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MONTE CARLO ESTIMATION UNDER DIFFERENT DISTRIBUTIONS
USING THE SAME SIMULATION

By

R. J. Beckman, M. D. McKay

Keyword 6: Computer Models, Sampling;, Sensitivity Analysis, Importance
Sampling

ABSTRACT

Two methods for reducing the computer time necessary to investigate changes

in distribution of random input~ of large simulation computer codes are
presented. The first method produces unbiased .est!mators of functions of
the output varlzbie under the new distribution of the Inputs. The second

method gener~tes a subset of the ori~~inal ohtputs which has a distribution
corre.spondin~ tc,the new distr~but’ion of inputs. Rfticiencies of the two

methods are exan,in~d.
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1. Introduction and Suucnary

Long running computer codes have been uskti in assessing the r16kS and

benefits of such things nuclear power and hazarduus waste dfsposal.

Examples of these may be found in ;)illon, ;,antz and Pahwa (197!3)Hirt and

Romero (1975)

found in the

suggested by

and llcKRy, Conover and Beckman (1979). An add!cional study is

example given by Iman and Conover (1980), and such 6tudies are

Goodman and Koch (1982J and Levinson and Yeater (1~83).

Typically the6e codes require a ndmher of input parameters whose value are

not known with certainty because of lack of knowledge of the phvsical

pinCCES being modeled or variations due to sampling distrih(ltfons. This

uncertainty is modeled hy assigning probahilltv distributions to the input

parameters. The probability distributions, centered about nominnl values III

the parameter space and (in some way) reflecttn~ knowled~e the analyst has

shout the parameters, MAV represent either an estimnte of the sampling dis-

trihuttnn of esttmatore of the ,nknown parameters 01 a “de~le(~ of belief” in

the value:+ of the parameters.

When input palnmeterr+ nre considered random vnrtahle~ in complltcr

CJ(ICS, the o(lt~utv~riahle~ are n]so random vartnbles, nnd the properties of

the dtstrthlltluns of these vnrtablcs Rre of intcre~t. For exnmpl:j, onc mnv

wish to e~tfm~te the mean v8111Pof nn olltpiltvnrfnhle, or its dtstrth~ltfon

fllnctton ThcRc tn~ks nre strclgllt forwnr4 and C,AII he carried out hv tllr

analy~t with a r’nim(lm amn~~nt of work. Often, however, th~ nnnly~t tR fnced

with defendtng hf6 choice of tho d!strih~ltfon of the fnput vntt,Ihlcq tin,!ttR

inf lurncl~ on Lhe concl[lfl[nnR hr IIHH dt-nwn. ~IMIto the mnth(EmHLtcnl Com-

plrx!ty of th~ mnrlcl tt ts u~llnlly fmp0f4Mfblt* to nnfilyttcnlly dvdilcr the

cffcctm of chnn~inR the Inp{ltdi~tl”thlltion,nnd cont~ mny mf~ko rertlnnln~ tho

cndo with new dl~trlhtltlon~ prohihfttvr . TIIt* pt)tpo~e of thfs paper t~ to
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give two methods which allow the analy=t to change the distributions of the

Input variables without rerunning the computer code.

Let xl, 32, ... ~n be independent vectors of Input variables with den-

sity fl(~), and let Yi=h(~l) be the output variable for input ~i where h
.

represents the computer code. Also assume that el =Ef{g(y)} is the

1

parameter to be estimated, and suppose that the analyst would like to study

h(~) where ~ comes from a different density f2(~). TWO metho~s for changing

the distributlen of the inputs are given. The first. method which is a

weighting scheme slmular to importance samnling see (Kahn and Marshall

(1953)) produces an unbiased estimator of e2, the expected value of g(Yi)

when the X
-i

are from f .
2

The other method ~.s a rejection method (see

Kennedy and Gentle (i98r3))which leaves the output variable Y with the den-

~lty induced by letting x Ilavedensity f7.

