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ABRSTRACT

Two methods for reducing the computer time necessary to Investigate changes
in distribution of random inputs of large simulation computer codes are
presented. The first method produces unhiased estimators of functions of
the output variable under the new distribution of the inputs. The second
method generates a subset of the oripinal outputs which has a distribution
corresponding to the new distribution of inputs. ®friciencles of the two
methods are examined.



1. Introduction and Summary

Long running computer codes have been used In assessing the risks and
benefits of such things nuclear power and hazardous waste disposal.
Examples of these may be found in Dillon, lantz and Pahwa (1978) Hirt and
Romero (1975) and McKay, Conover and Beckman (1979). An addicional study is
found in the example given by Iman and Conover (1980), and such studies are
suggested by Goodman and Koch (1982) and Levinson and Yeater (1983).
Typically these codes require a namber of input parameters whose value are
not known with certainty because of lack of knowledge of the physical
prrcees belng modeled or variations due to sampling distributions, This
uncertainty i{s modeled by assigning probability distributions to the input
parameters. The probability distributions, centered about nominal values in
the parametcr space and (in some way) reflecting knowledge the analyst has
about the parameters, may represent efther an estimate of the sampling dis-
tribution of estimators of the .nknown parameters or a "degiee of helief" in
the valucs of the parameters.

When input parameters are considered vandom variables in computer
codes, the output variahles are also random varifables, and the properties of
the distributions of these variabhles are of {nterest., For example, one mav
wish to eatimate the mean value of an output variable, or {ts diatribution
function  These tasks are strefght forward and can be carrvied out hy the
analyst with a r'nimum amount of work., O0ften, hnwever, the analyat {s faced
with defending his cholce of the distribution of the {nput vartables and {ts
influence on the conclustons he has drawn, Due to the mathematical com-
plexity of the model 1t 18 usually {mposusibhle to analytically deduce the
effcctr of changing the {nput diatribution, and cortr may make rerunning the

code with new distributiona prohihitive., The purpose of this paper is to



give two methods which allow the analyet to change the distributions of the
input variables without rerunning the computer code.
Let Zl’ 52, ces Zn be Independent vectors of input variables with den-

sity f (x), and let Yi-h(zi) be the output variable for input 51 where h

represents the computer code. Also assume that 91 -Ef{g(y)} is the
1

parameter to be estimated, and suppose that the analyst would 1like to study

h(X) where X comes from a different density fz(g). Two methods for changing

the distributlon of the 1inputs are given. The first method which 1is a

weighting scheme slmular to importance samnling see (Xahn and Marshall

(1953)) produces an unbiased estimator of © the e¢xpected value of g(Yi)

90
when the 51 are from fz. The other method is a rejection method (see
Kennedy and Gentle (i980)) which leaves the output variable Y with the den-
sity induced by letting X have density fo'

In the first method (T), for each vector 51, let W= fz(gi) / fl(zi)'
Tt 15 shown 1in secti{on 2 that the estimator 8, = Ewig(yi)/n 18 an unbiased
enatimator of 02.

For the scecond method (IT) A uniform upper bound, M, on the
ratfio fq<5)/f1(5) is assumed to exist. let the random variable V given the
vector 51 = x have a uniform distribution between 0 and Mfl(x). For each
1, retain *he pai: (51,Y1) in the sample if the trealization v of V {8 lesr
than fz(Xi). Tn mection 3 this rejection schoeme 1s shown to leave the
selected vectors X with density fz(z), and hence the selected values of Y
with the deaired denmity,

The efficienclier of methods T and 11 are examined in sectiona 2 and 1,
1tegvectively. The results given in these two sections demonstrate the

necerkity of understanding the methods before thetir application. The ef-

flciency of eacn method iR shown to decreamc rvapidly an larvge differencen



occur between the densities fl(z) and fz(g). However, the efficiency of
method I may be larger than 1.0 for -mall differences between the two
densitics. An example of the simulation of system unavailabilities derived
from fault trees is given in section 4.

2. Method 1: The Welighting Method

Letting gw(x) = Zwig(Yi)/n where w,o= fz(zi)/fl(xi), and 92 =

Be (a(Y)/n), we have B (g (D)

= I Ef}fz(xi)/fl(xi)g(Yi)}/n

~ I ey £,0 X dxX,/n = 8,

Therefore:, the estimator gw(x) i1s ar unbiased estimator of 0, . Although
this method closely resembles importance sampling, its intent is different.

