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Monte Carlo Evaluation of Transport Coefficients 

Allen H. Boozer and Gioietta Kuo-Petravic 

Princeton University, Plasma Physics Laboratory 

Princeton, New Jersey 08544 

A method is developed for evaluating transport coefficients in asymetric 

geometries using the Monte Carlo method. The method is applied to the 

stellarator. 
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I. INTRODUCTION 

Transport coefficients depend fundamentally on the number of symmetry 

directions of the plasma configuration. The enhancement of the transport 

coefficients in a torus over those in a straight circular cylinder is well 

known. Actually, in the low collisionality banana regime, any breaking of 

the two symmetry directions of the straight circular cylinder gives a similar 

enhancement. That is, if the straight circular cylinder is distorted into an 

ellipse, made bumpy along its axis, twisted into a helix, or bent into a 

torus, the low collisionality transport is enhanced in much the same way. As 

long as one symmetry direction remains, this enhancement can be calculated 

with the techniques developed for the neoclassical theory of tokamaks.. In 

addition, with at least one symmetry direction the magnetic field lines lie in 

well defined magnetic surfaces, which are also the constant pressure 

surfaces. In this paper, we will assume that good magnetic surfaces remain 

even in the absence of a symmetry direction. Conditions for this to be true 

have been discussed in the literature. In the absence of good surfaces, 

rapid electron parallel thermal conductivity precludes the usual magnetic 

fusion applications. 

All experimental devices are asymmetric either due to the fundamental 

nature of the device, like the steliarator, or due to the lack of perfection 

in the realization of a concept, like a tokamak with toroidal ripple. In 

either case a very small breaking of the toroidal symmetry—by one percent or 

less—can enhance the ion thermal conductivity significantly over an 

equivalent symmetric device in the reactor regime. ~ One finds that the 

lower the collisionality the more important symmetry breaking terms become. 

Due to the sensitivity of the transport coefficients—in particular the 

ion thermal conductivity—to asymmetry, reliable msthods of evaluation are 
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required. Unfortunately, the analytic theory of transport in asymmetric 

devices has many difficulties particularly when the perturbations produce 

secondary magnetic wells along the field lines. When secondary magnetic wells 

are present, the longitudinal invariant <f mv. i dtt suffers jumps as particles 

are collisionlessly trapped and detrapped in the secondary wells. 

The Monte Carlo method of evaluating plasma transport coefficients 

developed in this paper avoids the most serious problem of analytic theory, 

the need for a simple expression for the particle drift orbits. In Monte 

Carlo wc-k, the particle drift orbits are exactly evaluated numerically. The 

Coulomb scattering is included as an appropriate random variation of the ideal 

constants of the motion. 

Related Monte Carlo calculations, but for high energy rather than thermal 

particles, were made by Lister, Post, and Goldston . Since the work 

reported in this paper was begun, Monte Carlo evaluations of torsatron 

transport coefficients were carried out by Potok. Politzer and Lidsky. 

The Monte Carlo procedure outlined in this paper has several 

advantages. The use of magnetic coordinates allows one to trivally make the 

ambipolar electrostractic potential constant on a magnetic surface. In 

addition the magnetic field can be described by its magnitude alone? so 

generic features of transport in a plasma geometry can be simply studied. The 

method of evaluating the diffusion permits a close comparison with analytic 

theory and the evaluation of the cross terms in the transport equations. 

ii. ;ASIC CONCEPTS 

In systems with small asymmetries the dominant part of the collision 

operator is generally pitch angle scattering. The full collision operator 

changes both a particle's energy and its pitch. However, neoclassical 

transport and transport due to asymmetries are primarily caused by the varying 
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depth o£ particle trapping in the magnetic wells which e;:ist along the field 

lines. Energy scattering does not change the depth of trapping in the 

magnetic wells, but pitch angle scattering does. There are exceptions to the 

rule that pitch angle scattering dominates. This occurs, for example, when 

the transport is dominated by a resonance between the magnetic and electric 

drifts. The primary emphasis of this paper is on the conceptually simpler 

case in which pitch angle scattering is dominant. However, a method of 

including energy scattering will be pointed out. 