In the first method (T), fot ench vector xi, let Wi= f,(~i) / f,(YQ.
.

Tt is shown in section 2 that the estimator gw - Zwig(vi)/n is an unbiased

‘Stimat”r ‘f ‘?”

FoI’ the second method (IT) n unlforrn upper hound, M, on the

ratio f7(~)/f (X) is assurncd to exist.
1-

Let the random v,-trtahlcv given thr

vector X - x
-i

heve a (lntf(JUfI distribution het’.JecnO Rnd Mfl(x), For eozh

i, retftln ‘he pflft (X in the nnmple if the t-enlizntton v of V is les~+ ,Yt)

than f2(Xi). In Rcctton 3 th[~ te,~ectton scheme is Rhown to lt~nvetl]c

Melecterl vector~ X with dcn~ity f (X), and honcr the scl~cted vnl~lt’~of Y
2-

wltll the dentrcd rlrnsity.

Th@ cffi,:frncie~ of method~ 1 nnd 11 arc uxmmlncd in ~~ctfon~ 2 and 7,

lewnecttvclv. Th@ rPnultR Riven in thcsr tW() f?f?cttoll~ dcmon:itl”mtctllr

nece~~~ty of \lnd~*rRtnndtnRthe mrthoc!n before thrtr nppllcnt{one Tllu t*f-

flciency of onit!lmpthod In ~hown LO dcct”rn~c r~pfdly n~ lar~t~dtff~l’encc~
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occur between the densities fl(~) and f2(~)= Rowever , the efficiency of

method I may be larger

densities. An exam+le of

from fault trees is given

than 1.0 for -mall differences between the two

the simulation of system unavailabilities derived

in section 4.

2. Method 1: The Weighting Method

Letting gw(~) = Iwig(Yi)/n where w
i

= f2(~1)/fl(~i), and 92 =

Ef {Lg(Yi)/n}, we have Efl{gw(~)}

2

. Z Ef{f2(Xi)/fl(X1)g(Yi)}/n
1

Therefore, the estimator gw(~) is an unbiased estimator of e?. Although

this method closely rcsemhles importance sampling, its intent is different.

In importance sampling the goal is to ohtnin an unbaisecl estimator of 02

with a smaller varian~.e th.tnwould be attained by sampllng from f
2“

In the

velghtj.ng method presented here, che goal is only to obtain an unhiaRed

estimator of 0
2“

Sj,nce f and f,nrc fixed,
i.

smaller variances can not ‘hethe

Rim.

The efficiency of RW(Y) is menqured by itfi variance relative trIthe

vnriance of Zg(Yl)/n whcr, the correspondtn~ vnlues Jf x crime from f . To
2

aasist in the study of the efflclen~y of this method, we let H(E) u g(h(~))

and nss;lme that the expected vnluc~ of H and H* with respect to dcnattie~

indexed by a parnmctet 0 mny be cxpre.qsed as EO(H2(X)} = $(9) and E6(H2(x))

- +(0). Then with w-f(x -i;Ol) tl-,eu~r’iance of the weighted es-/~2)/f(x

timator wll(~) 1s I?O{w112(x)} - 4?(OJ.

2
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For many of the common deneitlea, E8 {wHz(x)} is expressible as s func-

2

tion of $(6*) for some e* in the parameter space of 8. Table 1 conteins the

expected value under f~ of WH2(X). These values may be used to obtain the

efficiency of the procedure. For example, suppoue f is normal ~~~th mean O
1

and variance 1, and a change to a normal variate with mean O and variance

1/2 is desired. suppose also that H(x) = x so that $(IJ,U2)- B and W(P,92)

2
=U + lJ2. Then Ee {wH2(x)} ~ .385, and the efficiency is 77%. While the

2

func ion H(x) would rarely be x, the above exercise does give some in[lica-

tion of the loss of efficiency using this method.

