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Abstract

The data association problem occurs for multiple
target tracking applications. Since non-linear and
non-Gaussian estimation problems are solved approxi-
mately in an optimal way using recursive Monte Carlo
methods or particle filters, the association step will be
crucial for the overall performance. We introduce a
Bayesian data association method based on the par-
ticle filter idea and the joint probabilistic data asso-
ciation (JPDA) hypothesis calculations. A compari-
son with classical EKF based data association meth-
ods such as the nearest neighbor (NN) method and the
JPDA method is made. The NN association method is
also applied to the particle filter method. Multiple tar-
get tracking using particle filter will increase the com-
putational burden, therefore a control structure for the
number of samples needed is proposed. A radar target
tracking application is used in a simulation study for
evaluation.

1 Introduction

For multiple target tracking application the data asso-
ciation problem must be handled. Traditionally, the es-
timation problem is solved using linearized filters, such
as the extended Kalman filter (EKF) [4], under a Gaus-
sian noise assumption. The sufficient statistics from
the linearized filter are used for data association. Sev-
eral classical association methods have been proposed
in the literature. When dealing with non-linear models
in state equation and measurement relation and a non-
Gaussian noise assumption, these estimation methods
may lead to non-optimal solutions. The sequential
Monte Carlo methods, or particle filters, provide gen-
eral solutions to many problems where linearizations
and Gaussian approximations are intractable or would
yield too low performance. In this paper, we apply
the classical particle filter Bayesian bootstrap [12], to a
multiple target environment. In a simulation study we
compare this approach to traditional methods. To han-
dle the complexity problem we also propose a controller
structure, to recursively chose the number of particles.

2 Sequential Monte Carlo methods

Monte Carlo techniques have been a growing research
area lately due to improved computer performance. A
rebirth of this type of algorithms came after the seminal
paper of Gordon et al. [12], showing that Monte Carlo
methods could be used in practice to solve the optimal
estimation problem. In the recent article collection, [9],
the theory and development in sequential Monte Carlo
methods over the last years are summarized.

Consider the following non-linear discrete time system
for a single target

xt+1 = f(xt) + vt,

yt = h(xt) + et.

The sequential Monte Carlo methods, or particle fil-
ters, provide an approximative Bayesian solution to
discrete time recursive problem by updating an ap-
proximative description of the posterior filtering den-
sity. Let xt ∈ R

n denote the state of the observed sys-
tem and Yt = {yi}t

i=0 be the set of observations until
present time. Assume independent process noise vt and
measurement noise et with densities pvt respective pet .
The initial uncertainty is described by the density px0 .
The particle filter approximates the probability density
p(xt|Yt) by a large set of N particles {x(i)

t }N
i=1, where

each particle has an assigned relative weight, w
(i)
t , such

that all weights sum to unity. The location and weight
of each particle reflect the value of the density in the re-
gion of the state space. The particle filter updates the
particle location and the corresponding weights recur-
sively with each new observation. The non-linear pre-
diction density p(xt|Yt−1) and filtering density p(xt|Yt)
for the Bayesian interference are given by

p(xt|Yt−1) =
∫

Rn

p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (1)

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1). (2)

The main idea is to approximate p(xt|Yt−1) with

p(xt|Yt−1) ≈ 1
N

N∑
i=1

δ(xt − x
(i)
t ), (3)



where δ is the discrete Dirac function. Inserting (3)
into (2) yields a density to sample from. This can be
done by using the Bayesian bootstrap or Sampling Im-
portance Resampling (SIR) algorithm from [12], given
in Table 1. The estimate and uncertainty region for the

Bayesian bootstrap (SIR)

1. Set t = 0, generate N samples {x(i)
0 }N

i=1

from the initial distribution p(x0).

2. Compute the weights w
(i)
t = p(yt|x(i)

t ) and nor-
malize, i.e, w̃

(i)
t = w

(i)
t /

∑N
j=1 w

(j)
t , i = 1, . . . , N .

3. Generate a new set {x(i?)
t }N

i=1 by resampling with
replacement N times from {x(i)

t }N
i=1, where

Pr(x(i?)
t = x

(j)
t ) = w̃

(j)
t .

4. Predict (simulate) new particles, i.e,
x

(i)
t+1 = f(x(i?)

t , vt), i = 1, . . . , N using different
noise realizations for the particles.

