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Monte Carlo Evaluation of Transport Coefficients

Allen H. Boozer and Gicietta Kuo-Petravic
Princeton University, Plasma Physics Laboratory

Princeton, New Jersey 08544

A method is developed for evaluating transport coefficients in asymetric
geometries using the Monte Carlo methoad. The method is applied to the

stellarator.
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I. INTRODUCTION

Transport coefficients depend fundamentally on the number of symmetry
directions of the plasma configuration. The enhancement of the transport
coefficients in a torus over those in a straight circular cylinder is well

known. -3

Actually, in the low collisjionality banana regime, any breaking of
the two symmetry directions of the straight circular cylinder gives a similar
enhancement. That is, if the straight circular cylinder is distorted into an
ellipse, made bumpy along its axis, twisted into a helix,4 or bent into a
torus, the low collisiocnality transport is enhanced in much the same way. B&s
long as one symmetry direction remains, this enhancement can be calculated
with the technigues developed for the neoclassical theory of tokamaks. In
addi tion, with at least one symmetry direction the magnetic field lines lie in
well defined magnetic surfaces, which are alseo +the constant pressure
surfaces. In this paper, we will assume that good magnetic surfaces remain
even in the absence of a symmetry direction. Conditions for this to be true
have been discussed in the ].i.teratw.'u»:e-5-9 In the absence of good surfaces,
rapid electron parallel thermal conductivity precludes the usual magnetic
fusion applications.

All experimental devices are asymmetric either due to the fundamental
nature of the device, like the stellarator, or due to the lack of perfection
in the realization of a concept, like a tokamak with toroidal ripple. In
either case a very small breaking of the toroidal symmetry--by one percent or
less--can enhance the ion thermal conductivity significantly over an
equivalent symmetric device in the reactor ::egj.me.w".I2 One finds that the
lower the collisionality the more important symmetry breaking terms become.

Due to the sensitivity of the transport coefficients--in particular the

jon thermal conductivity--to asymmetry, relizble methods of evaluation are



required. Unfortunately, the analytic theory of transport in asymmetric
devices has many difficuw.ties particularly when the perturbations produce
secondary magnetic wells alaong the field lines. When secondary magnetic wells
are present, the longitudinal invariant gg mvH di suffers jumps as particles
are collisionlessly trapped and detrapped in the secondary wells.

The Monte Carlc method of evaluating plasma transport coefficients
developed in this paper avoids the most serious problem of analytic theory.,
the need for a simple expression for the particle drift orbits. In Monte
Carle wook, the particle drift orbits are exactly evaluated numerically. The
Coulomb scattering is included as an appropriate random variation of the ideal
constants of the motion.

Related Monte Carlo calculations, but for high energy rather than thermal
particles, were made by Lister, Post, and Goldston .13 Since the work
reported in this paper was begqun, Monte Carlo evaluations of torsatron
transport coefficients were carried out by Potok, Politzer and T..j_dsky.14

The Monte Carlo procedure outlined in this paper has several
advantages. The use of magnetic coordinates allows one to trivally make the
ambipolar electrostractic potential constant on a magnetic surface. In
addition the magnetic field can be described by its magnitude alone; so
generic features of transport in a plasma geometry can be simply studied. The
method of evaluating the diffusion permits a close comparison with analytic
theory and the evaluation of the cross terms in the transport equations.
1T. ASIC CONCEPTS

In systems with small asymmetries the dominant part of the collision
operator is generally pitch angle scattering.2 The full collision operator

changes both a particle's energy and its pitch. However, neoclassical

transport and transport due to asymmetries are primarily caused by the varying



depth of particle trapping in the magnetic wells which ezist along the field
lines. Energy scattering does not change the depth of trapping in the
magnetic wells, but pitch angle scattering does. There are exceptions to the
rule that pitch angle scattering dominates. This occurs, for example, when
the transport is dominated by a resonance between the magnetic and electric
drifts.'® The primary emphasis of this paper is on the conceptually simpler
case in which pitch angle scattering is dominant. However, a method of
including energy scattering will be pointed out.

