g
i-1

f
i
(x)

Fig. 6. Features upsampled from di�erent levels for a single black point x
on layer i with respect to two previous layers. The receptive field content
fi−1 and fi−2 is shown on the right, with their respective densities pi−1 and
pi−2 in pink. Each layer is MC-convolved using an individual MLP kernel
дi−1 and дi−2 which results are concatenated to create the feature vector
for point x of layer i . We guarantee the same maximum number of points
in all receptive fields by maintaining the same ratio between the Poisson
disk and the radius of the convolutions.

In Fig. 5 (d) the sampling is mutually di�erent between both inputs
and the output.
A typical application of this multiple-sampling approach is to

consume information from multiple resolutions in a hierarchy at
the same time. Our example shows a learned up-sampling from �ve
samples atA and three samples at level B which are combined into
a ten-sample result C. Note, that in the multiple-samplings case,
density estimation is to be performed relative toA when convolving
samples from A and relative to B when processing points from B.
Combining output from multiple previous layers has also been

used in DenseNet [Huang et al. 2016], but the classic tabulated
kernels do not admit to construct dense links between di�erent
samplings.
We are not limited to use the same receptive �eld size on all

samplings but each can choose its own, such that the number of
samples falling into the receptive �eld remains roughly constant.
Note, that any deviation from this desired constant sample count, as
well as variation of density inside the receptive �eld, is compensated
for using the density estimation.
A particular embodiment of multi-sampling MC convolution is

shown in Fig. 6, where information from two 2D point clouds with
di�erent resolutions are up-sampled into a third one with a higher
resolution. Note how the receptive �eld grows in the level with a
lower resolution.

6 POISSON DISK HIERARCHY

Deep image processing routinely reduces – and later increases again
– the image resolution to make use of both local and global informa-
tion. The same is achieved in deep point cloud processing [Qi et al.
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Table 1. Time for sampling a tenth of the points using di�erent algorithms.

100/1 k 1 k/10 k 10 k/100 k 100 k/1000 k

Poisson disk 10.4ms 21.7ms 136.4ms 1,304.9ms
Farthest Point 2.4ms 11.9ms 657.1ms 108,682.8ms

2017a] usually using Farthest Point (FP) sampling [Eldar et al. 1997].
In this work, we favor using Poisson disk (PD) sampling [Cook 1986]
instead. This has two reasons: scalability and the ability to preserve
the sampling pattern while bounding the sample count per unit
measure.

Realization. PD is realized as a network layer using the Parallel
Poisson Disk Sampling algorithm [Wei 2008]. The input for these
layers are any point sampling and a parameter rp controlling the PD
radius. The output is a sampling with a minimum distance between
points equal to rp. Note that this does not bound the distance from
above, so areas with distances much larger than rp can remain.

Multiple PD layers can be combined to create a multi-resolution
hierarchy. We use this in combination with multi-samplings convo-
lution (Sec. 5) to build an encoder-decoder network [Ronneberger
et al. 2015] for point clouds.

Note that, contrary to other sampling approaches, this technique
generates a non-�xed number of samples. Therefore, our networks
cannot take advantage of acceleration techniques commonly used
by deep learning frameworks in which the memory required for a
forward pass is reserved in advance. However, we still achieve good
performance as is presented in Section 8.7.

Scalability. The main practical reason to use PD is scalability to
large point clouds as evaluated in Tbl. 1. We see, that PD sampling
presents a low compute time for the di�erent model sizes (linear to
the number of points in the model). FP sampling, on the other hand,
does not scale well, requiring more than 100 seconds to sample 100 k
points from a 1,000 k points model.

Sample count bound. Moreover, PD allows us to limit the number
of points within the receptive �elds of our convolutions. The Ke-
pler conjecture [Hales et al. 2017], provides an upper bound to the
number of points inside the receptive �elds: This is illustrated in
Fig. 7. Starting from a non-uniform sampling (a), PD will retain non-
uniformity whilst maintaining a minimal distance between points
(c). Therefore, any ball, such as the receptive �eld of our approach
(pink circle) will at most retain a bound number

n <
π
(

r +
rp
2

)3

3
√
2rp3

, when rp ⩽ r ,

of balls of the Poisson disk radius rp (marked in green) in a receptive
�eld of radius r .
In practice, the number of points is much lower than this limit

since we learn from points sampled on the surface of a 3D object.
As it is illustrated in Figure 6, we can take advantage of this fact to
compute features at di�erent scales by maintaining a constant ratio
between r and rp. We found that a ratio between 4 and 8 provides
enough samples in our receptive �elds (∼ 30).