In importance sampling the goal is to obtain an unbalsed estimator of 62

with a smaller variance thun would be attainad by sampling from f In the

9
weighting method presented here, the goal i3 only to obtain an unblased
estimator of 92. Since f, and f_arc fixed, smaller variances can not be the

I

aim.
The efficlency of gw(x) is measured by 1ts varlance relative to the

variance of Zg(Yi)/n when the corresponding values Of X come from f To

5
assigt in the study of the efficlency of this methad, we let H(x) = g(h(x))
and assume that the expected values of H and H2 with respect to densities
indexed by a paramcter 6 may be cxpressed as EO(HZ(x)} = $(8) and Ee(Hz(x)}
= Y(0). Then with w-f(ligez)/f(gi;ol) the variance of the weighted es-

timator wii(x) s By {w’(x)) - ¢7(0,).
) .



For many of the common densities, Ee {sz(x)} is expressible as a func-
2

tion of y(6%) for some 8% in the parameter space of 8. Table 1 contains the

expected value under f_, of sz(x). These values may be used to obtain the

2
efficiency of the procedure. For example, suppose f1 is normal with mean 0
and variance 1, and a change to a normal variate with mean 0 and variance
1/2 is desired. Suppose also that H(x) = x so that ¢(u,02) = u and w(u,oz)

= 02 + u2. Then Ee {sz(x)} + 385, and the efficiency 1s 77%. While the

2

func 1on H(x) would rarely be x, the above exercise does give some indica-
tion of the loss of efficiency using this method.

Figures 1 and 2 show the log10 efficlency of method T for normal
samples with changes in the means and variances. Once again H(x) 1s assumed
to be x, and the efficiency is measured as the ratio of the varfance of the
egtin tor using this method to that of random sampling.

In figure 1 f1 1s taken as a normal with mean 2 and varience 1, while
f2 is normal with mean rangiug between .5 and 3 and varifance 1. From this
figure there 1s a range of values of the second mean from anproximately 1.1
to 2.0, where the efficiency of method I 1s greater than 1. This 1s a com-
mon occurrence with this method and is not great surprise given the method’s
close resemblance to importance sampling. The same phenomenon is
demonstrated in figure 2 where the means of the denaities are both 2.0, the
variaace of fl 1s 1, and the second variance ranges between .5 and 1.5. 1In
this cese the efticlency is greater than 1 when the seccond variance 18 be--
tween .8 and 1.0. It should be noted that in both cases outaide of these
ranges the efficiency falls off rapidly.

3. Method II: The Rejection Method
Assume that there exists a uniform bound M such that fz(z)/fl(l) M for

all x. Let the random variahle V given X = x be uniform between 0 and



Mfl(z). The value X = x is accepted as a sample from density fz(z) 1f the
realization v of V 1s less than fz(x). It follows that an arbitrary x which
is selected to remain in the sample has density f2 since

Pr{X<x | x remains in the sample}
= Pr{X<x and x remains} / Pr{X remains}

=% Prives, () |udy / [TPrives,(w)lu}f (w)dy

X
sz o BWHW 4. Fo(x).
- M £ (u)

In random variate generation with the rejection method the analyst

chooses f1 to efficlently generate samples from f2.

here the analyst 1s not free to pick either fl or f2 as they are assumed

In the cases presented

known and fixed.
The efficlency of method II can be measured by the probability that a
random x from f

1s accepted for f This probability 1s given by the

] 2"
reciprocal ot the bound M, since
Pr{ a random X is selected } =
[ PE{VEE,(w)|u}f (u)du
—)

=/ £, (W (u)dy = Ay
- M (W)

Table 2 containg the bounds M for most of the denstities commonly used

in simulation studies, (t {8 interesting that M does not exist {n some



cases. For example 1f o 2. o 2 for normal densities, then the bound M ex-

1 2
ists only for the trivial case u, = Moo while for o 2, o 2_ € the bound

1 2 1

does exist for any values of and €>0.

1, M2
Figures 3, 4 and 5 show the 1ogln efficlencies of method IY for normal

2 2
2, 01 = 1, ol = ,9 and uz varies

from .5 to 3. Over thils range the efficliency covers five orders of

samples and h (x) = x. 1In figure 3, My

pagnitude. This points out the impracticality of changing the mean of a
normal more than a few tenths of its standard deviation 1if only small
changes in the variance are desired. On the other hand, 1if larger changes
in the variance are made the efficiency does not drop off as rapidly. This

is demonstrated in figure 4 where 03 is fixed at .5. For this case the ef-

ficiency 1s lower at u_, = 2 but attains an efficlency of a little less than

2

one order of magnitude at u2 = .5,

The loss of efficiency for normal samples with changes in the variance

=y, = 2, 02 = ] and ¢ 2 ranges from .1 to 1.

is given in figure 5, where Hy 2 N

The efficiency loss for this example 1is one and one-halif orders of magnitude
at the extreme value Ug = L1,