If the collision operator only scattered particles in pitch, one could
define a diffusion coefficient D(E,V) for particles of energy E and radial
position y. The radial position ¥ will be defined by the magnetic or constant

pressure surfaces. The diffusion equation is

s D (1)

with £ the distribution of particles in enerr; and ¢ space. The function s(y)
is defined so the volume element of physical space is d3x= s(y) ay .
Given D, the energy and particle transport coefficients can be evaiuvated by
taking appropriate moments of the diffusion equation. While doing this

evaluation, f£(E,¥) is treated as a local Maxwellian; so
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It should be noted that the moments of D give both the direct and the cross

terns in the fluxes.

The diffusion coefficent D(E,{) can be evaluated by solving the drift
kinetic equation ¢r by Monte Carlo methods. To relate the method of this
paper to other transport calculations, we first consider the evaluation of D

from drift kinetic theoz‘y.16 Let £ = fm(1 + f) with fm, a loecal Maxwellian,
a function of E,y. The deviation of £ from a Maxwellian f is assumed small.

The linearized drift kinetic equation for £ is

of
R
I P SRR 1)) = ¢ (f) (3)

>
Ya 3y
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with Cl(f) the linearized collision operator. The drift velocity ;d contains
the parallel as well as the perpendicular drifts of the particles. A function

h is defined which is a solution of

> > »>
vd-Vh+v’t-§lp=Cl(h) . (%)
then approximately
- 1 afm
f=h f_ W . (5)



This approximate form for f involves two approximations in the drift kinetic
equation. The first approximation is the neglect of the second term in the

expansion

efnf of
I D > 2 1 “m
AR e AR R AR Y w e 39 ) 0 ©

This is just the diffusion approximation, the retention of only lowest order

spacial gradients. The second 4; >roximation is in writing

- Bﬂ-nfm
Cl(f) = T Cl(h) - (7)

This approximation would be exact if c contained only pitch angle scattering
or if dT/dy were zero. However, the approximation can also be justiried if
the transport processes of interest depend only on scattering across small
regions of phase space which is in practice the case. Once E is written as
hBJZ.nfm/Blp, D(E,¥) can be defired. Hence, the diffusion function D(E,¢) exists
for all transport processes of interest.

To derive the expression for D(E,{¥) from the drift kinetic theory, the
magnetic coordinates w,e,apo must bhe defined as well as v, § velocity
coordinates. The magnetic coordinates ¢,9,¢° are defined so E = %o x W with

>
® chosen so the inverse of the coordinate Jacobian B < 38 is not zero. The

differential element of area of a Y surface is W times the Jacobian, or



a8 da¢_ay
as_ = A a8dp  and ax = — . (8)
v - Yo ° B e U0

For velocity space coordinates, the magnetic moment B and velocity v are

used. The velocity v is defined so that the energy is

2
mv© + e¢°(¢)

N =

(9)

with ¢,(y) the minimum of the electric potential on the surface. (In
practice, ¢ is generally constant on ¥ surface.) The velocity element is then

2
d3v - 41Bdp v adv (10)
mvlvul

with v“defined by

(11)

The total flux of particles across a magnetic surfaces is then



> » 3
I't=j'dsw'jvdfdv (12)
g a¢
- 41 a o Bduy m
/ vioav ] 3. % mvlv“l “"d WJ) h Y !
which implies
de dq). B
2. mvlv 1 a6 de
B = VO I *>
D(E,¥) = ~ J - (v, » W) noand sty) = ] ——=2 . (13)
sVl d A%

It is then easy to see that the average particle and heat fluxes are given by

af
r=-f D(E,qv)—,a—ﬁ‘—z;nv"’ av (14)
P
af
1 2 m 2 ,
Q—--)'Eva(E,W)E{)‘——Alﬂv dv . {15)

In Monte Carlo calculations D is determined quite differently. n
particle's drift orbit in xp,e,q>° space is integrated forward in time using
ay/dc = ;d . W} . etc. After each time step the pitch angle is changed by
an appropriate amount to reproduce the effect of collisions over that timae
interval. Since collisions are an ergodic phenomenon, the change in pitch

must have a random component. The radial motion of particles is diffusive on

long enough time scales which permits an estimate of D.