c)a) b) Poisson diskInput Farthest point

Fig. 7. Result of Farthest Point (FP) (selecting a fix number of samples) and
Poisson Disk (PD) sampling for non-uniformly sampled inputs. Blue dots
are samples, the pink circle denotes the receptive field. Grey circles in FP (b)
are samples not fulfilling a minimal distance (overlap). Green circles in PD
(c) are balls around samples that can be packed inside the receptive field.

The most commonly used implementation of FP sampling [Qi
et al. 2017a] for learning on point clouds, selects a �xed number of
samples from the input point cloud. Contrary to PD, this method
cannot bound the number of points that fall in the receptive �elds
(b). In order to generate a sampling with the same properties as PD,
this method would need to be modi�ed to select a variable number
of points based on the distance of each new sample to the subset of
already selected ones.

7 IMPLEMENTATION

In this section, we describe several implementation details of the
building blocks of the proposed learning approach.

PDF computation. Our implementation di�ers from averaging
the individual contributions of the neighboring points only by the
requirement to divide by their probability values p. Therefore, our
MC approach requires two steps: computing all values of p and
querying them during MC convolution.

To compute p, we create a voxel grid with cell size r , as in [Green
2008], which enables us to perform the desired computation in time
and space linear wrt. the number of points. Further scalability would
be provided using hashing instead of a regular grid as proposed by
Teschner et al. [2003].

For lookup performance, the neighbor indices N(x) of all points
x are stored in a �at list, which is indexed by a start and end index
stored at each grid cell. Additionally, we compute the values of
p(yj |x) and store them in a list of the same size. Both lists can
get arbitrarily long with arbitrarily high density, which decreases
performance during the computation of our convolution for large
values of r . However, maintaining a good ratio between the receptive
�eld and the PD radius provides an upper bound on the number of
neighbors of each point.
Based on the thus constructed data structures, the neighbor in-

dices, as well as the precomputed PDF, can now be looked-up
in constant time using the computed information. When looking
up the neighbor values, they are multiplied by the kernel weight
д((x − yj )/r ) and divided by the p(yj |x).

Note that the voxel grid in which points are distributed is com-
puted in parallel on the GPU, resulting in di�erent point orderings
within the same cell for di�erent executions. This introduces ran-
domness in the output sampled point clouds of our PD sampling
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strategy, which is preferred during learning. Sec. 8 evaluates the
e�ect of the randomness on the resulting accuracy.

Multilayer Perceptron Evaluation. Evaluating the MLP during MC
convolutions requires a considerable amount of GPU memory when
using implementations as provided by standard frameworks. This
limits the number of computed features per point and the number of
convolutions used in the network architecture. In order to address
these limitations, we have implemented the MLP evaluation in a
single GPU kernel. By doing so, our networks do not require to
expand the features and coordinates of neighboring points and
also do not need to store intermediate MLP results for each layer.
However, with this implementation, we are not able to use some
features, such as batch normalization, to improve learning.

Batch Processing. Our layers process point clouds of variable size.
Moreover, as described in Section 4, our convolutions take into
account all the neighboring points to carry out their computations.
These design choices do not allow us to use the standard tensor
approach to process a batch of models in parallel.

In order to support batch processing, we use an extra vector with
an integer value for each point, denoting the model identi�er to
which the point belongs to. We create an acceleration data structure
to access neighboring points (as described at the beginning of this
section) for each model, and, during the evaluation of the layers,
only the appropriate data structure is updated and queried based
on the model identi�er of each point. This simple approach allows
us to process batches of models with variable size in parallel by
increasing the memory consumption linearly with the number of
points. However, in con�gurations with reduced GPU memory, a
more sophisticated approach can be considered, such as only storing
the number of points per model and perform extra computations
within the layers.

