A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments. Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

NOTICE

```
La-D:--0:-1503
#LS! \l24J%
PORTIONS OF THIS REPORT RE ILLEGIBLE. Y has been reproduced from the best available copy to permit the broadest possible availability.
```

MONTE CARLO ESTIMATION UNDER DIFFERENT DISTRIBUTIONS USING THE Same simulation

A!IthORIS, K. J. Beckman, M. I. Mckay

Slımai:abio Techanometrics

IBISCIAIMF:R

MONTE CARLO ESTIMATION UNLER DIFFERENT DISTRIBUTIONS USING THE SAME SIMULATION

By

R. J. Beckman, M. D. McKay

Reywords: Computer Models, Sampling, Sensitivity Analysis, Importance Sampling

Abstract

ABS'TRACT

Two methods for reducing the computer time necessary to investigate changes in distribution of randor inputs of large simulation computer codes are presented. The first method produces unblased estimators of functions of the output variabie under the new distribution of the inputs. The second wethod generates a subset of the original outputs which has a distribution corresponding to the new distribution of inputs. Efticiencies of the two methods are examined.

1. Introduction and Sumary

Long runing computer codes have been ust in assessing the risks and benefits of such things nuclear power and hazardous wastedisposal. Examples of these may be Eound in ifllon, iantz and Pahwa (1978) Hirt and Romero (1975) and McKay, Conover and Beckman (1979). An add!tional study is found in the example given by Iman and Conover (1980), and such studies are suggested by Goodman and Koch (1982) and Levinson and Yeater (1983). Typically these codes require a namber of input parameters whose value are not known with certainty because of lack of knowledge of the physical pincess being modeled or variations due to sampling distribut lons. This uncertainty is modeled by assigning probability distributions to the input parameters. The probability distributinns, centered about nominal values in the parametcr space and (in some way) reflecting knowledge the analyst has about the parameters, may represent either an estimnte of the sampling distribution of estimators of the inknown parameters or a "degiee of helief" in the valucs of the parameters.

When input palametera are considered random variahlea in computer conca, the output variahlea are also random variables, and the propertien of the distrifutions of these valifables are of interest. For example, one may wah to eatimate the mean value of an output varlable, or ita diatribution function Theac taks are atrefght forwari and can be carrled out hy the analyat with a rinimum amount of work. Often, however, the analyat ia faced with defending his cholie of the distribution of the input vatiobles and its influence on the conclualone he has drawn. nue to the mathematical complexity of the model it is unually imposeiblo to analytically deduce the effecta of changing the input diatitbution, and conta may make reruming the code with new distributions prohibitive. Tho purpone of this peper if 10
give two methods which allow the analyat to change the distributions of the input variables without rerunning the computer code.

Let ${\underset{\sim}{X}}_{1},{\underset{\sim}{X}}_{2}, \ldots \mathbb{X}_{n}$ be independent vectors of input variables with density $f_{i}(\underset{\sim}{x})$, and let $Y_{i} m\left({\underset{\sim}{X}}_{1}\right)$ be the output variable for input $\underset{\sim}{X}{ }_{1}$ where h represents the computer code. Also assume that $\theta_{1}=\mathrm{E}_{\mathrm{f}}\{\mathrm{g}(\mathrm{y})\}$ is tine parameter to be estimated, and suppose that the analyst would like to study $h(\underset{\sim}{X})$ where $\underset{\sim}{X}$ comes from a different density $f_{2}(\underset{\sim}{X})$. Two methots for changing the distribution of the inputs are given. The firat method which is a weighting scheme simular to importance sampling see (Kahn and Marshall (1953)) produces an unbiased estimator of θ_{2}, the txpected value of $g\left(Y_{1}\right)$ when the ${\underset{\sim}{X}}_{1}$ are from f_{2}. The other method is a rejection method (see Kennedy and Gentle (i980)) which leaves the output variable Y with the density induced by letting X have density f_{2}.

In the first method (I), for each vector $\underset{\sim}{X}{ }_{1}$, let $w_{1}=f_{2}(\underset{\sim}{X}) / f_{1}(\underset{\sim}{X})$. It is shown in section 2 that the estimator $g_{w}=\sum \omega_{i} g\left(y_{i}\right) / n$ is an unblased eatimator of 0_{2}.