5. Increase t and iterate to item 2.

Table 1: Bayesian bootstrap (SIR) algorithm

particle filter can be calculated as

x̂MS
t =

N∑
i=1

w
(i)
t x

(i)
t , (4)

Pt =
N∑

i=1

w
(i)
t (x(i)

t − x̂MS
t )(x(i)

t − x̂MS
t )

′
. (5)

3 Particle number controller

The computational burden for the particle filter is de-
pendent on the number of particles and on the re-
sampling calculation. However, the resampling can
be efficiently implemented using a classical algorithm
for sampling N ordered independent identically dis-
tributed variables [5, 17]. For multiple target track-
ing applications the computational burden is increased.
Therefore, it is essential to minimize the number of par-
ticles used in the estimation step. A novel approach is
to apply a simple control structure according to Fig-
ure 1. The number of particles needed is determined
by the controller using the residual εt = ||µ(1)

t − µ
(2)
t ||,

where µ
(1)
t and µ

(2)
t are some statistical property from

the particle filters (PFs), using different number of par-
ticles. Possible choices are for instance some relevant
statistics, such as the mean estimate from the parti-
cle filter or utilization of the probability density (pdf)
or the cumulative density function (cdf). For instance
the marginal distribution (density for each coordinate)
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Figure 1: Controller of particles

could be used. The control structure used is a non-
linear block consisting of a relay and an integrator us-
ing

∆(Nt, εt) =

{
αinc(Nt) , if |εt| > Λ
αdec(Nt) , if |εt| ≤ Λ

,

For maneuvering targets in a tracking application the
controller can reduce or increase the number of par-
ticles during the tracking envelope. However, perfor-
mance may now depend on the parameters of the con-
troller. Note that the controller is implemented in the
resampling step (Table 1, step 3).

4 Data association

Data association is a problem of great importance for
multiple target tracking applications. Several meth-
ods have been proposed in the literature and different
methods are often discussed in estimation and tracking
literature, [2, 3, 7, 8]. In general multi target track-
ing deals with state estimation of an unknown number
of targets. Some methods are special cases which as-
sume that the number of targets is constant or known.
The observations are considered to originate from tar-
gets if detected or from clutter. The clutter is a spe-
cial model for so-called false alarms, whose statistical
properties are different from the targets. In some ap-
plications only one measurement is assumed from each
target object, where in other applications several re-
turns are available. This will of course reflect which
data association method to use.

Several classical data association methods exist. The
simplest is probably the nearest neighbor (NN). In [2],
this is referred to as the nearest neighbor standard fil-
ter (NNSF) and uses only the closest observation to
any given state to perform the measurement update
step. The method can also be given as a global opti-
mization, so the total observation to track statistical
distance is minimized. Another multi target tracking
association method is the joint probability data asso-
ciation (JPDA) which is an extension of the probabil-
ity data association (PDA) algorithm to multi targets.
It estimates the states by a sum over all the associ-
ation hypothesis weighted by the probabilities from



the likelihood. The most general method is a time-
consuming algorithm called the multi hypothesis track-
ing (MHT), which calculates every possible update hy-
pothesis. In [16], several algorithms for multiple tar-
get tracking are listed and categorized according to the
underlying assumptions. A reference list to the differ-
ent methods is also given. In [15], the so-called prob-
abilistic MHT (PMHT) method is presented, using a
maximum-likelihood method in combination with the
expectation maximization (EM) method. A comparison
between the JPDAF and the PMHT is also made. In
[6], a Markov Chain Monte Carlo (MCMC) technique
is used for data association of multiple measurements
in an over the horizon radar application.

Most of these methods rely upon that the mean and
covariance is sufficient statistics for the problem. For
linear and Gaussian problems the Kalman filter is the
optimal estimator yielding sufficient information. For
non-linear problems the EKF is often used as an ap-
proximation. To be able to fully use nonlinear and
non-Gaussian estimation methods combined with data
association to solve the joint data association and esti-
mation problem there is a need to develop other meth-
ods. In [1], the solution to the assignment problem for
data association is proposed to be within the Bayesian
framework by simply incorporate it in the estimation
equations. In [18], this idea is suggested for the particle
filter, when the problem of maintaining a track on a tar-
get in the presence of intermittent spurious objects. In
[11], a multiple target and multiple sensor estimation
and association problem is solved using the Bayesian
bootstrap filter. Samples are drawn from the overall
target probability density. A special filter called hybrid
bootstrap filter is constructed. The so-called joint-filter
in [14], is a solution to the joint data association and es-
timation problem for particle filters. The estimation is
done using a particle filter and a Gibbs sampler, [10], is
used for the association. The case for unknown number
of targets is handled by using a hypothesis test.