8 EVALUATION

Here we report the results obtained when using the machinery
explained before in a complete network on speci�c data for relevant
tasks. To make the reported results comparable, we introduce a
dataset with non-uniform sampling in Sec. 8.1 based on current
benchmark data. Next, we describe the speci�c tasks carried out in
Sec. 8.2 and the methods used in Sec. 8.3, before reporting actual
quantitative evaluation results in Sec. 8.4. Moreover, we report the
results of applying our networks to process real-world datasets in
Sec. 8.5. And, lastly, we introduce additional experiments in Sec. 8.6
and present the computational e�ciency of our networks in Sec. 8.7.

8.1 Non-uniformly sampled test data

Non-uniform test data is found in typical scanned scenes. How-
ever, existing benchmarks provide data sets of uniformly sampled
models [Wu et al. 2015; Yi et al. 2016]. In order to evaluate the per-
formance of our and other state-of-the-art networks, we generated
our own data set by arti�cially producing non-uniform samplings
(see Fig. 8). This allows us to explicitly study the e�ect of sampling.

To produce such data, we start from a uniformly sampled point
cloud, and at each point perform rejection sampling, whereby the
rejection probability is computed according to one of �ve protocols:

UNIFORM LAMBERTIAN GRADIENT SPLIT OCCLUSION

Fig. 8. Di�erent sampling protocols applied to the same object. Uniform is
uniformly random. Lambertian depends on the orientation, here shown as
an arrow. Locations facing this direction aremore likely to contain points. For
Gradient, the likelihood of generating a point decreases along a direction,
here shown as an arrow again. For Split, the shape is split into two halves,
here shown as a do�ed line, where each part is samples uniformly random,
but with di�erent density. Occlusion also depends on the orientation. Only
locations visible from this direction contain points.

Uniform (no rejection), Split (probability is either a random con-
stant smaller than 1 in a random half-space or 1, we used 0.25 in our
tests), Gradient (probability is proportional to the projection onto
the largest bounding box axis), Lambertian (probability is propor-
tional to the clamped dot product between the surface normal and
a �xed “view” direction) and Occlusion where probability is one
except for points invisible from a certain direction. These sampling
protocols are applied during the training and testing phase on the
data sets of the di�erent benchmarks. Thus, each time a model is
loaded, we apply one of these sampling techniques (the one we are
currently testing) with a random seed to generate the probabilities
of each point and the view direction where applicable.

8.2 Tasks

In this section, we describe the tasks used to evaluate our networks:
classi�cation, segmentation, and normal estimation.

Classi�cation. This task assigns a label to each point cloud as a
whole. Its performance is measured in percentage of correct pre-
dictions (more is better). We used the resampled version of Model-
Net 40 [Wu et al. 2015] provided by Qi et al. [2017a]. This dataset is
composed of 12,311 point clouds uniformly sampled from objects
of 40 categories. The o�cial split is composed of 9,843 models in
the train set and 2,468 in the test set. The models were sampled into
1, 024 points according to the di�erent protocols of Sec. 8.1

Segmentation. This task assigns a label to every point. It can
be quanti�ed by its intersection-over-union (IoU) metric (more is
better). We segment the 16,881 point clouds of ShapeNet [Yi et al.
2016], uniformly sampled from 16 di�erent classes of objects, each
one composed of between 2 and 6 parts, making a total of 50 parts.
We use the standard train/test split for training [Qi et al. 2017b]. The
class of the point cloud is assumed to be known for this task and
used as input. We used as input of our networks the complete point
clouds, which are in the range of 1,000 to 3,000 points per object.

Normal estimation. This task computes a continuous orientation
at every point. It is analyzed by the cosine distance (less is better).
Similar to Atzmon et al. [2018], we use ModelNet 40 for evaluation,
taking 1,024 points from each model on the standard train/test split.
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Fig. 9. Comparison of our segmentation result for uniform (second row) and non-uniform samplings (third row) to the ground truth (first row). Non-uniform
sampling use the Gradient (first and second columns), Lambert (third and fourth columns), and Split (fi�h and sixth columns) protocols.

Table 2. Performance of di�erent methods, including ours, (rows) for dif-
ferent tasks (columns) with di�erent measures (please see text).