For the second method (II) a unform upper bound, M, on the ratio $f_{\sim}(X) / f_{y}(X)$ is assumed to exist. let the random viriable V given the vector ${\underset{\sim}{X}}_{1}=x$ have a uniform distribution between 0 and $M_{1}(x)$. For each 1, retain :he pait $\left(\underset{\sim}{X}, Y_{f}\right)$ in the sample if the realization v of V is lear than $f_{2}\left(X_{1}\right)$. In acetion 3 this rejection acheme is ahown to lenve the melected vectora X with denaity $f_{2}(\underset{\sim}{X})$, and hence the selected values of Y with the deatred denalty.

The efflitenclea of methods I and $t i$ are examined in acctiona 2 and \mathfrak{i}, zesnectury. The reaulta given in these two acetions demonatrate the neceasity of underatanding the methode befote thelt application. The ef-

occur between the densities $f_{1}(\underset{\sim}{X})$ and $f_{2}(\underset{\sim}{X})$. However, the efficiency of method I may be larger than 1.0 for omall differences between the two densitile. An example of the simulation of system unavailabilities derived frow fault trees is given in section 4.
2. Method I: The Weighting Method

Letting $g_{w}(\underset{\sim}{Y})=\sum_{w_{1}} g\left(Y_{1}\right) / n$ where $\left.w_{1} \neq f_{2}(\underset{\sim}{X} \underset{1}{ }) / f_{1}(\underset{\sim}{X})_{1}\right)$, and $\theta_{2}=$ $\mathrm{E}_{\mathrm{f}_{2}}\left\{\mathrm{I}_{\mathrm{g}}\left(\mathrm{Y}_{\mathrm{f}}\right) / \mathrm{n}\right\}$, we have $\mathrm{E}_{\mathrm{f}}{ }_{1}\left\{\mathrm{~g}_{\mathrm{w}}(\underset{\sim}{\mathrm{Y}})\right\}$

$$
=\sum E_{f}\left\{f_{2}\left(X_{i}\right) / f_{1}\left(X_{1}\right) g\left(Y_{i}\right)\right\} / n
$$

i

$$
=\Sigma \int g\left(Y_{i}\right) f_{2}\left({\underset{\sim}{X}}_{1}\right) d \underset{\sim}{X} / n=\theta_{2} .
$$

The refors, the estimator $g_{w}(\underset{\sim}{Y})$ is an unbiased estimator of θ_{2}. Although this method closely resembles importance sampling, its intent is different. In importance sampling the goal is to obtain an unbaised estimator of θ_{2} with a smaller varlance thin would be attalnad by sampling from f 2 . In the wefghting method presented here, the goal is only to obtain an unbiased estimator of θ_{2}. Since f_{i} and farc fixed, smaller variances can not be the alin.

The effictency of $g_{w}(\underline{Y})$ is meanured by ita variance relative to the
 assist in the study of the efficiency of this method, we let $H(\underset{\sim}{x})=g(h(\underset{\sim}{x}))$ and assime that the expected values of H and H^{2} with reapect to denifites Indexed by a parameter 0 may be expreased as $E_{0}\left\{H^{2}(x)\right\}=\phi(\theta)$ and $E_{A}\left\{H^{2}(x)\right\}$ - $\psi(0)$. Then with $w=\left({\underset{\sim}{x}}_{1} ;{ }_{2}\right) / f\left({\underset{\sim}{x}}_{j} ;{ }^{0}\right)_{1}$ the variance of the weighted eatimator wh(x is $\mathrm{F}_{0_{2}}\left\{\mathrm{wl}^{2}(x)\right\}-\phi^{2}\left(0_{?}\right)$.