In this paper we focus on this idea for a multiple tar-
get problem in a cluttered environment, and compare
the particle filter based estimation and association with
classical association techniques.

5 Monte Carlo Probabilistic Data Association

In this paper we modify the classical SIR algorithm
(Table 1) for estimation to handle multiple targets.
The association principle proposed is based on a novel
Monte Carlo approach for the JPDA algorithm. We
have assumed time-invariant target models, which are
the same for all targets. We use the same Bayesian
approach as in [11], for the estimation. However, we
extend the idea and introduce hypothesis calculations

according to the JPDA method. The resampling is then
executed over all target association hypotheses. The
clutter or false alarm model is assumed uniformly dis-
tributed in the volume and the number of false alarms
for a given time is assumed to be Poisson distributed.

Let xt be the state at time t for the relative tar-
get locations, i.e, xt = {x1

t , . . . , x
τ
t }. The samples or

particles in the SIR/MCJPDA method is defined as
{x(i)

t }Nt

i=1 = {x(i),1
0 , . . . , x

(i),τ
0 }Nt

i=1, where each initial
target cloud is denoted x

(i),j
0 for targets j = 1, . . . , τ .

The measurements for each time frame (scan) are de-
noted yk

t , k = 1, . . . , Mt. A special clutter model is
used to handle false alarms, x0

t (j = 0). The associ-
ation likelihood (track j, measurement k) is given by
pjk = pet(yk

t − h(xj
t )). A general expression for the

probability in hypothesis Hn is:

P (Hn) = δnP τ−Zn

D (1− PD)ZnP
Mt−(τ−Zn)
FA ln, (6)

where Zn is the number of false alarms (FA) in hypoth-
esis n and ln is the likelihood part. For more details,
see hypothesis calculations in the example given in [8]
(p. 354). We also have an extra option

δn =

{
1, allow multiple measurement associations
0, otherwise.

For the particle filter each particle is associated with a
weight:

w
(i)
t =

(Mt+1)τ∑
n=1

P (H(i)
n ).

Normalization yields the particle probability w̃
(i)
t . The

joint particle filtering and association is summarized in
Table 2. Similar ideas in the context of robot control
appear in [19]. The optional particle number controller
described in Section 3, is applied at step 3, in Table 2.

To simplify the algorithm some practical problems are
discarded. The measurements within a scan is consid-
ered given at the same time instances and the number
of targets (τ) is assumed constant during the simula-
tion. If the number of targets is unknown or chang-
ing, the algorithm could be modified, for instance us-
ing a separate track start hypothesis. This could be
done within the particle filter framework or possible to
use some linearized method. To allow measurements
with different time, the prediction step is modified with
an increased computational load as a consequence, i.e,
each track must be predicted to every measurement
time, in the association step.



Tracking & association: SIR/MCJPDA
1. Set t = 0, generate Nt samples from each target j =

1, . . . , τ , i.e, x0 = {x(i)
0 }Nt

i=1 = {x(i),1
0 , . . . , x

(i),τ
0 }Nt

i=1,

where x
(i),j
0 from p(xj

0).

2. For each particle compute the weights for all mea-
surement to track association
w

(i)
t =

∑(Mt+1)τ

n=1 P (H
(i)
n ) and normalize for each

measurement, i.e, w̃
(i)
t = w

(i)
t /

∑Nt
i=1 w

(i)
t , where

P (H
(i)
n ) is the probability for hypothesis n using par-

ticle i according to equation (6).

3. Generate a new set {x(i?)
t }Nt

i=1 by resampling

with replacement Nt times from {x(i)
t }Nt

i=1,

where Pr(x
(i?)
t = x

(l)
t ) = w̃

(l)
t .

4. Predict (simulate) new particles, i.e,

x
(i),j
t+1 = f(x

(i?),j
t , v

(i),j
t ), i = 1, . . . , Nt, using different

noise realizations for the particles, for each target j =
1, . . . , τ .