If the collision operator only scattered particles in pitch, one could 

define a diffusion coefficient D(E,i|i) for particles of energy E and radial 

position ip. The radial position i(i will be defined by the magnetic or constant 

pressure surfaces. The diffusion equation is 

3f i_ a_ at . 
3t s(10 9-+ S 31(1 

with f the distribution of particles in enemy and i|( space. The function s(i)i) 

is defined so the volume element: of physical space is d x = 3(110 dty 

Given D, the energy and particle transport coefficients can be evaluated by 

taking appropriate moments of the diffusion equation. While doing this 

evaluation, f(E,i}0 is treated as a local Maxwellian; so 

3f 2 
1 r m^ _ J. dn : my 3̂  > ^ dT e d* 
f l-3i|) >B n di|i ^ 2T 2 > T di|> ~ T d ? * i A > 

Hi 
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It should be noted that the moments of D give both the direct and the cross 

terms in the fluxes. 

The diffusion coefficent D(E,i)i) can be evaluated by solving the drift 

kinetic equation or by Monte Carlo methods. To relate the method of this 

paper to other transport calculations, we first consider the evaluation of D 

from drift kinetic theory. Let f = f (1 + f) with f , a local Maxwellian, 
in m 

a function of E,i)/> The deviation of f from a Maxwellian f is assumed small. 

The linearized drift kinetic equation for f is 

3f 
*d " h + ( V d ' **> W = C l < f ) ( 3 > 

with C,(f) the l inearised coll ision operator. The d r i f t velocity v contains 
J. d 

the paral lel as well as the perpendicular d r i f t s of the p a r t i c l e s . A function 

h i s defined which i s a solution of 

v d • $h + v,„ • $ ip = c x (h) , (4) 

then approximately 

, 3f 
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This approximate form for f involves two approximations in the drift kinetic 

equation. The first approximation is the neglect of the second term in the 

expansion 

9*nf , „ 3f 
*' - V s 5d • *»+ h <V **> T* l-r *r> " ( 6 ) 

m 

This is just the diffusion approximation, the retention of only lowest order 

special gradients. The second a; iroximation is in writing 

3Hnf 
C l ( f > =-3Y J 2 ci< h> • < 7 ) 

This approximation would be exact if C^ contained only pitch angle scattering 

or if dT/d<f were zero. However, the approximation can also be justified if 

the transport processes of interest depend only on scattering across small 

regions of phase space which is in practice the case. Once f is written as 

hS&nf /3IJJ, D(E,ip) can be defined. Hence, the diffusion function D(E,i|») exists 

for all transport processes of interest. 

To derive the expression for D(E,i|0 from the drift kinetic theory, the 

magnetic coordinates T|J , 6, •(> must be defined as well as v, p velocity 

coordinates. The magnetic coordinates ,̂6,4> are defined so B = Viji x vi|» with 

S chosen so the inverse of the coordinate Jacobian B • V6 is not zero. The 

differential element of area of a i|i surface is times the Jacobian, or 
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* d6 diji di|) 
d | = v V, , d e < j + a n d d J x = ^ . ( 8 ) 

* 2 • ve ° S • $e 

For velocity space coordinates, the magnetic moment v and velocity v are 

used. The velocity v is defined so that the energy is 

E = | mv 2 + e« (i)i) (9) 
Z o 

with 4>0(i(>) the minimum of the electric potential on the surface. (In 

practice, i is generally constant on ^ surface.) The velocity element is then 

3 4TTBdp v dv d v = 1 1 (10) mv v 

with v ..defined by 

1 2 
E = - mv ( + UB +• e* . (11) 

The total flux of particles across a magnetic surface is then 



r

t

 = / *h • / ^ f a 3 v 

, ae a* „^ at 
j4*v*vItTt^r[[^'h)h^r1 

(12) 

which implies 

Bdn 
d6 d$ 

DIE,*) = - J -2 2|—- ! _ ( V d . fyj h a n a s(4» = J — -2 . (13) 

I t i s then easy to see that the average pa r t i c l e and heat fluxes are given by 

3f 
r = - / D(E,ij/> ~ - 4 71 v dv (14) 

1 2 3 f m 2 
Q = - / - mv D(£,^i) j - 4 TT v dv . (15) 