Figures 1 and 2 show the log10 efficiency of method I for normal

sample6 with changes in the means and variances. Once again H(x) is assume(l

to be x, and the efficiency 18 measured as the ratio of the variance of the

estin Itor using this method to

In figure 1 fl is taken

f2 is normal with mean ranging

that of random sampling.

as a normal with mean 2 and varlancc 1, while

between .5 and 3 and variance 1. From this

figure there is a range of values of the.second mean from approximately 1.1

to 2.0, where the efficicricy of method I is greater than 1. This is a com-

mon occurrence with this method and

close resemblance to importance

demonstrated {n fig~lre 2 where the

varfalwe of f~ is 1, and the second

is not great surprise gtven the method’s

sampling. The same phenomenon is

means of the densities are both 2.0, the

vari~nce ranges between .5 and 1.5. Tn

this case the efficiency IS greater than 1 when the second varianc~ Is be..

tween .8 and ].0. It ehould b noted that in both canes outside of these

ranges the efficiency falls off rapidly.

Method II: The Rejectton Method

A~sume that there exists n uniform bound M such that f2(~)/fl(~) <M for

x. Let the random vartablc V Riven X = x be uniform between O andm. -
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Mfl (@. The value ~ = ~ IS accepted as a sample from densfty f2(~) if the

realization v of V is less than f2(x). It follows that an arbitrary ~ which

is selected to remain in the sample has den~ity f2 since

Pr{X<x I ~ remains in the sample}--

= Pr{~<~ and ~ remains} / Pr{~ remains}

rx
f2(@f1(~)

==?4 du - F2(~).——
-m M fl(~)

In random variate generation with the rejection method the analyst

chooses f
1

to efficiently generate samples from f
2“

Tn the ca6es presented

here the analyst is not free to pick either fl or f
2

as they are assumcrl

known F,ndfixt’d.

The efficiency of method II can he measured by the probability that FI

random x from f~ is accepted for f2. This probability is given by the

reciprocal of the bound M, since

Pr{ a random ~ is selected ] =

=Jm f2(u)f1(u)dum 1/?’ ..-w -.
a ..-.—

M T:)
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2
caaes. For example if a, = 092 for normal densities, then the bound M ex-

ists

does

1 L

2 2
only for the trivial case P

1
= IJ2,while for u = o -

2 1
E the bound

exist for any values of p, N. and E>O.
1, f

Figures 3, 4 and 5 show the loglp efficiencies of method 11 for normal

samples and h (x) = x. In figure 3, DI = 2, a; = 1, u: = .9 and P2 varies

from .5 to 3. Over this range the efficiency covers five orders of

magnitude. This points out the impracticality of changing the ❑ean of a

normal more than a few ttn?hs of its standard deviation if only small

changes in the variance are desired. On the other hand, if lhrger changes

in the variance are made the efficiency does not drop off as rapidly. This

is demonstrated in figure 4 where a; is fixed at .5. For this case the ef-

ficiency is lower at v2 = 2 but attains an efficiency of a little less than

one order of magnitude at P
2
= .5.

The loss of efficiency for normal samples with changes in the variance

is given in figure 5, where Bl = P2= ?, 02 = 1 and 0V2 ranges from .1 to 1=
..

The efficiency loss for this example is one and one-half order~ of magnitude

2
at the extreme value o = .1..

2

The use of method II can lead to low efficiencies. This is par-

ticu’.arly true for large changes in the denstty functions. However, for

2
reasol~~hle ehtfts in the density (e.g p = p M 2, a

12 1
= 1, u: = .9) the ef-

ficiency remains high. For these types of changes tt,e lower efficiency of

the method is minor compaired to cost of rerunning the computer code.

4. Example

We give as ~n example of the uses nf the generation schemes presented

here n two-out-of-three voting system piven in figure 6. (See Henley and

Kumamoto 1981) Tn thi~ system three Independent monitors shut the system
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down if any two of the three signal for a shutdown. The system unavailab-

ility for this arrangement of monitors is given by Ps = P1P2 + P2P3 + P1P3 -

2P1P2P3’ ‘here ‘i
Is the probability that monitor i signals for a system

shutdown. We assume that the analyst desires to study the varlablllity of

the system unavailability ustng simulation techniques.