'The use of method II can lead to low efficlencies. This 1s par-
ticu'arly true for large changes in the density functions. However, for
% =1, 02 = ,9) the ef-

ficiency remains high., For these types of changes the lower efficiency of

reasoiuable shifts in the denaity (e.g u.= p_ = 2, o

1 2
the method 18 minor compaired to cost of rerunning the computer code.
4, FExample

We give as an example of the uses of the generation schemes presented
here a two-out-of-three voting system piven in figure 6. (See Henley and

Rumamoto 1981) 1Tn this system three independent monitors shut the system



down 1if any two of the three signal for a shutdown. The system unavailab-
i11ity for this arrangememt of monitors 1s given by Ps = PIPZ + P2P3 + P1P3 -

is the probablility that monitor i1 signals for a system

2P1P2P3, where Pi

shutdown. We assume that the analyst desires to study the variablility of
the system unavailability using simulation techniques.

While the methods given here are gencrally for use in longer running
simulation codes than the one implemented, the example was chosen to keep
the mode) mathematically tractable and easy to elucidate. Examples of sys-
tem unavailability dependent on 13 to 259 components may be found in Martz
et al., (1983).

TIf we assume 10, 15 and 20 observerations on the three monitors with 2,
1, and 3 fallures respectively, then the system wunavallability 15 estimated
by Es = ,049, Uncertainty in this estimate comes from two sources. First,
there is the sampling distributicn of the number of monitor faillures which
is assumed to be binomial. This source of variation was estimated by a

~ ~ o~

2 PlP?.I",3 »

~

simulation study of 10000 observations of §S= 5157+ P FB+ $3P1_

and Fi = Xi/Ni' and Xi was generated from a2 binomial (P Ni)’ where P, =

i1’ i
2/10, 1/15, 3/20 for 1 = 1, 2, 3. A second source of variation in these

types of gtudies 1is the uncertainty in the values of P the obseived

1°
failure rates of the monitors, which are used to generate the binomial
samples Xi. As the value of ;i changes, the sampling distribution of ;s
changes, and 1t is this second source of variability on which the techniques
glven here attempt to treat.

The estilmated mecan unavailability is given in "1igure 7 for ;1 not only

equal to .20 but also for f in the range .10 to .30 1in steps of .001.

1

These values were generated using the techniques of method I. While it {is

obviouy that the expected unavallability {s linear in P, for this case, 1t

1



is interesting to note the observed linear relationship for the estinmate

-~

Fsas P1 moves away from .2. This can be explained by figure 8 which glves

~

the efficiency of the technique for this example as a function of P.. For

1

all values of P1 between .1 and .2 the efficiency 1s greater than one. For

51 from .2 to .3 the efficlency 1is less than one but exceeds .12. This

leaves the estimate with an effective samprle size of more than 1200
(effective sample size = efficiency ¢ sample size) for all parameter vsalues
studied here.

Using the same set of 10000 generated values of 58, P y P

1
second method was used to estimate the IOth, 25th, SOth, 75th, and 90

percentiles of the sampiing distributlon of ;s for values of P rangirg from

1

.10 to .70. These are given in figure 9, where the estimated percentiles
become ragged for ;1 greater than .28. This 1is caused by a lack of ef-
ficiency which is evident from figure 10. Since the efficlency drops off at
a slower rate as the value of ; decreases, one would probahbly generate the

1

largest value of P of interest, and using method IT estimate percen*iles of

1
59 for smaller values of ;1.

The computer code used to geaerate the 10000 values of 55 was by no
me ans loung-running. The 10000 observations were generated in 24 seconds on
a VAX 11/78C. While the techniques presented here are designed to be effec-
tive in codes where the majority of the computer time is spent evaluating
the function (P8 in our example), they did show improved efficiency 1In
producing the data points of figures 7 and 9. Compared to the 24 seconds

used to obtaln the data point for P = .2, the 200 data points of figure 7

1

were generated in 31 srconds, or .16 seconds per point while the 200 data

points of figure 9 werc obtained in 123 seconds or .62 seconds per point.



10

Tor computer codes in which a large fraction of time is used to calculate
the function, these savings would be even more dramatic. '
5. Conclusions

Two methods were given to reduce the computer time necessary to inves-
tigate changes in the distributions of the random i1nputs to large simulation
computer codes, The fiist method produced unblased estimates of functions,
g(v) of the output variables Y. 1In the second method a subset of the random
outcomes (gi,Yi) were selected so that the 51 have the desired distribution.

Efficlencies of these methods were investigated, and an example showed the

potential of these techniques to save largz amounts of computer time.
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