In Monte Carlo calculations D i s determines quite differently. A 

p a r t i c l e ' s d r i f t orbi t i n iji,9,$ 0 space i s integrated forward in time using 

di[)/dt = v • VI|I , e tc . After each time step the pitch angle i s changed by 

an appropriate amount to reproduce the effect of coll isions over that time 

i n t e rva l . Since col l i s ions are an ergodic phenomenon, the change in pitch 

must have a random conponent. The radial motion of par t ic les i s diffusive on 

long enough time scales which permits an estimate of D. 
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To develop the Monte Car lo method, cons ider a l a r g e group of p a r t i c l e s of 

given energy which cover a small region i n i|) ( r a d i a l coo rd ina t e ) space . In 

the d i f fus ion equat ion t h i s can be r ep re sen t ed by fCE,^) being a d e l t a 

funct ion i n energy space and h igh ly l o c a l i z e d i n ip. Assuming f i s normal ized 

so 

J f (E , Y) s(i|i) dip = 1, l e t «p> = / iji f s dip 

then 

with two i n t e g r a t i o n s by p a r t s i n <|i. S imi l a r l y 

| - <^2> = 2<D> + 2 <J! |S£L> . 
dt s 3ip 

Since t|> i s h ighly l o c a l i z e d , 

<* i |H> = <*> <1 |S2> 
s 3I|I s 3 + 

g iv ing 
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< D > = \ f t '-<ll'2> " <* > 2 j • C 1 6 ) 

This equation requires intepretation. Let i|'̂ (t0) be the radial position of 

the j particle after a time t , given that at time zero it was located at 

ty0. This position tyjltg) is determined by following a particle's drift motion 

with appropriate pitch angle scattering after each time step. Define 

D j - I T - f j " V * • t 1 7 i 

The estimate of D from J particles is 

J 
-i I D . . (18) 
J . - i ] 

The statistical distribution of the D̂  is important, for this allows an 

es'-imate for the number of replications required for D* to be a good estimate 

of D. To develop the statistics consider the diffusion equation 

j£-=D^§ . (19) dt - £ 3x 

If g = 6(x) at t = 0, then, after a time t 
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2 
g ( x ) - U / D t j1/2 e 5 q ? ! ~ ~ ^ J • < 2 0 ) 

The interpretation we wish to place on g(x) is that g(x) dx is the probability 

a particle which was at x = o at t = o has a position between x and x + o'x at 

t = t > The estimate of the diffusion coefficient D̂  = x /(2 t 0 ) ; so the 

probability of D.= lying between D- and D̂  + Dj is 

gU) %- do 

The probability distr ibution function for the D. i s then 

P ( V '[Bi D D , J ^ / ^ e X P l~ 2 ^ J * U 1 > 

This is the chi-square distribution with one degree of freedom. Following 

standard s t a t i s t i c a l procedures, D„ based on S values of D. has the Chi-square 

confidence interval with N-1 degrees of freedom. The DJ have a broader 

distr ibution, especially for D. « D, then one might expect. In Table I i s a 

comparison between the Chi-square dis tr ibut ion and the actual d is t r ibut ion of 

DJ/D* for a run consisting of 450 D-'s. 
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Table I 

Dj/D 

3.93 x 10~ 3 

1.58 x 1 0 " 3 

0.10 

0.45 

1.32 

2 .71 

3.84 

Expected Expected Actual 

Cummulstive Number i n Number i n 

F r a c t i o n DVD Bangs D./1V Range 

5% 22.5 ± 4.6 30 

10 22.5 20 

25 67.5 ± 7.6 82 

50 112.5 121 

I S 112.5 ± 5 .2 W 

90 67.5 55 

95 22.5 18 

nao 22.5 _ 2 6 

450.0 450 
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There are several l imitat ions on the Monte Carlo procedure of t h i s 

paper. Firs t , consider the choice of t Q , the time between estimates of the 

diffusion coefficient. If t Q were chosen too long i t would not adequately 

represent the time derivative of <(^ - <#>)>. This i s equivalent to saying 

lY-jttp) - V0l/Vo aust be small. If t Q were chosen too short then Vj ( t Q ) i s 

controlled by deterministic and not random motion. In other words ]V-j " lP0l 

must be large collared to the radial excursion of a pa r t i c l e executing i t s 

d r i f t notion for the process to be diffusive. This l imitat ion can be 

alleviated by defining 

' j <V = / - ? * " *** I- l^-J aJ V f c + \ J ft <22> 

and using *-(t0) instead of ty-(tQ) to evaluate D_j. For this procedure to be 

valid t* must be short compared to t . For it to be of any value t* must be 

long compared to the characteristic times of the drift orbits. In practice we 

ha- . not found it necessary to use ¥.(t0) instead of V-j<t ). The best 

practical urocedure for choosing t is apparently to make it greater than or 

equal to the collision time or the time it takes a particle to drift around a 

magnetic surface. That is for 8 and <fr0 to increase by 2TU In plasma devices 

which can confine particles for many collision times, the radial excursion 

after one collision tii.r> |̂ i.(t ) - i>0l is small compared to the size of the 

device. Consequently, a -rticular particle can be followed several collision 

times with several values of D. being determined with 
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Dj =f-£- [f-Uj) " ̂ Ct^^J 2 , with t. = j t o . (23) 

Each time a Monte Carlo run is begun, the particle should be given the same 

initial values for y and energy, but the pitch v./v, 6, and ij> should be 

chosen randomly. 