To develop the Monte Carloc method, consider a large group of particles of

given energy which cover a small region in § {(radial coordinatej space. In
the diffusion equation this can be represented by £(E,¢)} being a delta
function in energy space and highly localized in Y. Assuming f is normalized

so
J BB, ¥) s(y) ap =1, let <y> = [ ¢ £ 5 dp
then
d _ . 3f _ .1 8sD
& P = | e SO S9 = < —a—q‘—>
with two integrations by parts in Y. Similarly
4 <w2> = 2¢p> + 2 <¥ 952—)
dat s Y -

Since ¢ is highly localized,

giving



{O-I

2
<> = (<> - <¢>2) . (16)

N
o

t

This equation requires intepretation. Let wj(tol be the radial position of

-th : s . .
the | particle after a time to’ given that at time zero it was located at

¥,+ This position leto) is determined by following a particle's drift motion

with appropriate pitch angle scattering after each time step. Define
D, =5 (p. - v) . (17,
The estimate of D from J particles is
J
i D . (18)

The statistical distribution of the Dj ig important, for this allows an
estimate for the number of replications required for D, to be a good estimate

of D. To develop the statistics consider the diffusion eguation

3g _ 29 (19)

1f g = 8(x) at t = 0, then after a time t,
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2

1 X
9x) = [T Ji2 *® - Tape R (20
o o

The interpretation we wish to place on g(x) is that g(x) dx is the probability
a particle which was at x = o at ¢ = o has a position between x and x + dx at
& = t,» The estimate of the diffusion coefficient Dy = x%/(2 t_); so the

probability of Dj lying between Dj and Dj + Dj is

dx
gix) an. dDj .

The probability distribution function for the Dj is then

D
‘_ 1 o a
p(Dj) —Wexp Sl A (21)

This is the Chi-square distribution with one degree of freedem. Following
standard statistical procedures, D, based on N vaiues of Dj has the Chi-square
confidence interval with N-1 degrees of freedome The Dj have a broader
distribution, especially for Dj << D, then one might expect. In Table I is a

comparison between the Chi-square distribution and the actual distribution of

Dj/Dib for a run consisting of 450 Dj's-
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Table I
Expected Bxpected actual
Cummuiactive Number in Number in
Dj/D Fraction Dj/D Range Dj/:.\,, Range
3.93 x 1073 5% 22.5 4.6 30
1.58 x 1073 10 22.5 20
0.10 25 67.5 ¢t 7.6 82
0.45 50 112.5 121
1.32 15 112.5 1 9.2 o3
2.71 ¢ 67.5 55
3.84 95 22.5 18
w 120 _22.5 26

450.0 450
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There are several limitations on the Monte Carlo procedure of this
papere. First, consider the choice of to’ the time between estimates of the
diffusion coefficient. If t, were chusen too long it would not adequately
represent the time derivative of <(y¢ - <w>)2>. This is eguivalent to saying
ij(to) - ¥,1/¥, must be small. If £, were chosen too short then wj(to) is
controlled by deterministic and not random motion. In other words lin - \pol
must be large compared to the radial excursion of a particle executing its

drift motion for the process to be diffusive. This limitation can be

alleviated by defining

=7 S _t )2 at
‘l’j (to) T) = I exp [- ('t* J J W](_t + toJ t, (22}

and wusing ‘l’j(to) instead of "l’j(to) to evaluate Dj‘ For this procedure to be
valid t, must be short compared to t,. For it to be of any value t, must be
lorg compared tuv the characteristic times of the drift orbits. 1In practice we
ha-. not found it necessary to use ‘Yj(to) instead of \vj(to)- The pest
practical wrocedure for choosing t, is apparently to make it greater than or
egual to the collision time or the time it takes a particle to drift around a
magnetic surface. That is for 9 and $, to increase by 2. In plasma devices
which can confine particles for marny collision times, the radial excursion
after one collision tis= N-j(to) - \pol is small compared to the size of the
device. Consequently, a .rticular particle can be followed several collision

times with several values of Dj being determined with
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[w(tj) - w(tj_,',jz cwith  to= gt (23)

Bach time a Monte Carlo run is begun, the particle should be given the same
ini*ial wvalues for ¥ and energy, but the pitch vu/v, €, and ¢° should be
chosen randomly.