For many of the common densities, $E_{\theta_{2}}\left\{\mathrm{wH}^{2}(x)\right\}$ is expresible as a function of $\psi\left(\theta^{*}\right)$ for some $\theta *$ in the parameter space of θ. Table 1 contains the expected value under f_{2} of $w H^{2}(x)$. These values may be used to obtain the efficiency of the procedure. For example, suppose f is normal with mean 0 and variance 1 , and a change to a normal variate with mean 0 and variance $1 / 2$ is desired. Suppose also that $H(x)=x$ so that $\phi\left(\mu, \sigma^{2}\right)=\mu$ and $\psi\left(\mu, \sigma^{2}\right)$ $=\sigma^{2}+\mu^{2}$. Then $E_{\theta}\left\{\mathrm{wH}^{2}(x)\right\}$. 385 , and the efficiency is 77%. While the func ion $h(x)$ would rarely be x, the above exercise does give some indication of the loss of efficiency using this method.

Figures 1 and 2 show the $\log _{10}$ efficiency of method I for normal samples with changes in the means and variances. Once again $H(x)$ is assumed to be x, and the efficiency is measured as the ratio of the variance of the estimitor using this method to that of random sampling.

In figure $l f$ is taken as a normal with mean 2 and variance 1 , while f_{2} is normal with mean ranging between. 5 and 3 and vatiance 1 . From this figure there is a range of values of the second mean from approximately l.l to 2.0 , where the efficiency of method I is greater than 1 . This is a common occurrence with this method and is not great surprise given the method's close resemblance to importance sampling. The same phenomenon is demonstrated in figule 2 where the means of the densities are hoth 2.0 , the varlance of $f, i s 1$, and the second variance ranges between . 5 and 1.5 . In this case the efticiency is greater than l when the second variance is be.. tween . 8 and 1.0 . It should be noted that in both cases outaide of these ranges the efficiency falls off rapidiy.
3. Method II: The Rejection Method

Assume that there exists n uniform bound M such that $f_{2}(\underset{\sim}{x}) / f_{1}(\underset{\sim}{x})$ © M for all $\underset{\sim}{x}$. Let the random variable v given $x-x$ be uniform between 0 and
$M_{1}(\underset{\sim}{x})$. The value $\underset{\sim}{X}=\underset{\sim}{x}$ is accepted as a sample from density $f_{2}(\underset{\sim}{x})$ if the realization v of V is less than $f_{2}(x)$. It follows that an arbitrary $\underset{\sim}{x}$ which is selected to remain in the sample has density f_{2} since $\operatorname{Pr}\{\underset{\sim}{X} \underset{\sim}{x} \mid \underset{\sim}{x}$ remains in the sample $\}$

```
= Pr{\underset{~}{X<}\underset{~}{x}\mathrm{ and }\underset{~}{x}\mathrm{ remains } / Pr{ X remains }}
```

$$
=\int_{-\infty}^{x} \operatorname{Pr}\left\{V<f_{2}(\underset{\sim}{u}) \mid \underset{\sim}{u}\right\} d \underset{\sim}{u} / \int_{\infty}^{\infty} \operatorname{Pr}\left\{V<f_{2}(\underset{\sim}{u}) \mid \underset{\sim}{u}\right\} f_{1}(\underset{\sim}{u}) d \underset{\sim}{u}
$$

$$
=M \int_{-\infty}^{\underset{\sim}{x}} \frac{f_{2}(\underset{\sim}{u}) f_{1}(\underset{\sim}{u})}{M f_{1}(\underset{\sim}{u})} d u=F_{2}(\underset{\sim}{x}) .
$$

In random variate generation with the rejection method the analyst chooses f_{1} to efficiently generate samples from f_{2}. In the cases presented here the analyst is not free to plakeither fior fir as they are assumed known and fixed.

The efficiency of method II can be measured by the probability that a random $\underset{\sim}{x}$ from f is accepted for f_{2}. This probability is given by the reciprocel of the bound M, since

Pr\{ a random $\underset{\sim}{X}$ is selected $\}=$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left\{V<f_{2}(\underset{\sim}{u}) \mid \underset{\sim}{u}\right\} f_{1}(\underset{\sim}{u}) d u \\
& \left.=\int_{-\infty}^{\infty} f_{2} \underset{\sim}{M_{\sim}^{u}} \underset{\sim}{f} \underset{1}{(\underset{\sim}{u}} \underset{\sim}{u}\right)
\end{aligned}
$$

Table 2 contains the bounds M for most of the densities commonly usod in almalaion studies. it is interesting that M does not exiat in anom.
cases. For example if $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ for normal densities, then the bound M exists only for the trivial case $\mu_{1}=\mu_{2}$, while for $\sigma_{2}{ }^{2}=\sigma_{1}{ }^{2}-\varepsilon$ the bound does exist for any values of μ_{1}, μ_{2} and $\varepsilon>0$.