Classify Segment Normals
1,2Su et al. [2018] - 85.1 -
1Xu et al. [2018] 92.4% 85.3 -
1Qi et al. [2017b] 91.9 % 85.1 .47
Qi et al. [2017a] 89.2 % 83.7 -

Groh et al. [2018] 90.2 % - -
Shen et al. [2017] 90.8 % 84.3 -
Wang et al. [2018] 92.2 % 85.1 -

Li et al. [2018] 91.7 % 86.1 -
Atzmon et al. [2018] 92.3 % 85.1 .19
Klokov et al. [2017] 91.8 % 82.3 -

MC (Ours) 90.9 % 85.9 .16
1 Additional input 2One network per class in segmentation tasks

8.3 Methods

Please see the Appendix Sec. A for training and network details.

Architecture. A di�erent architecture is used for each task, where
we compare three variants: The �rst is PointNet++ [Qi et al. 2017b]
(PN++) with multi-scale grouping (MSG) , serving as a baseline. The
second is our own architecture, but without using MC convolution,
i. e., kernel-weighted averaging inside the receptive �eld, denoted as
AVG. The last is our architecture using our Monte Carlo convolution
(MC). Additionally, we compare to a range of methods that have
reported results for the uniform data we use.

Evaluation. We study two variants of training. The �rst only
trains on uniformly sampled data. The second only on non-uniformly
sampled data, i. e., a dataset produced using all sampling protocols
from Sec. 8.1 expect Uniform. Then, the trained models are tested
on all 5 sampling protocols described in Sec. 8.1. To counterbalance
the randomness introduced by the point sampling algorithm, all
measurements were averaged across �ve independent executions.

8.4 Results

Here we discuss the results for uniform and non-uniform sampling
as summarized in Tbl. 2 and Tbl. 3, respectively, for every task.

Classi�cation. The results are illustrated in the �rst column of
Tbl. 2. Our approach generates competitive classi�cation results for
uniform sampling, achieving 90.9 % of accuracy. More importantly,
our networks presented a robust performance on non-uniformly
sampled point clouds (see �rst block of Tbl. 3).
When training only on uniformly sampled point clouds, our MC

method results in better performance than PointNet++ when test-
ing on uniformly and most of the non-uniformly sampled point
clouds. Our method achieved 90.9 %, 87.6 % and 87.3 % on the Uni-
form, Split and Gradient sampling protocols, in contrast to 89.1 %,
84.4 % and 79.7 % achieved by PointNet++. For the Lambert and Oc-
clusion protocols, both networks presented a similar performance
of around 74 − 72 %. In this protocol, half the points for each model
are missing which makes the task more di�cult.
Furthermore, our MC method presented slightly better perfor-

mance than PointNet++ in all protocols when training only on
non-uniformly sampled point clouds, achieving between 90.1 % and
90.6 % on the di�erent protocols whilst PointNet++ achieved a per-
formance between 89.1 % and 89.8 %.
Lastly, when compared with the AVG network, our MC convolu-

tions obtained better performance on all protocols. The AVG network
had more di�culties to generalize, as compared with our MC net-
work, presenting severe over-�tting. In order to prevent over-�tting,
we trained the AVG network using the data augmentation strategy
followed by PointNet++ [Qi et al. 2017b].

The variance of the resulting accuracy over several executions MC
was .0367, indicating that, the observed mean accuracy is signi�cant.

Segmentation. Results of our method are compared to the ground
truth for di�erent models in Fig. 9. The second column of Tbl. 2
presents the performance achieved by our segmentation network on
uniform data. These are competitive compared to the state-of-the-
art methods, only slightly surpassed by PointCNN [Li et al. 2018].
Our method achieved 85.9 whilst PointCNN achieved 86.1. Please
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Table 3. Performance comparison of di�erent methods for three di�erent tasks (columns) for di�erent sampling protocols (rows). For each task, we separate
training on “uniform” (le� columns) and on “non-uniform” (right columns) data, while test is always done according to a di�erent protocol in each row.