A second limitation of the simple Monte Carlo scheme is the use of a
Lorentz scattering operator to change the pitch of the particles. This
limitation encompasses not only the lack of energy scattering, which can be
easily corrected, but more fundamentally the lack of momentum conservation.
If a momentum conserving pituh angle scattering operator is used in ordinary
drift kinetic theory, the diffusion coefficient D consists of a Lorentz part
Dy and a momentum conserving part Lh (see appendik A of Ref. 2). The Lorentz
part 1 is given by the Lorentz collision 6perator which is the scattering of
a test particle by a Maxwellian plasma using the Fokker-Planck collision
operator. the other part of the diffusion coefficient D comes from the
motion of the scattering Maxwellian. This motion is required by momentum
conservation. If there is at least one symmetry direction, one can show
momentum conservation “‘mplies there is no particle transport from like
particle collisions. The momentum conserving part of D, D, exactly cancels
the like particle collision contribution ofl)l to the particle flux. However,
in transport due to the breaking of the last symmetry direction, like particle
collisicns can contribute to particle transport and in analytic theory one
finds D, = 0. Consequently, the limitation of the Monte Carlo theory
described in this paper of findingD; rather than D is not as important as it

might first appear.
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Finally, let us consider how energy scattering can be included in the
Monte Carlo methods The inclusion of energy scattering as well as pitch angle
scattering presents no problem in the calculaticon of ‘pj (to). However, the
diffusion coefficient d&erived from qaj(to) is not D(E,y) bt the ordinary

particle diffusion coefficient D (T,¥)

ptra) = [opg 4n v’ av (24)

with £ a Maxwellian of temperature T. This comes from the energy scattering
opg¢rator containing temperature ;o that a particle spends time at each energy
' in proportion to the fraction of particles in a Maxwellian at that energy.
Fortunately, one can obtain the various energy moments of D(E,‘kf) from the
temperaturé dependgnce of D(T,¢)« To do this a number of Monte Carlo runs are
made at different temperatures but with the scattering in energy and pitch
held fixed. With the scattering held fixed D(E,9} has no temperature

dependence so

23D 1 2 2
T T—jzmv DE 4mva . (25)

|
‘ . 'Cons_equently the derivatives BD/alT and 32173'1'2 allow one to evaluate the

. transport cosfficients.



III.

To follow particle drift orbits magnetic coordinates are used.

these

simplest for a curl-free field.

wm+

To develop an intuitive feeling for

tokamake. If ¢ is the toroidal flux

toroidal angle, g(y)

potential ¥x gp + 10 with g = RB¢

case.

The drift equaticns can be simply derived.

coordinates can be used in arbitrary magnetic fields,

the safety factor,

16

DRIFT EQUATIONS IN MAGNETIC COORDINATES

Although
17 they are
In this case
= Yo, x Ty (26)
-+
= Uy .

¢5» Y, and x consider the axisymmetric
funstion, then ¢o = $/q - 8 with ¢ the
and 8 the poloidal angle. The

and I = rBe constants in the curl-free

Within a factor, g and I are the total poloidal and toroidal current.

The drift velocity is

> E mc 2 2 E X % B E X % o]
= =2 = — + . 27
vy gtrtg iyt ey T cT 2 (2n
The eguations for the drift orbits are
B > 3y MW_2. %,  W_3.3 (28
aw o VoV, TV G TV VK

To evaluate the terms note
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Ex§¢=(3x)xt%%°+%5w+%§ ¥x)
o