5. Increase t and iterate to item 2.

Table 2: SIR/MCJPDA estimation and association

6 Simulations

In a simulation study, the proposed SIR/MCJPDA
method is implemented for a multi target environ-
ment problem. The application at hand is a mis-
sile to air scenario. To simplify the simulations
we assume that it is always possible to resolve
the targets. In Cartesian coordinates the relative
state vector is defined as xt = x̄t − x̄own

t , such

that xt =
(
X(t) Y (t) Z(t) Vx(t) Vy(t) Vz(t)

)′
,

where X, Y and Z are the Cartesian position coordi-
nates and Vx, Vy and Vz the velocity components. The
following discrete time system is used

xt+1 =
(

I3x3 TI3x3

O3x3 I3x3

)
xt +

(
T 2

2 I3x3

TI3x3

)
vt,

yt = h(xt) =



√

X2
t + Y 2

t + Z2
t

arctan( Yt

Xt
)

arctan( −Zt√
X2

t +Y 2
t

)


+ et,

where the process noise vt is assumed Gaussian, vt ∈
N(0, Q). The three-by-three null matrix and unity
matrix is denoted O3x3 and I3x3 respectively. The
measurement noise is assumed Gaussian et ∈ N(0, R).
The parametric models for false alarms are assumed
NFA ∈ Po(λV ), with average number of false alarms
per unit volume λ and the validation region volume V .
In the simulations E{NFA} = λV = 0.5 is used. The
detection probability is assumed PD = 0.9. Assume the
number of targets τ = 2 and a sample time of T = 1[s].
The initial inertial target state vectors x̄i

0, initial own
platform x̄own

0 , measurement noise matrix R, process

noise Q and initial state error matrix P0 are

x̄1
0 =




6500
−1000
2000
−50
100
0




, x̄2
0 =




5050
−450
2000
100
50
0




, x̄own
0 =




0
0

3000
200
−50
0




,

P0 = diag
(
1002 1002 1002 502 502 502

)
,

Q =


102 0 0

0 102 0
0 0 102


 , R =


502 0 0

0 0.012 0
0 0 0.012


 .

The implemented EKF is according to the discretized
linearization technique [13], i.e, first linearize the un-
derlying continuous time system and then discretize.
Initial values for the tracks is draw from the initial un-
certainty region P0 around the true value. We compare
the SIR/MCJPDA method with an NN data associa-
tion where the estimation is done by the particle filter
and where the covariance matrix needed for the asso-
ciation is similar to equation (5). A comparison is also
made to an EKF using the NN or JPDA association
in a similar way. In Figure 2, a data association and
estimation using the SIR/MCJPDA filter is presented.
To evaluate the performance a root mean square error
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Figure 2: Data association & tracking

(RMSE) analysis is performed over Nmc = 60 simula-
tions and time samples. In Table 3, the results for the
different methods are summarized, using RMSE for the
two targets when t ≥ 3, ignoring initial transients. The
particle filter used N = 25000 samples. In Figure 3,
the RMSE values for different times are presented for
the methods described in Table 3 (target 1). In Fig-
ure 4, the particle number controller (Section 3), for
SIR/MCJPDA is used with k1 = 1

2 , k2 = 0.1, Λ = 9.5
and αinc(Nt) = 0.2Nt, αdec(Nt) = −0.1Nt, for the
marginal case, for 20 Monte Carlo simulations.



Estimation Association RMSE #1 RMSE #2
SIR MCJPDA 51.6988 51.3957
SIR NN 55.8878 55.4883
EKF JPDA 52.1159 51.5462
EKF NN 52.6854 54.0163

Table 3: Association & estimation – RMSE analysis
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Figure 3: RMSE(t) for different methods

7 Conclusions

In this paper a novel Monte Carlo data association
method for jointly estimation and association in a prob-
abilistic data association framework is presented. This
method (SIR/MCJPDA) is compared to EKF based
classical association methods such as NN and JPDA.
The NN association is also applied to the SIR method,
where the covariance is calculated from the particle fil-
ter cloud. A novel approach to determine the number of
particles for each target is also developed, using a relay
and an integrator in a feedback system. In the simu-
lation study in Section 6, the methods are compared
and the RMSE is used to describe the performance.
For more non-linear problems and problems where the
noise distribution is highly non-Gaussian, the proposed
simulation based algorithms may increase the overall
tracking performance.
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