A second limitation of the simple Monte Carlo scheme is the use of a 

Lorentz scattering operator to change the pitch of the particles. This 

limitation encompasses not only the lack of energy scattering, which can be 

easily corrected, but more fundamentally the lack of momentum conservation. 

If a momentum conserving pitch angle scattering operator is used xn ordinary 

drift kinetic theory, the diffusion coefficient D consists of a Lorentz part 

D ̂  and a momentum conserving part ZL Csee appendix a of Bef. 2). The Lorentz 

part D^ is given by the Lorentz collision operator which is the scattering of 

a test particle by a Maxwellian plasma using the Fokker-Planck collision 

operator. '£'~° other part of the diffusion coefficient Dm comes from the 

motion of the scattering Maxwellian. This motion is required by momentum 

conservation. If there is at least one symmetry direction, one can show 

momentum conservation 'mplies there is no particle transport from like 

particle collisions. The momentum conserving part of D, D m , exactly cancels 

the like particle collision contribution ofD 1 to the particle flux. However, 

in transport due to the breaking of the last symmetry direction, like particle 

collisions can contribute to particle transport and in analytic theory one 

finds D = 0. Consequently, the limitation of the Monte Carlo theory 

described in this paper of rinding D-^ rather than D is not as important as it 

might first appear. 
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Finally, let us consider how energy scattering can be included in the 

Monte Carlo method. The inclusion of energy scattering as well as pitch angle 

scattering presents no problem in the calculation of i(>. (t Q). However, the 

diffusion coefficient derived from i|i.(t ) is not D(E,\|J) bit the ordinary 

particle diffusion coefficient D(T,^) 

0 (T,iH = f ° D f 4 n v 2 d v (24) 
' O El 

with f a Maxwellian of temperature T. This comes from the energy scattering 

operator containing temperature so that a particle spends time at each energy 

in proportion to the fraction of particles in a Maxwellian at that energy. 

Fortunately, one can obtain the various energy moments of D(E,f) from the 

temperature dependence of P(T,\ji). To do this a number of Monte Carlo runs are 

made at different temperatures but with the scattering in energy and pitch 

held fixed. with the scattering held fixed D(E,i|i) has no temperature 

dependence so 

2 3 5 , 1 2 2 
T g-j = J - mv D f m 4 TT v dv . (25) 

Consequently the derivatives 3C/3T and 3 22y3T 2 allow one to evaluate the 

transport coefficients. 
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I I I . DRIFT EQUATIONS IN MAGNETIC COORDINATES 

To follow pa r t i c l e d r i f t orbi ts magnetic coordinates are used. Although 

1V these coordinates can be used in arbi t rary magnetic f i e l d s , they are 

simplest for a cur l - f ree f ie ld . In th i s case 

B = 4̂> x ?l|i ( 2 6 ) 

= h 

To develop an i n t u i t i v e feel ing for $Q, I|J, and x consider the axisymmetric 

tokamak. If if i s the toroidal flux function, then $Q = <J/q - 9 with <)> the 

toroidal angle, qCl>) the safety factor, and 6 the poloidal angle. The 

potent ia l x = 941 + I" with g = RB̂  and I = rBg constants in the curl-free 

case. Within a factor , g and I are the t o t a l poloidal and toroidal current . 

The d r i f t equations can be simply derived. The d r i f t velocity i s 

B . mc , 2 , 1 2, B x 5 B , B x V S , „ , 

B B 

The equations for the drift orbits are 

£»=*.*•„. f -?•*• -f =v.V X . 