_ mc 1 2
PpEVyeE ¢ 2™ T uB

ep
+ ] *
B/B = p— V¢o x v

M
then
;%_c%_(guaf%p%)g—’; (29)
X :—22;;“ . (31)
To obtain an equation for p, use energy conservation
2 (32)



with the enery E and magnetic moment u constants. The simplest way to proceed

is to define a Hamiltonjan H £ cE/e; so

¥}

Hg /¥ ikeP ) =-;- :TE— pnz + -:- UB + c® ., (33)
It is then easy to see that
Po__am gy ax_ (34)
dt 3y " at 3¢0 T Bp“
energy conservation implies di/dt = 0, or
?:-%=-c%§-(§u+§§pu2)g—: - (35)

To  use these equationg ce Tputationally, they mast be made
dimensionless. To do this we use a characteristic magnetic field B, and a
system dimension, &, generally the minor radius. With these two scales given,

all other guantities can be scaled in the manner of Table II.



Physical Quantity

Frequency
Velocity
Energy
Potentials

Flux

Magnetic Potential

Magnetic Moment

19

Table II

Characteristic Scale

w, = eBo/mc
v, = awg

_ 2
Eo = My,
°o = Eo/e

— 2
Vo = B2
xo=B°a
n E. /B

v

P
v



20

With these conventions, the kinetic energy E, = mv2/2 is given by

Be_a <P
E 2 2 2 !
[e] W a

so 1/(2]5:k,\1/2 in dimensionless units is the number of gyroradii in the system.

To actually use the magnetic coordinates, expressions for ¢ and B are
required. The electrostatic potential is constant within a magnetic surface
in scaler pressure are equilibria; so ¢ is a function of y alone. The form we

have used is

L1 -3—)2 (36)

with Ey the input kinetic energy and n a dimensionless‘constant- The electric
rield from this potential vanishes both at the magnetic axis (since §¢
vanishes there) and at the plasma edge § = wa.

The dependence of the magnetic field strength B on ¢, ¥, and x of course
depends on the type device one is studying. First, consider the axisymmetric

tokamak. The relations between ¢o,w,x and ¥, 9, ¢ imply in the curl free case

that

N RSP S = (X - (37
T wm %) qu ¢ !
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- 1 q - X
°'§ (1'gy1+1 )+qy1+ 7 % ° g (38)

where the approximate sign means we have

ignored terms of order I/ggq =
KN

{ BB/Bdm The toroidal flux

1
> By {39}

with B, the toroidal field at the magnetic axis. The magnetic field strength

in & tokamak is approximately

B = 50{1 - Ea[r;) cose]

(40)

it

B L1 - e ()" cos( B - o)
a

Qo

with €a the inverse aspect ratic at the plasma edge. In Adimensionless units

= 1 - 1/2
B=1-¢c (2¢)

€
cos[—§ X - o) (41)

The magnetic field of a stellarator can be derived from the field of a
straight helix.1® One finds
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14

B{r,6,0) = Bo [1 - ¢, = coso - 8, (Z) sin(26 - mg)

a
- (42)

-, b (g] cosf sin(f8 - mp) ]|

with €, the inverse aspect ratio, Sa the helical ripple, and 4, the distortion

of the magnetic surfaces from circles

(me )2
8 = a A
a L a
(43)
2 1
Aa m(JL—‘I)qa
with q, the edge safety factor. One has
2(%-2)
alr) = q (; . (44)

Substituting the expressions for 6 and ¢ one obtains in dimensionless form
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4

2/253‘.11[_(11,--mq) "—3‘ X - 1¢°J

€
1/2 K, -
B=1-¢_ (29 cos| g X ‘?QJ 6a(2¢)

(45)

€

£
1/2 cos(~3— X - ¢0) sini(l?.—mq) —i— X - E¢°]

-
- eaAa( 2y)

with

N (46)

To illustrate <¢he evaluation of particle drifts, consider the
stellarator. The magnetic field strength in a stellarator {(Eg. 45) is a
complicated function of the location on the magnetic surface (Fig. 1). The
variation in field strength along a field line is given by varying x holding
%, and p constant. In Fig. 1 one can see that the variation in field strength
along a field line consists of a slow oscillation due to the toroidicity and a
rapid oscillation due to the helicity of the stellarator. The toroidal and
helical variation in the field strength give rise to two types of trapped
particles, toroidal and helically trapped. An individual particle can switch
from toroidally trapped to helically trapped and vice versa as a result of the
variation in depth and width of the helical wells along its collisionless
drift orbit. An example of this behavior is illustrated in Fig. 2. The fact
that particles can switch from toroidally te helically trapped implies the

longitudinal invariant J = §mv“ df is not conserved over the entire drift
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motion. However, the longitudinal invariant is generally conserved while a
particle is either helically or torocidally trapped and J conservation can be
used to calculate the transition point from helical to toroidal trapping.