Figures 3,4 and 5 show the $\log _{10}$ efficiencies of method If for normal samples and $h(x)=x$. In figure $3, \mu_{1}=2, \sigma_{1}^{2}=1, \sigma_{1}^{2}=.9$ and μ_{2} varies from.5 to 3. Over this range the efficiency covers five orders of magnitude. This points out the impracticality of changing the mean of a normal more than a few tenths of its standard deviation if only small changes in the variance are destred. On the other hand, if larger changes in the variance are made the efficiency does not drop off as rapidly. This is demonstrated in figure 4 where σ_{2}^{2} is fixed at . 5 . For this case the efficfency is lower at $\mu_{2}=2$ but attains an efficiency of a little less than one order of magnitude at $\mu_{2}=.5$.

The loss of efficiency for normal samples with changes in the variance is given in figure 5 , where $\mu_{1}=\mu_{2}=2, \sigma^{2}=1$ and $\sigma_{2}{ }^{2}$ ranges from .1 to 1 . The efficiency loss for this example is one and one-haif orders of magnitude at the extreme value $\sigma_{2}^{2}=.!$.

The use of method II can lead to low efficiencies. This is particu'arly true for large changes in the density functions. However, for reasolianle shifts in the denaity (e.g $\mu_{1}=\mu_{2}=2, \sigma_{1}^{2}=1, \sigma_{2}^{2}=.9$) the efficiency remains high. For these types of changes the lower efficiency of the method is minor compalred to cost of rerunning the computer code.

4. Example

We give as an example of the uses of the generation schemes presented here A two-out-of-three voting system given in figure 6 . (See Hentey and Kumamoto 1981) In this aystem three independent monitors shut the system
down if any two of the three signal for a shutdown. The system unavailab111ty for this arrangememt of monitors is given by $P_{s}=P_{1} P_{2}+P_{2} P_{3}+P_{1} P_{3}-$ $2 P_{1} P_{2} P_{3}$, where P_{1} is the probability that monitor 1 signals for a system shutdown. We assume that the analyst desires to study the variablility of the system unavailability using simulation techniques.

While the methods given here are gencrally for use in longer running simulation codes than the one implemented, the example was chosen to keep the model mathematically tractable and easy to elucidate. Examples of system unavailability dependent on 13 to 259 components may be found in Martz et al. (1983).

If ,e assume 10,15 and 20 observerations on the three monitors with 2 , 1 , and 3 fallures respectively, then the system unavailability is estimated by $\hat{\mathrm{P}}_{\mathrm{B}}=.049$. Uncertainty in this estimate comes from two sources. First, there is the sampiing distribution of the number of monitor fallures which Is assumed to be binomial. This source of variation was estimated by a simulation study of 10000 observations of $\widetilde{P}_{5}=\tilde{P}_{1} \tilde{\mathrm{P}}_{2}+\tilde{\mathrm{P}}_{2} \tilde{\mathrm{P}}_{3}+\tilde{\mathrm{P}}_{3} \widetilde{\mathrm{P}}_{1}-2 \tilde{\mathrm{P}}_{1} \widetilde{\mathrm{P}}_{2} \widetilde{\mathrm{P}}_{3}$, and $\tilde{P}_{1}=X_{i} / N_{1}$, and X_{i} was generated from a binomial $\left(\hat{P}_{1}, N_{i}\right)$, where $\hat{P}_{i}=$ $2 / 10,1 / 15,3 / 20$ for $1=1,2,3$. A second source of variation in these types of $s t a d i e s$ is the uncertainty in the values of \hat{p}_{f}, the observed fallure rates of the monitors, which are used to generate the binomial samples X_{i}. As the value of \hat{P}_{1} changes, the sampling distribution of \hat{P}_{S} changes, and it is this second source of variability on which the techniques given here attempt to treat.