To evaluate the terms note 
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t h e n 

{ x « , . ^ x ) x l | S _ ^ o + | f t « , + g * x J 

mc 1 2 
pn = VII 3 ' 2 m v i = "B 

e P B * * 
v„ B/B = Vip x 7* , II mc o 

^ = - c 8 « - ( i M « p . J 3 ( ; t 2 9 > 

d^ 3$ , c eB 2 , 3B 
it C 3 T + l e U + ^ P U J ^ o T o 

2 
!̂t = 22. d t mc 1 

To o b t a i n an e q u a t i o n f o r p u s e e n e r g y c o n s e r v a t i o n 

(30) 

P, • (31) 

m 2 
E = — Vj + UB + e $ (32) 
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with the enery E and magnetic moment u constants. The simplest way to proceed 

is to define a Hamiltonian H = cE/e; so 

H(<i>o,^,X,P|l ) = { ^ ~ P „ 2 + § UB + CO . (33) 

It is then easy to see that 

d* 
o 3H d£ = j)H_ j l ^ _ 3H_ 

d t 3i|> ' d t 3d, ' 3 t ~ 3p„ 
o II 

energy conservation implies dH/dt = 0, or 

(34) 

II 3H 34 ,c eB 2. 3B .,_, 

To use these equations ccuputationally, they must be made 

dimensionless. To do this we use a characteristic magnetic field B and a 

system dimension, a, generally the minor radius. With these two scales given, 

all other quantities can be scaled in the manner of Table II. 
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Table II 

Physical Quantity 

Frequency 

Velocity 

Energy 

Potentials 

Flux 
Magnetic Potential 

Magnetic Moment 

Characteristic Scale 

% = e B o / m c 

*„ = E„/e 

* = B o a " 
*o = B o a 

^o = V B o 
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With these conventions, the kinetic energy E k = mv2/2 is i/iven by 

E , 1 2 k 1 v 
2 2 2 

u a 

1/2 so 1/(2Ek) ' in dimensionless units is the number of gyroradii in the system. 

To actually use the magnetic coordinates, expressions for * and B are 

required. The electrostatic potential is constant within a magnetic surface 

in scaler pressure are equilibria; so * is a function of I|I alone. The form we 

have used is 

>(*) - n -^ 11 - J - J 2 (36) 

with Efc the input k ine t ic energy and n a dimensionloss constant. The e l e c t r i c 

f ie ld from th i s potential vanishes both at the magnetic axis (since vî  

vanishes there) and at the plasma edge tjj = \(J . 

The dependence of the magnetic f ie ld strength B on i>o, \|i, and x of course 

depends on the type dev.ce one i s studying. F i r s t , consider the axisytnmetric 

tokamak. The re la t ions between it>0, + ,x and i|i, 3, <j imply in the curl free case 

that 

^ rnr T r» * *• (TfT T r-tJ 1 + I/gq gq o ' gq 
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*= i L i -^h-TJ + i57^rT<* 0 = f t 3 8 ) 

whijre t h e a p p r o x i m a t e s i g n means we have i g n o r e d t e r m s o f o r d e r I / g q 

( B g / B ^ ) 2 . The t o r o i d a l f l u x 

if = | B r 2 ( 3 9 ) 
2 o 

i n a tokamak i s a p p r o x i m a t e l y 

B = B ' L 1 - e ( - ) c o s 6 ] o L a v a ' J 

( 4 0 ) 

* B [1 - e l 4 - ] V 2 «*»[-* - + J J o L a*- 4> J '•gq o J J 

a 

w i t h e t h e i n v e r s e a s p e c t r a t i o a t t h e p l a s m a e d g e . I n d i m e n s i o n l e s s u n i t s 

B = 1 - E [ 2 ^ ] 1 / 2 c o s ( — x - a j ( 4 1 ) 
a q 

The magnetic field of a stellarator can be derived from the field of a 
18 straight helix. One finds 
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B(r,6,<j>) = Bo [ l - e | cos8 - 6 [-J s i n U 8 - m$) 

- E a [ i j cos9 sin(H9 - nu|>)j a a a 

with E a t he i n v e r s e a spec t r a t i o , 6 t h e h e l i c a l r i p p l e , and & the d i s t o r t ! 
a _..- ..„„.„ ~ r t - w — - - a 

on 
of the magnetic surfaces from circles 

6 - a — A 

a A a 

A 2 = - - 1 

a mU-1)q a 

with q the edge safety factor. One has 

(43) 

2(2-2) 
q<r> = q a (f) • (44) 

Substituting the expressions for 8 and c|> one obtains in dimensionless form 
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B - 1 - e a ( 2 i H V 2 c o S ( ~ X " * 0 J " V 2 * ' s i n ( . ( * - m q ) ~i X " **oJ 

(45) 

E £ 
^ ( 2 . 1 0 * ~ V 2 c o s l - | - X " *QJ sin|U-mq) - | - X " **J 

with 

U ^ 2 " 
(46) 