While the methods given here are gencthlly for use in longer running

simulation codes than the one implemented, the example was chosen to keep

the model mathematically tractable and easy to elucidate. Examples of sys-

tem unavailability dependent on 13 to 259 components may be found In Martz

et al. (1983).

Tf ve assume 10, 15 and 20 obBerverations on the three monitors with 2,

1, and 3 failures respectively, then the system unavailability is estimated

.
by Ps = .049. Uncertainty ~.nthis estimate comes from two s~urces. First,

there is the sampling distribution of the number of monitor failures which

is assumed to be binomial. Thir source of variation was estimated by a

and ~
. .

i
= Xi/Ni, and Xi was generated from a binomial (Pi, Ni), where P{ =

2/10, 1/15, 3/20 for i = 1, 2, 3. A second source of variation in these
.

types of st~dies is the uncertainty in the values of Pi, the obselved

failure rates of the monitors, which are used to generate the hinmnial

.
samples X . As the value of Pi changes,

.

i
the sampling distribution of Ps

changes, and it is thin second source of variability on which the techniques

given here attempt to treat.

The estimated mean unavailability ~s~iven In ‘igure 7 for P
.

1
not only

equal to .20 but also for PI In the range .10 to .30 in steps of .001.

Theme values were generated using the techniques of method I. While it is

obviouu that the expected unavailability 1s lincnr in P for this case, it
1
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is interesting to note the observed linear relationship for the estimate

.
P~as PI moves away from .2. This can be explained by figure 8 which g.[ves

.
the efficiency of the technique for this example as a function of P1. Far

.
all values of P between .1 and .2 the efficiency is greater than one.

1
For

-.
from .2 to .3 the efficiency is less than one but exceeds .12.

‘1
:his

leaves the e6timate with an effective sample size of more than 1200

(effective sample sizs = efficiency ● sample size) for all parameter v61ues

studied here.

--- .
Using the same set of 10000 generated values of Ps, P , P?, P , the

1-.3
th

, 25th, 50th, 75
th th

second method was used to estimate the 10 , and 90

.
percentiles of the sampling distribution of ~~ for values of PI rangirg from

.10 to .-!0. These are gfven in figure 9, where the estimated percentiles

.

become r~g~ed foI pl greater than ●280 This Is caused by a lack of ef-

ficiency which is evident from figure 10. Since the efficiency [Irops off at

.
a slower rate as the value of P decreases,

1
one would probably gener~te the

.
largest value of PI of interest, and using method IT.estimate percentiles of

.,.,
Ps for smaller values of P1.

The computer code used to generate the 10000 values of ~s was by no

lung-running.

11/78C. While

tive in codes where

The 10000 observations were generated in 24 seconds on

the techniques preserlted here are designed to be effec-

the majority of the computer time is spent evaluating

the functlor? (Ps in our example), they did show improved efficiency in

producing the data points of figures 7 and 9. Compared to the 24 seconds

used to obtain the data point for P =
1

.2, the 200 data points of figure 7

were generated in ?1 or’conde, or .16 seconds per point while the 200 data

points of fi~ure 9 were obtained in 123 seconds or .62 seconds per point.
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For computer codes IT, which a latge fractfon of time is used to calculate

the function, these sav~ngs would be even more dramatic.
I

5. Conclusions

Two methods were given to reduce the computer time necessary to inves-

tigate changes in the di~tributions of the random inputs to large simulation

computer codes. The fi~st method produced unbiased estimates of functions,

g(v) of the output variables Y. In the second method a subset of the random

-1 have the desired distribution.outcomes (~i,Yi) were selected so that the x

Efficiencies of these methods were investigated, and an example showed the

potential of these techniques to save largs amounts of computer time.
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