Classi�cation Segmentation Normal estimation

Train→ Uniform Non-Uniform Uniform Non-Uniform Uniform Non-Uniform

Test ↓ PN++ AVG MC PN++ MC PN++ AVG MC PN++ MC PN++ AVG MC PN++ MC

Uniform 89.1% 88.3% 90.9% 89.6% 90.1% 83.6 85.6 85.9 84.4 85.2 .469 .165 .161 .623 .377

Split 84.4% 83.3% 87.6% 89.1% 90.6% 82.9 84.9 84.6 84.9 85.7 .581 .220 .204 .595 .222

Gradient 79.7% 82.9% 87.3% 89.3% 90.6% 81.7 83.8 84.0 83.9 85.1 .616 .215 .201 .589 .220

Lambert 74.6% 70.1% 73.0% 89.8% 90.4% 80.7 83.1 82.7 83.8 84.9 1.61 .743 .716 1.33 .221

Occlusion 74.8% 67.9% 72.4% 89.5% 90.2% 81.3 83.4 82.7 84.3 85.5 1.49 .679 .654 1.25 .132

Fig. 10. Semantic segmentation results of our approach (bo�om row) on ScanNet [Dai et al. 2017] compared with ground truth (top row).

note, that PointCNN is based on k-nearest neighbors convolutions,
and, as discussed in Section Sec. 2, is not the best approach to handle
non-uniformly sampled point clouds.
We state segmentation performance for non-uniform sampling

in the middle block of Tbl. 3. When trained only on uniformly
sampled point clouds, our MC network obtained better results on all
protocols than PointNet++. Moreover, when trained on only non-
uniformly sampled point clouds, although PointNet++ presented
a competitive performance, our MC network also obtained better
results than PointNet++ in all protocols.
It is also worth noticing that, as in the classi�cation task, Point-

Net++ obtained better results when trained with non-uniformly
sampled point clouds. That indicates that the proposed sampling
protocols can also be used as a data augmentation technique.
When comparing with the AVG network, MC presented higher

accuracy on the uniformly sampled protocol (MC 85.9 vs. AVG 85.6)
and on the Gradient protocol (MC 84.0 vs. AVG 83.8). However, AVG
performed better on the Split (MC 84.6 vs. AVG 84.9), Lambert (MC
82.7 vs. AVG 83.1), and Occlusion protocols (MC 82.7 vs. AVG 83.1).
Nevertheless, the di�erences between these networks remain small.

Normal estimation. The results of this task are shown in the last
column of Tbl. 2. On uniform data, our network outperformed state

of the art methods, achieving a mean cosine distance of .16 and
improving thus the accuracy of .19 reported by Atzmon et al. [2018].
When tested on non-uniform data (see the last block of Tbl. 3), our MC
approach outperforms PointNet++ in all protocols when trained on
both uniformly and non-uniformly sampled point clouds. The same
network with AVG convolutions also obtained a good performance.
However, MC convolutions obtained better results.

8.5 Real-world data

We also applied our method to real-world data for a semantic seg-
mentation task from ScanNet [Dai et al. 2017]. This dataset is com-
posed of 1045 scanned rooms for training, 156 rooms for evaluation,
and 312 rooms for testing. The task requires to classify each input
point into 20 di�erent categories as shown in Fig. 10.
We report performance as mean per-class voxel accuracy [Dai

and Nießner 2018]; a more meaningful measure than the original
ScanNet metric (overall voxel accuracy) used on PointNet++. Our
approach achieves 62.5 %, in comparison to 60.2 % of PointNet++,
50.8 % of ScanNet, and 54.4 % of the method proposed by Dai and
Nießner [2018]. When adding image information from 5 di�erent
views, Dai and Nießner achieved 75.0%. Our network is able to gener-
ate consistent predictions on unannotated points and predict correct
classes for incorrect annotated objects on the ground truth (door in
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Table 4. Classification accuracy
and timing for di�erent MLP sizes.

MLP Accuracy Time

4 90.8 % 21.0ms
8 90.9 % 24.6ms
16 90.6 % 26.2ms

Table 5. Train (one epoch) and
test time for di�erent tasks.

Train Test

Classify 454 s 24.6ms
Segment 2160 s 87.4ms
Normals 426 s 28.1ms

the second column and sofas in the third column of Fig. 10). These
point clouds have up to 600 k points, that our method can handle in
3∼5 seconds during training without splitting it into chunks.

8.6 Variants

Poisson disk hierarchy. In order to evaluate the MC convolutions
without considering the Poisson Disk hierarchy, we trained a simple
network composed of two convolutions on the normal estimation
task. First we trained it using AVG convolutions, and then using
MC convolutions. We found AVG to perform worse than MC for uni-
form (.305), split (.336) gradient (.334) and lambert protocols
(.693). Similarly, the performance of MC without PD was limited for
uniform (.282), split (.312) gradient (.310) and lambert (.662) as
well. This indicates, that at least for normal estimation, using a PD
hierarchy is essential.