The estinated mean unavallability is given in igure 7 for \hat{P}_{1} not only equal to. 20 but also for \vec{p}_{1} in the range. 10 to. 30 in steps of .001 . These values were generated using the techniques of method. While it is obvious that the expected unavallability is linear in P_{1} for this case, it
is interesting to note the observed inear relationship for the estimate $\tilde{\mathrm{P}}_{\mathrm{s}}$ as $\hat{\mathrm{P}}_{1}$ moves away from.2. This can be explained by figure 8 which gives the efficiency of the technique for this example as a function of \hat{P}_{1}. For all values of \hat{P}_{1} between . 1 and .2 the efficiency is greater than one. For $\tilde{\mathrm{P}}_{1}$ from. 2 to. 3 the efficiency is less than one but exceeds. 12 . This leaves the estimate with an effective sample size of more than 1200 (effective sample size $=$ efficiency - sample size) for all parameter values studied here.

Using the same set of 10000 generated values of $\tilde{\mathrm{P}}_{s}, \tilde{\mathrm{P}}_{1}, \tilde{\mathrm{P}}_{2}, \tilde{\mathrm{P}}_{3}$, the second method was used to estimate the $10^{\text {th }}, 25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}$, and $90^{\text {th }}$ percentiles of the sampiling distribution of $\tilde{\mathrm{P}}_{\mathbf{S}}$ for values of $\hat{\mathrm{P}}_{1}$ rangirg from .10 to . 20. These are given in figure 9, where the estimated percentiles become ragged for $\hat{\mathrm{P}}_{1}$ greater than . 28. This is caused by a lack of efficiency which is evident from figure 10. Since the efficiency drops off at a slower rate as the value of $\hat{\mathrm{P}}_{1}$ decreases, one would probably generate the largest value of \hat{P}_{1} of interest, and using method It estimate percen 1 iles of \widetilde{P}_{g} for smaller values of $\hat{\mathrm{P}}_{1}$.

The computer code used to gererate the 10000 values of $\tilde{\mathrm{P}}_{s}$ was by no means lung-running. The 10000 observations were generated in 24 seconds on a VAX $11 / 780$. While the techniques presented here are designed to be effective in codes where the majority of the computer time is spent evaluating the functior (P_{B} in our example), they did show improved efficiency in producing the data points of figures 7 and 9 . Compared to the 24 seconds used to obtain the data point for $P_{1}=-2$, the 200 data points of figure 7 were generated in 31 groonds, or .15 seconds per point while the 200 data points of figure 9 werc obtained in 123 seconds or 62 seconds per point.

For computer codes in which a large fraction of time is used to calculate the function, these savings would be even more dramatic.
5. Conclusions

Two methods were given to reduce the computer time necessary to investigate changes in the distributions of the random inputs to latge simulation computer codes. The first method produced unbiased estimates of functions, $g(y)$ of the output variables Y. In the second method a subset of the random outcomes $\left(\underset{\sim}{X}, Y_{i}\right)$ were selected so that the ${\underset{\sim}{X}}_{X}$ have the desired distribution. Efficiencies of these methods were investigated, and an example showed the potential of these techniques to save large amounts of computer time.

References

Dillon, R. T., Lantz, R. B. and Pahwa, S. B. (1978). Risk methodolot for geologic disposal oi radioactive waste: The Sandia Waste Isolation Flow and Transport (SWIFT) Model. SAND 78-1267, Sandia laboratories, Albuquerque, $N M$.

Goodman, J. and Koch, J. E. (1982). The probability of a tornado missile hitiling a target. Nuc. Eng. and Design, 75, 125-155.

Hirt, C. W. and Romero, N. C. (1975). Application of a drift-flux model to flashing in straight pipes. Tos Alamos National Lahoratory Refort LA-6005-MS, Los Alamos, NM.

Iman R. L. and Conover W. J. (i980), Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communication in Statistics, A9, 1749.1874.

Kahn, H. and Marshall, A. W. (1953)." Methods of reducing sample size in Monte Carlo compitations," J. Oper. Re-. Soc. Amer., !. 263-271.