While carrying out the collisionless drift orbit integrations an 8th

19 20

order multistep generalization of the Runge-Kutta method was used. The

change in enerqgy per time step is a sensitive measure of the accuracy of the
numerical integration. For the calculations of Fig. 2, the ratio of the

energy change per time step to the initial energy, AE/EO, caused a 20%

9

adjustment in the time step if it lay outside the range 5 x 10 ° < /:\E/E:o < 2.5

2 1078, The change in the energy over the entire integration of Fig. 2 was 3

=5 the initial energy. The average time step was about 103 cyclotron

x 10
periods.
IV. MONTE CARLO COLLISION OPERATOR

The coll ' on operatur of primary impnrtance to the Monte Carlo calculations

is the Lorentz collision operator

(=]
r

]
—5(1-)\)— (47)

Ya
2

(>3]
o

with A = v"/v « The deflection collisian frequency v, is

11)1/2 v d(x) - ¥(x) (48)

Ud=3(5 B x

with vp the Braginskii collision frequency
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4, /2 detn _ _A/10 2 172 n
ve =3 (3 372 s & /2 T (49)
T 3Ix 10 T

In this formula A is the Coulomb logarithm, A the atomic mass of the ions, n

the electron density in particles per cm3

, and T the temperature in electron

voltse For n = 1014/cm3 and T = 104 eV, the Coulomb logarithm is A = 18.4.
1

The variable x = v/(ZI'/m)/2 with v the particle velocity. The functions ¢ and

Y are given by

2
_ 2 x -t
olx) == [ e dt
(50)
$ - x @
Yix) = E———z———- .
x
The thermal deflection rate is defined by vglx = 1) = 2.3646 vg. The
dimensicnless collision fregquency is \Jd/wc or
10 1/2
= = -16 _n (A,
valx = 1) = 3.03 x 10 T LZ) (51

with B is Gauss using A = 18.4.

shanny, Dawson, and Greenez‘l as well as Lister, et al.13 have given a
Monte Carlo equivalent of the Lorentz operater based on the Gaussian
distribution. However, we used a simpler Monte Carlo equivalent operator

based on the binomial distribution. %o derive this operator, let
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azflrira

then one can show by integrating by parts that

d<A> _ ded > _ 2
ol "i <A> , At = ud (1 =3 <A > .

The square of the standard deviation of f in pitch space

2 2
o = <A > = LA>

broadens in time with

2
do® 2 2
e vd (1 3T+ 2 <) .

Suppose at t = o, £ were a delta function ekcut A = Ao.

2
acns do” 2
ac - " Va%e ¢ Tar T Va1 T A

At that time

(52)

(53)

(54)
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After a short time t, we expect £ to be a Gaussian centered at A = Ao(1 - vdt)
with standard deviatien [{1 - AOZ) vatl /2, Suppose we thought of the
broadening of f as being due to a large number of steps in pitch of egual size
but of random sign. The distribution function for obtaining m plus values in

n trials with equal probability for plus and minus, the binomial distribution,

is

1 n!
Plm) = ';n— Ty — . (53)

Let j be the number of pluses wminus the number of minuses, j = 2 m - n, the

for n > 1,

1 -
172 exp | [ (56)

The standard deviation of j is ¥n . To reproduce the standard deviation o,

the A steps must each have a magnitude [(1 - Xo)z le’] 12 with T the length

of time between the steps. After n steps the time t = aT, and the standard

deviation of the A distribution will be the step size times Yn, or

_ _ 2 172
¢ = [(1 xo) th] . (57)
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This agrees with our earlier expression for o. Clearly if the pitch is

changed from )‘o to A after a time step of length T with

11/2
j /

2
A =7\o (1 - \)d'r) £ [(1 - AOJ vyt (58)

n

then the effects of the Lorentz scattering operator will be reproduced for

VLT << 1. The symbol + means the sign is to be chosen randomly, but with

d
egual probability for plus and minus.