MLP size. When comparing the classi�cation accuracy at di�erent
MLP sizes (Tbl. 4), the maximal accuracy was obtained at 8 neurons,
whilst 4 neurons achieve better timing. We decided to use 8 neurons
since it provides the best accuracy-execution time trade-o�.

8.7 Computational e�iciency

Tbl. 5 presents the time required to train an epoch of our networks
and the time required to compute a forward pass for a single model.
Training time is measured for one single epoch. Testing time is the
time required to process a forward pass of an individual model. Due
to our parallel implementation of all the algorithms and our acceler-
ation data structures, all networks present competitive performance.
The lowest performance is found for the segmentation network
since it requires to compute a high number of features for the initial
point set. All measurements were used an Nvidia GTX 1080 Ti.

9 LIMITATIONS

Besides the many bene�ts presented in this paper, the proposed
approach is also subject to a few limitations.

The main limitation is that we have to rely on KDE to obtain the
PDF, which requires to carefully select the bandwidth parameter to
obtain a good PDF approximation. In the future, we would like to
further investigate this shortcoming and inspect more advanced PDF
estimations, like the selection of σ in KDE using cross-validation,
ballooning, or otherwise automate its choice.

While our approach provides an unbiased estimate of the convo-
lution – assuming the KDE was reliable – there is a variance-locality
trade-o�: on one hand, one wants a good locality, small receptive
�elds and few points in them to allow for fast computation, but
these give a noisy estimate. On the other hand, a net with large

receptive �elds that contain many points is slower to compute, does
not localize, but has less noisy estimates.

10 CONCLUSIONS

We have shown how phrasing convolution as a MC estimate pro-
duces results superior to the state-of-the-art in typical learning-
based processing of non-uniform point clouds, such as segmenta-
tion, classi�cation, and normal estimation. This was enabled by
representing the convolution kernel itself using a multilayer per-
ceptron, by accounting for the sample density function, by using
Poisson disk pooling, and by realizing MC up- and down-sampling
to preserve the original sample density. Moreover, the experiments
demonstrated that our networks are more robust to over-�tting with
better generalization, being able to obtain the best performancewith-
out any data augmentation technique (something mandatory in the
classi�cation task if the point density is not considered).
Although other methods were able to present competitive per-

formance on some tasks when trained on non-uniformly sampled
data, it is not always possible to predict the sampling of our future
input data in real-world scenarios. Our model’s ability to generalize
and become robust to unseen samplings is of key importance for
the success of this type of networks in real-world tasks.
In future work, we would like to apply our idea to inputs of

higher dimensionality, such as animated point clouds or point clouds
with further attributes, such as color. Another direction for future
research could be to consider what a non-uniform density means
when dealing with triangular or tetrahedral meshes, that typically
do not come with uniform sampling.
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A ARCHITECTURES

A.1 Classification

Our classi�cation architecture is composed of several levels (Fig. 11).
Each computes a convolution on a point cloud, uses Poisson disk
sampling to reduce the number of points, and performs a down-
sampling operation to compute the features of the new points.

The convolution of the �rst level is a multi-feature convolution in
order to increase the number of features. However, in deeper levels,
we use a single-feature convolution for performance considerations.
In order to incorporate combinations of features in such levels, we
introduce 1 × 1 convolutions between the spatial convolutions.

Before each layer, we add a batch normalization layer to improve
training, and a ReLU layer to introduce non-linearities. Moreover,

similar to Dense blocks [Huang et al. 2016], we incorporate skip links
between the output of the down-sampling layers and the output of
the spatial convolution.
The classi�cation network generates a point cloud hierarchy of

four levels by iteratively using Poisson Disk sampling on the input
point cloud with radius .1, .4, and

√
3 (we use the original point

cloud as the �rst level). The last level (4) is composed of only a single
point since the Poisson Disk radius used to compute it was equal to
the diagonal of the bounding box.

The �nal output of the network is a feature vector describing the
model which is processed by an MLP with two hidden layers.
In order to increase the robustness of the classi�cation under

poor samplings, this architecture was replicated in two di�erent
paths, which generate di�erent probability vectors that are added
together to create the �nal class probabilities. However, the second
path is composed of only two layers and works directly with the
second level of the point cloud hierarchy.