Kennedy, W. J. Jr. and Gentle, J. E. (19s(1). Stasistical Compucing, Marcel Dekker Inc., New York.

Levincon, S. H. and Yeater (1983). "Metrorology to evaluate the effcs: ness of fine protection systems on nuclear power plants", Nuc. Eng. and Design, 76, 151-182.

Martz, H. F. Beckman, R. J., Campbell, K., Whjteman, D. I. and Bookei, J. M. (1983). "A comparison of methods for uncertainty analysis of nuclear power plart safety system fault tree models." jos Alamos National Laboratery Report, LA-9729-MS. Los Alamos, N.M.

McKay, M. D., Conover, W. .l. and Peckman, P. T. (1979), "A Compa:ison of three methods for selectian velues of juput vaifahles in the analysis of output fron a conputer cude," Jechnometrics, ?1, 239-245.

Henley, E. and Kumamota, H. (lq81). Peliabifity Figineeting and Risk Assessment, Prentice-Hall, New Jerscy.

Family	M	Reditictiona and Commenth
Normal or Lognormel $x \text { or } \ln x-N\left(N, o^{2}\right)$	$\left(0_{1} / o_{2}\right) \exp \left(.5\left(u_{2}--_{1}\right)^{?} /\left(0_{1}^{2}-0_{2}^{2}\right)\right.$)	The bound only exlsis ?si $0_{1}{ }^{2}>o_{2}{ }^{2}$
Beta	$x_{0}{ }^{\left(a_{2}-a_{1}\right)}\left(1-x_{0}\right)^{A_{2}-A_{1}} \text { where }$	Thas bourd holds ing
A(a, e)	$c=\frac{\Gamma\left(a_{2}+f_{2}\right):\left(a_{1}\right) \Gamma\left(\beta_{1}\right)}{\Gamma\left(a_{1}+p_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(f_{2}\right.}$	- $a_{2}, a_{1}, r_{2}{ }^{\prime}$
		M $a_{2} \leqslant a_{1}, E_{?}$ ソ E_{1}, \ldots
		$\left(a,-a_{0}\right)$ ' $: ~=: ~$
	Γ	a a_{1} - $a_{n} \cdot r_{?}$?
Foptula (0.0)		H) $a_{2}, a_{1}, \quad t: \quad:$
	$\left.x_{0}=o_{0}-n_{1}\right)^{\prime \prime}\left(F_{2}-R_{2}\right)$	
	$\left(F_{s} / r_{1}\right)^{\prime}$	
Prapam	expla - a	1012: ${ }^{1}$
MIncmial (N, P)	$\left(1-N^{N_{2}-N_{1}}\right.$	
	$\left(1-r_{2}\right)^{N_{2}} /\left(1-r_{1}\right)^{N_{1}}$	
	No cloard foimenlutinn	

EFTCECY OF MLTHOD I FOR NORINALS

FIHST MEAN-2 BOTH VARIANCES-1

EIFFCHENCY OF NETHOD : FOR NORMALS
FIRST VARUANCE-1 BOTH MEAN8~2

Fisur:

ETFCENCY OF WETHOD M FOA NORTARLS

 F:RST MEAN-2 VARIANCEI-1,VARIANCE2-. 0

Fir, 3

EFFCIENCY OF METIOOD II FOR NORMALS

FRRST MEAN-2 VARIANCE1-TLVARIANCE2-. 5

EFICHENCY OF WAETHOD OO FOR NORNANS
FRRST VARIANCE-1 BOTH MEANE-2

Fimere;

Two-out-of-three voting system (from Henley and Kumamoto).

Fault tree for two-out-of-three voting sfotem.

Fls:Mr-

ESTIMAMED UNAVATRGBILTY USING NAETHOD-I

P2-1/16, PS-3/20, ORYOINAL P1=2/10

ETFICLENCY OF GAETTOO : FOR EXAMPBLE P2-1/16. P3-3/20, ORIGINAL PI-2/10

Fisure 8

Finure 9

EFFICHENCY OF METHOD M FOR EXAMAPLE
P2-1/15, P3-3/2C, ORIOINAL P1-1/10