The operator of Eq. 58 has the important feature that if Ikol<1, then
I)\n|<1. It is physically obvious that the pitch must be less than unity,
however, an otherwise valid Monte Carlo operator could allow A to go out of
this range oprovided the amount |]A] exceeded unity went to zero as VT went to
zero. To show l}\nl<1, let us assume for simplicity vpT is small compared to
unity. Clearly, ]AOI must be near one for a problem to occur; so we let

Ay = 1-6 with & << 1. The largest A  can be is

1/2
A =1 - (8 +vd-r)+(2 §v ) .

The maximum value of A, as 8 is varied occurs at 6 = vqT/2; so

v_T

b <= —%— . (59)



—

?
{
i
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To have a good representation of the Lorentz operator, V4T amust clearly
be mich less than one. It is easy to see that (vdT)1/2 significantly smaller
than the smallest regions of interest in A space is the actual reguirement.
In the Monte Carlo transport calculations, the time step of the integrations,
T, is chosen tc. be small enough so the orbit equations are energy
conserving. This choice insures several time steps while a particle crosses
any regime over which the magnetic field strength changes significantly. This
choice also insures there are several scatters before a particle has changed
its pitch significantly.

To illustrate the action of the Monte Carlo Lorentz scattering operator
ve evaluated the fraction of the time a particle spent at each pitch while
subjected to the scattering operator. In Fig. 3 this fraction is plotted at
three peints in time for a particle which started with zero pitch. After many
collision times, the particle has spent equal time at each pitch. The
fluctuations in time spent are of order 1/(vdt)1/2. while carrying out this

calculation the time step was 2 x 10-4/vd.

The enexrgy scattering equivalent of the Lorentz scattering operator is

af 1 3 2 T 3f s
=7 v v vl o5 ] (60;
with
1/2
_ o ¥(x)
ve=3 (g v, TR (61;
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This energy scattering operator can be derived from the Fokker-Planck
collision operator by assuming particles scatter on an background Maxwellian
of temperature T. One can show that the energy scattering operator causes any
distribution function £ to relax to a Maxwellian, f_, of temperature T, by an

m

H theorem. The role of H is played by

R = f : (% m v2]f 4m vzdv . (62}

A Monte~Carlo equivalent energy scattering operator can be found by

evaluating

g; <E> =‘g€>jom (%—mvzj £ 41 viav
and d <EZ>/dt. This operator is
ddnv
3 By oL 1/2
g =E -~ (2v;1) [B =~ (S+ggrlv2 {re (v 7)] . (63)

One can show the energy can never go negative. That is it if E, > 0, then

En>0-
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In Fig. 4 it is demonstrated that a particle which started with thermal
energy spends time at various energies in proportion to the Maxwellian

distribution. If n(E) is the fraction of time a particle has energy E then

n(E)/VE = exp (~ E/T) (64)

is the expected distribution.
V. EVALUATION OF D FOR A STELLARATOR
To illustrate the power of the Monte Carlo method, the problem of ion
transport in a stellarator was studied. Analytic evaluations of ion heat

16,22 ¢ the time

transport in stellarators have given pessimistic results.
the calculations reported in this paper were undertaken no Monte Carlo
evaluations of transport in stellarators had been carried out. However, more
recent Monte Carlo work has given collaborative results.14

While evaluating the diffusion coefficient a fourth order accurate Kutta-
Merson process was used for the orbit integrations. After each orbit time
c-ep the pitch was changed by using the Monte cCarlo, Lorentz collision
operator. it was found that a slight improvement in the representation of
collisional effects occured if the Monte Carlo scattering operator was called
several times rather than just cuce at the end of a time step. That is if the
time step was L the Monte Carlo scattering operator was called j times with
T = To/j. In practice we used j = 5.