Training. We use cross-entropy loss with an Adam optimizer, a
batch size of 32, and an initial learning rate of .005. The learning
rate is divided by half after every 20 epoch. To prevent over-�tting
we used a drop-out probability of .5 in the �nal MLPs and a drop-out
probability of .2 for the point features before each layer. Moreover,
we selected a point from the dataset with a probability of .95, which
varied the input points during training. In order to obtain a network
robust to models with di�erent samplings, during training, we de-
activate one or none of the two paths of the network. The network
was trained for 200 epochs.

A.2 Segmentation

This network computes a four-level point hierarchy by iteratively
applying our Poisson disk sampling algorithm with radius .025, .1,
and .4. It makes use of an encoder-decoder architecture (Fig. 11).
Since the class of the model is assumed as input, as in Point-

Net++ [Qi et al. 2017b], we concatenate a one-hot vector containing
this information with the output of our network. This information
is processed by an MLP composed of two hidden layers with 512 and
256 neurons, and 50 outputs, which generates the parts probabilities.

Training. We trained using a cross-entropy loss with an Adam
optimizer and a batch size of 32. We used an initial learning rate of
.005 which was scaled by .2 every 20 epochs. As in the classi�cation
networks, we used a drop out rate of .5 in the �nal MLP and .2
before each layer. Since in this task we used the complete point
set as input, we used a probability of .2 to drop out a point during
training. We trained our network for 90 epochs.

A.3 Normal estimation

Our network has an encoder-decoder architecture which generates
a point hierarchy of three levels by iteratively applying our Poisson
Disk Sampling algorithm with radius .1 and .4.

Training. We used a cosine distance loss using an Adam optimizer
and a batch size of 16. Initially, we used a learning rate of .005which
we decreased by half every 20 epochs. We trained our network for
160 epochs.
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Fig. 11. Network architectures used for the classification, segmentation, normal estimation, and semantic segmentation tasks. The three di�erent building
blocks used to generate our networks are described at the bo�om of the figure: 1 × 1 convolutions, which reduce or increase the number of point features
by combining them; Spatial convolutions, which use a level of the point hierarchy as the center of the convolution and another level to sample the feature
functions in order to generate a set of new point features; And multi-layer perceptrons (MLP), which are composed of three fully-connected layers.

A.4 Semantic segmentation

For the semantic segmentation task on real-world datasets, we use
a similar architecture to the one used for the segmentation task.
However, since the datasets used in this task are complete rooms of
varying size, this network architecture has some di�erences with the
segmentation network (see Fig. 11). The most important di�erence
is that, due to the di�erent sizes of the rooms, we de�ne the radius
of our operations in meters, in contrast to the segmentation network
in which were de�ned relative to the bounding box. Moreover, since
the point clouds for this task are composed of a higher number of
points, the network computes a point hierarchy of 5 levels instead
of 4 by applying Poisson Disk sampling with radius .1, .2, .4, and
.8 meters. Lastly, in order to reduce the number of operations and
the memory consumption, we do not compute a convolution in the
�rst level of the hierarchy. Instead, we use a pooling operation to
compute features in the second level based on the input point cloud.

Training. We trained using a cross-entropy loss with an Adam
optimizer. As in the segmentation task, we used an initial learning
rate of .005 which was scaled by .2 every 20 epochs. In order to

prevent over-�tting, we used a weight decay factor of 0.0001 and
a drop out rate of .5 in the �nal MLP and .2 before each layer.
Moreover, we used a probability of .15 to drop-out a point during
training. We trained our network for 100 epochs.

Since the models on the dataset have a varying number of points,
in the range of [10 k, 550 k], instead of de�ning a �xed number of
rooms per batch we de�ned a �xed number of points per batch.
Each train step, we select as many rooms as possible until we �ll
the budget of 600 k points.
Furthermore, the number of points per class is not equally dis-

tributed (most of the points belong to the classes floor and wall).
In order to train a model which is able to classify points for all the
classes and not only the most common, we weighted the losses of
each individual points based on the class. Moreover, in contrast to
previous approaches, we consider all the unannotated points in our
input point clouds. However, the loss generated by these points are
weighted by 0 and they are not considered during the computation
of the performance metric.
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