To illustrate the evaluation of particle drifts, consider the 

stellarator. The magnetic field strength in a stellarator (Eg. 45) is a 

complicated function of the location on the magnetic surface (Fig. 1). The 

variation in field strength along a field line is given by varying x holding 

$ and tji constant. In Fig. 1 one can see that the variation in field strength 

along a field line consists of a slow oscillation due to the taroidicity and a 

rapid oscillation due to the htilicity of the stellarator. The toroidal and 

helical variation in the field strength give rise to two types of trapped 

particles, toroidal and helically trapped. An individual particle can switch 

from toroidally trapped to helically trapped and vice versa as a result of the 

variation in depth and width of the helical wells along its collisionless 

drift orbit. An example of this behavior is illustrated in Fig. 2. The fact 

that particles can switch from toroidally to helically trapped implies the 

longitudinal invariant J = ^mvi. dJl is not conserved over the entire drift 
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motion. However, the longitudinal invariant is generally conserved while a 

particle is either helically or toroidally trapped and J conservation can be 

used to calculate the transition point from helical to toroidal trapping. 

While carrying out the collisionless drift orbit integrations an 8th 

order multistep generalization of the Runge-Kutta method was used. The 

change in energy per time step is a sensitive measure of the accuracy of the 

numerical integration. For the calculations of Fig. 2, the ratio of the 

energy change per tiaie step to the initial energy, &E/E0, caused a 20% 

adjustment in the time step if it lay outside the range 5 x 10 < A E / E Q < 2.5 

x 10 . The change in the energy over the entire integration of Fig. 2 was 3 

x 10 the initial energy. The average time step was about 10 cyclotron 

periods. 

IV. MONTE CARLO COLLISION OPERATOR 

The coll on operator of primary importance to the Monte Carlo calculations 

is the Lorentz collision operator 

a l = — " a l ( 1 - x > 3 l < 4 7 ) 

with X = v../v . The deflection collision frequency «„ is 

3 (1)1/2 *Cx) - »<x) 

with v_ the Braginskii collision frequency 
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„ -i|!i V 2 A A _ _ V I O _ ,2, 1 / 2 _ n _ ( 4 9 ) 
VB " 3 U T3/2 " 3 x 1 Q 6 IJ T3/2 " < 4 9> 

In this formula A is the Coulomb logarithm, A the atomic mass of the ions, n 

the electron density in particles per cm , and T the temperature in electron 

volts. For n = 10 /cm and T = 10 4 eV, the Coulomb logarithm is A = 18.4. 

The variable x = v/(2T/m)^ with v the particle velocity. The functions * and 

1' are given by 

. « 2 r X — t .,, 
x = -j— J „ e dt 

(50) 
4 - X *' t(x) 2 x 

The thermal deflection rate is defined by v,(x = 1) = 2.3646 v_. The 

dimensionless collision frequency is ̂ ,/u or 

I./2 

v <x = 1) = 3.03 x 10" 1 0 — £ — l|j (51) 
B T 

with B is Gauss using A = 18.4. 

Shanny, Dawson, and Greene 2 as well as l i s t e r , e t a l - 1 3 have given a 

Monte Carlo equivalent of the Lorentz operator based on the Gaussian 

d i s t r i bu t ion . However, we used a simpler Jtonte Carlo equivalent operator 

based on the binomial d i s t r i b u t i o n . To derive t h i s opera tor , l e t 
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<X> = J J1 A f dA 

then one can show by integrating by parts that 

* T - " *I <*>'*£--*< " - ' « 2» ' 

The square of the standard deviation of f in pitch space 

2 2 2 
a = <A > - <A> 

broadens in time with 

2 
^ — = » (1-3 <X2> + 2 <A>2) . (53) 
at a 

Suppose at t = o, f were a delta function atout A = A . At that time 

2 d<A> , do ,. A2. ,_.. 
-dt~ = - Vo ' "5T = V 1 " V • (54) 
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After a short time t, we expect f to be a Gaussian centered at X = AQ(1 - v dt) 

with standard deviation [(1 - A Q
2) vdt] ' 2. Suppose we thought of the 

broadening of f as being due to a large number of steps in pitch of equal size 

but of random sign. The distribution function for obtaining m plus values in 

n trials with equal probability for plus and minus, the binomial distribution, 

is 

1 n! 
P(m) = — —. ! — r - . (55) 

n m!(n - m)! 