The stellarator configuration studied was that of Figs. 2 and 3, & = 2,

m= 6, and € = 1/7. The transport coefficients were studied half way out in

toroidal flux from the center {r = a/¥2) with the local safety factor assumed



32

to be two. Figure 5 gives the time history of a particle's motion for six
collision times (G/Ud). The dependence of the diffusion coefficient D on
collisionality was studied both with and without a radial electric field. 1In
Fig. 6 one can see there is little dependence of D on collisiopality contrary
to early analytic predictions. However, at a fixed collisionality D was found
to depend quadratically on kinetic energy.

For comparison purposes and to test the code, D was evaluated for a
tokamak with the same safety factor aid aspect ratio as the stellarator. The
low collisionality value for D in a tokamak can be easily evaluated
analytically to lowest order in the inverse aspect ratio (see Appendix A,
Ref. 2). This is the neo-classical banana regime. In dimensionless form the

analytic result for a Lorentz collision operator is

D= [2 E(ll))lvz ——; q2 E_V . (65)
e
a

The local aspect ratic is €(y¥), o = 0.689 . . . is a numerical constant, €y
is the edge aspect ratio, and By is the kinetic energy. As can be seen in
Fig. 6 the tokamak results of the Monte Carlo code agree with the analytic
formula at low collisicnality. At higher collisionality, the code results

demonstrate the bending over of D into the so-called plateau regime.
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(PPPL~-802225)

Fig. 1. Stellarator Field Strength.
The strength of the stellarator field
in a given magnetic surface (half way
out in flux) is plotted versus x, the
variable along the lines, and ¢o’ the
variable across the lines, for one
period in each direction. The slow
variation in the ¢, and y directions
is due to torodicity while the rapid
oscillation is due to helicity.

(PPPL-~802228)
Fig. 2. Collisionless Stellarator Particle
Orbit. The time dependence of ¢,, ¥ and x is
illustrated for a particle moving in the
stellarator field. As can be seen from x, the
coordinate along the field lines, the particle
switches from being trapped in a toroidal well
to a ripple well as a result of its collision-
less drift motion. The time units are 10 Jwe.
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Fig. 3. Relaxation in Pitch
Space. A particle started with
A =vy /v=0 was followed with
the Monte Carlo equivalent of
the Lorentz collision operator.
Plotted is the time the particle
has spent at various values of
pitch, A, after 0.2, 2.2, and
18.2 collision times. The
curves are normalized so there
is equal area under each. After
many collision times, the parti-
cle has spent equal time at all
values of the pitch between
A= +1 and A = =-1.

(PPPL-802227)

Fig. 4. Relaxation in Energy
Space. A particle started with
the thermal energy E = T was
followed with the Monte Carlo
equivalent of the energy scat-
tering operator. The vertical
scale is in arbitrary units but
proportional to the fraction of
time a particle has spent at
each value of the energy divided
by the square root of energy. 2
Maxwellian would give a straight
line.
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- . (PPPL-£02224)

. ) Fig. 5. Collisional Stellarator Particle
Motion. The time dependence of ¢, ¥, and
X is illustrated for a particle moving in
the stellarator field for 6 collision times.

T S The larger jumps in ¢ occur for trapped
ot s ; particles. This is demonstrated in the
' g figures by large jumps in § occuring at the
o ’ places where dy/dt = O. The time units are
e : 106/u.
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Fig. 6. Diffusion Coefficient in a
100g v rermnp aTrrTmET Y Ty Stellarator. The diffusion coefficient

i D(E.¥) is plotted for a thermal particle

T
© Stetlarator,No in a stellarator with and without an am-

e Electeig ?leld\ smlaru'!or ; bipolar electric field and in an equiva-
< 4 P doat lent tokamak. The reactor collision fre-
0k ’ - quency vp is defined by n = 1014/cm3,
3 1 T = 10 keV, B = 50 kG. The symbol Dy (vg)
SF b means the value of the neoclassical dif-
3 1 fusion at v = vg. The parameters of the
2‘- 1 stellarator were £ = 2, m= 6, ¢ = 1/7,
i and q = 2.
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