Let j be the nuniber of p luses minus the number of minuses , j = 2 m - n, th=n 

for n » 1, 

1 2 

P( j ) = Xn e * P I " " 3 - ] • <56) 
t2n n j V 2n 

The s t andard dev ia t ion of j i s / n . To reproduce t h e s t a n d a r d d e v i a t i o n o , 

t he A s t e p s must each have a magnitude 1(1 - X ) 2 u j ] 1 / 2 wi th T t h e l e n q t h 
o a. 3 

of time between the steps. After n steps the time t = nx, and the standard 

deviation of the X distribution will be the step size times /n, or 

a = [(1 - l o ) 2 v D t ] 1 / 2 . (57) 
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This agrees with our earlier expression for o. Clearly if the pitch is 

changed from X 0 to X n after a time step of length T with 

xn = xQ „ -vdx) ± [[1 - A O J V J ( 5 8 ) 

then the effects of the Lorentz scattering operator will be reproduced for 

v„T << 1. The symbol ± means the sign is to be chosen randomly, but with 

equal probability for plus and minus. 

The operator of Eq. 58 has the important feature that if |X |<1, then 

|X |<1. It is physically obvious that the pitch mast be less than unity, 

however, an otherwise valid Monte Carlo operator could allow X to go out of 

this range provided the amount |X| exceeded unity went to zero as VT went to 

zero. To show |Xnl<1, let us assume for simplicity v x is small compared to 

unity. Clearly, l 0̂l must be near one for a problem to occur; so we let 

X = 1-6 with 6 << 1. The largest X„ can be is o n 

X = 1 - (6 + v T) + [2 6v TJ 
n d "• d J 

1/2 

The maximum value of X n as 6 is varied occurs at 6 = v dx/2; so 

|X ( < 1 - -§- . (59) 
n £. 
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To have a good representation of the Lorentz operator, v̂ x must clearly 

be much less than one. It is easy to see that (V^T) ' significantly smaller 

than the smallest regions of interest in X space is the actual requirement. 

In the Monte Carlo transport calculations, the time step of the integrations, 

T, is chosen tc be small enough so the orbit equations are energy 

conserving. This choice insures several time steps while a particle crosses 

any regime over which the magnetic field strength changes significantly. This 

choice also insures there are several scatters before a particle has changed 

its pitch significantly. 

To illustrate the action of the Monte Carlo Lorentz scattering operator 

we evaluated the fraction of the time a particle spent at each pitch while 

subjected to the scattering operator. In Fig. 3 this fraction is plotted at 

three points in time for a particle which started with zero pitch. After many 

collision times, the particle has spent equal time at each pitch. The 

fluctuations in time spent are of order 1/(v,t) '' . while carrying out this 

calculation the time step was 2 x 10 /v.. 

The energy scattering equivalent of the Lorentz scattering operator is 

3f _ 1 3 r 2 , ^ T 3f , | 
i t ~ 7 3^-Lv vElvf + - — jj C60J 

with 

« , - 3 & V \ ^ (61) 
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This energy scattering operator can be derived from the Fokker-Planck 

collision operator by assuming particles scatter on an background Maxwellian 

of temperature T. One can show that the energy scattering operator causes any 

distribution function f to relax to a Maxwellian, £ , o£ temperature T, by an 

H theorem. The role of H is played by 

H = [ " ( - i v l f 4 i v dv . (62) 
o v2 ' 

a Monte-Carlo equivalent energy scat ter ing operator can be found by 

evaluating 

d d r r o i 1 2 , 2 
TFT <E> = ~rr f [ T mv j f 4 * v dv dt dt J o *-2 

and d <E >/dt. This operator i s 

E n = Ko - ( 2 V J lB 0 - ( | + ^ J T ] X 2 I T E J V ^ ) ] 1 / 2 . (63) 

One can show the energy can never go negative. That i s i t i f EQ > 0, then 

E n>0. 
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In Fig. 4 it is demonstrated that a particle which started with thermal 

energy spends time at various energies in proportion to the Maxwellian 

distribution. If n(E) is the fraction of time a particle has energy E then 

n(E)//E °= exp (- E/T) (64) 

is the expected distribution. 

V. EVALUATION OF D FOR A STELLARATOtf 

To illustrate the power of the Monte Carlo method, the problem of ion 

transport in a stellarator was studied. Analytic evaluations of ion heat 
16 22 transport in stellarators have given pessimistic results. ' At the time 

the calculations reported in this paper were undertaken no Monte Carlo 

evaluations of transport in stellarators had been carried out. However, more 

recent Monte Carlo work has given collaborative results. 

While evaluating the diffusion coefficient a fourth order accurate Kutta-

Merson process was used for the orbit integrations. After each orbit time 

c':ep the pitch was changed by using the Monte Carlo, Lorentz collision 

operator. It was found that a slight improvement in the representation of 

collisional effects occured if the Monte Carlo scattering operator was called 

several times rather than just once at the end of a time step. That is if the 

time step was T Q the Monte Carlo scattering operator was called j times with 

x = x
0 / j - Ift practice we used j = 5. 

The stellarator configuration studied was that of Figs. 2 and 3, I = 2, 

m = 6, and E = 1/7, The transport coefficients were studied half way out in 

toroidal flux from the center (r = a//2) with the local safety factor assumed 
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to be two. Figure 5 gives the time history of a particle's motion for six 

collision tiroes (6/\>d). The dependence of the diffusion coefficient D on 

collisionality was studied both with and without a radial electric field. In 

Fig. 6 one can see there is little dependence of D on collisionality contrary 

to early analytic predictions. However, at a fixed collisionality D was found 

to depend quadratically on kinetic energy. 

For comparison purposes and to test the code, D was evaluated for a 

tokamak with the same safety factor aid aspect ratio as the stellarator. The 

low collisionality value for D in a tokamak can be easily evaluated 

analytically to lowest order in the inverse aspect ratio (see Appendix A, 

Ref. 2). This is the neo-classical banana regime. In dimensionless form the 

analytic result for a Lorentz collision operator is 

D = [2 e(i|0I1/2 -f" q 2 E R ^ . (65) 
e 
a 

The local aspect ratio is £(^), o = 0.689 . . . is a numerical constant, e 

is the edge aspect ratio, and R is the kinetic energy. As can be seen in 

Pig. 6 the tokamak results of the Monte Carlo code agree with the analytic 

formula at low collisionality. At higher collisionality, the code results 

demonstrate the bending over of D into the so-called plateau regime. 
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(PPPL-802225) 
Fig. 1. Stellarator Field Strength. 

The strength of the stellarator field 
in a given magnetic surface (half way 
out in flux) is plotted versus X' t n e 

variable along the lines, and $ Q , the 
variable across the lines, for one 
period in each direction. The slow 
variation in the (j> and x directions 
is due to torodicity while the rapid 
oscillation is due to helicity. 

(PPPL-802228) 
Fig. 2. Collisionless Stellarator Particle 

Orbit. The time dependence of <j>0, i)> and x is 
illustrated for a particle moving in the 
stellarator field, as can be seen from x» the 
coordinate along the field lines, the particle 
switches from being trapped in a toroidal well 
to a ripple well as a result of its collision-
less drift motion. The time units are lCr/id_. 



(PPPL-802226) 
Fig. 3. Relaxation in Pitch 

Space. A particle started with 
A = v u /v = 0 was followed with 
the Monte Carlo equivalent of 
the Lorentz collision operator. 
Plotted is the time the particle 
has spent at various values of 
pitch, A, after 0.2, 2.2, and 
18.2 collision times. The 
curves are normalized so there 
is equal area under each. After 
many collision times, the parti­
cle has spent equal time at all 
values of the pitch between 
A = +1 and A = -1. 

(PPPL-802227) 
Fig. 4. Relaxation in Energy 

Space. A particle started with 
the thermal energy E = T was 
followed with the Monte Carlo 
equivalent of the energy scat­
tering operator. The vertical 
scale is in arbitrary units but 
proportional to the fraction of 
time a particle has spent at 
each value of the energy divided 
by the square root of energy. A 
Haxwellian would give a straight 
line. 
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(PPPL-e02224) 
Fig. 5. Collisional Stellarator Particle 

Motion. The time dependence of <JJ0, I|I, and 
X is illustrated for a particle moving in 
the stellarator field for 6 collision times. 
The larger jumps in I|J occur for trapped 
particles. This is demonstrated in the 
figures by large jumps in tjj occuring at the 
placfi where dx/dt = 0. The time units are 
106/u„-

V/ 
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(PPPL-802244) 
Fig. 6. Diffusion Coefficient in a 

Stellarator. The diffusion coefficient 
D(E,^) is plotted for a thermal particle 
in a stellarator with and without an am-
bipolar electric field and in an equiva­
lent tokamak. The reactor collision fre­
quency v R is defined by n - 10-^/cm3, 
T = 10 keV, B = 50 kG. The symbol D N C(v R) 
means the value of the neoclassical dif­
fusion at v = v^. The parameters of the 
stellarator were S. = 2, ra= 6, e = 1/7, 
and q = 2. 


