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SUMMARY 
The form of the exact conditional distribution of a sufficient statistic for the interest 
parameters, given a sufficient statistic for the nuisance parameters, is derived for a 
generalized linear model with canonical link. General results for log-linear and logistic 
models are given. A Gibbs sampling approach for generating from the conditional 
distribution is proposed, which enables Monte Carlo exact conditional tests to be 
performed. Examples include tests for goodness of fit of the all-two-way interaction model 
for a 28-table and of a simple logistic model. Tests against non-saturated alternatives are 
also considered. 

Keywords: ESTIMATED p-VALUE; GENERALIZED LINEAR MODEL; GIBBS SAMPLER; LOGISTIC 
REGRESSION; LOG-LINEAR MODEL; MONTE CARLO EXACT CONDITIONAL TEST 

1. INTRODUCTION 

A common approach when testing a null hypothesis, in the presence of nuisance 
parameters, is to base the inference on the conditional distribution of a sufficient 
statistic for the interest parameters, given a sufficient statistic for the nuisance 
parameters. This results in an exact conditional test. Problems associated with this 
approach include obtaining the conditional distribution and calculating the p-value. 
These may be overcome by using an asymptotic approximation to the required 
distribution. However, for small sample sizes, sparse or unbalanced data, asymptotic 
results are often unreliable. An alternative solution is a Monte Carlo approach, 
where one generates a random sample from the required conditional distribution and 
estimates the p-value by using the generated empirical distribution of a test statistic 
(Agresti, 1992). Besag and Clifford (1989) advocated the use of Markov chain Monte 
Carlo (MCMC) methods. We extend their ideas to provide exact conditional tests for 
log-linear and logistic models, using Gibbs sampling. 

2. EXACT CONDITIONAL DISTRIBUTIONS 

We derive the form of the relevant conditional distributions for generalized linear 
models with canonical link. Following Firth (1991), section 3.3.2, if yi, i = 1, . . ., n, 
are independent, with each yi from an exponential family distribution with param- 
eters (0i, Xi), the joint density is 
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f(y; 0, q) = exp [( + h(yi,iq)}], (1) 

where y, 0 and X are column vectors of length n. For the saturated regression model, 
n 

Oi = Oi(X; Xi = x ET XypJ I:l L n, 

j=l 

where ,l1= (flu 3,,n)T is a vector of parameters corresponding to the vector of 
covariates xT = (x,... xin), and T denotes the transpose. Then the joint density is 

f(y; 3, ) = exp[ /3i 
I 

Y - i i( () + h(yj, qi)]. (2) 

If X is known, then {zi = EI= yixyl/i; j = 1, . . ., n} is a set of minimal sufficient 
statistics for {>3j; j = 1, . . ., nl. Note that z = XT Wy, where X = (xi) and W is an 
n x n diagonal matrix with elements 1 //i. Here the model matrix X is invertible and 
the density of the sufficient statistic is 

- n n 

f(z; /3, q5) cx exp zA/3 + h{yi(z), O5il] (3) 

where y(z) = W-IX-Tz, and -T denotes the inverse of the transposed matrix. The 
constant of proportionality does not depend on z. 

Consider a reduced model defined by constraining r components of /3. We 
partition /3 into 3R and 0 \R, where R and \R contain the indices of the restricted 
and unrestricted (nuisance) parameters respectively. The r-dimensional conditional 
distribution of ZR, the sufficient statistic for 3R, given Z\R, the sufficient statistic for 
/3\R, is 

f(ZR IZ\R; /R, q) ac exp zA + h }yi(z), Oi (4) 
LjER i=l 

where the constant of proportionality does not depend on zR. When OiR = 0, 

f(ZR IZ\R; ?b) Oc exp h{yi(z), = JI HQ$i Ex JZjZ, i (5) 
Li=l I= j=l 

where H(, ) = exp h(, ) and X-T = (xii). 
This result is given in a similar form by Andersen (1980), p. 82; see also Lehmann 

(1986), p. 58, and Barndorff-Nielsen (1978), section 8.2. In most applications of 
exponential family theory H{yi(z), Oi} is dismissed as a constant of proportionality in 
the likelihood. However, for exact conditional tests H{yi(z), Oi} is fundamental. 

Exact tests of goodness of fit of the reduced model, corresponding to Ho: 3R = 0 
against the saturated alternative, use the conditional distribution given by expression 
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(5). Tests of HO against a non-saturated alternative HA: /3A = 0, where A c R, are 
based on the (r - a)-dimensional marginal distribution 

f(ZR\AIZ\R; O) Oc J I H(5 j xjzj, si) dZA (6) 

obtained by integrating expression (5) over the sample space of each of the a 
components of ZA. 

3. LOG-LINEAR MODEL 

Consider a saturated log-linear model, where yi are Poisson or (product) 
multinomial. Here, H(yi, Xi) = l/yi! and 

n 

Oi = log E(Yi) = g ij,3j, i=L... n. 

The conditional distribution for testing HO: /3R = 0 against the saturated alternative 
is, from expression (5), 

f(ZRIZ\R) X { U (E xjizj) !}.(7) 

When testing for independence in a two-way table this distribution is a multi- 
dimensional hypergeometric distribution, so calculation or Monte Carlo estimation 
of the exact p-value is possible (Agresti, 1992). However, for arbitrary X and R, 
neither the normalizing constant nor the support of the distribution is available in 
closed form, and generating directly from this distribution is infeasible. 

The exact conditional distribution for testing HO against the non-saturated 
alternative HA is obtained by summing expression (7) over the sample space of each 
component of ZA. 

4. GIBBS SAMPLING APPROACH 

Gibbs sampling is an MCMC method which can be used to generate a realization 
from a multivariate distribution of interest when direct methods are not available 
(Smith and Roberts, 1993). Besag and Clifford (1989) proposed the use of MCMC 
methods to perform significance tests. We use Gibbs sampling to obtain realizations 
from the r-dimensional conditional distribution, given by expression (5), to perform 
Monte Carlo exact conditional tests. This involves sampling iteratively from uni- 
variate conditional distributions. Kolassa and Tanner (1994) implemented a Gibbs 
sampler for approximate conditional inference in exponential families. They used a 
double saddlepoint approximation to the cumulative distribution function for 
sampling from the univariate conditional distributions. For log-linear and logistic 
models, we sample from the univariate conditional distributions exactly. 

For the log-linear model, the univariate distribution of a single component Zk of 
ZR, conditional on the other components of z, is, from expression (7), 
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rn -1 

f(ZkIZ\k) OC (c + XkiZ)!}, = xizj. (8) 
i=l j:Ak 

It is reasonably easy to find the support and to obtain the normalizing constant for 
these univariate conditional distributions by complete enumeration. Often, many of 
the xki-terms in expression (8) are 0, which results in a reduction from n to a much 
smaller number of factorial terms. 

We estimate the exact conditional p-value by ranking the observed value of a test 
statistic among a random sample of values generated from the exact conditional 
distribution of the test statistic. The values generated are not independent and this 
must be taken into account when assessing the accuracy of the estimated p-value. 
Raftery and Lewis (1992) described a method for estimating the number of iterations 
of a Gibbs sampler required to evaluate a quantile to some prespecified accuracy. 
Their method can easily be modified to give approximate confidence intervals for an 
estimated p-value. 

Monte Carlo tests against non-saturated alternatives are straightforward. The 
exact conditional test of HO: 3R = 0 against HA: f3A = 0 is based on the marginal 
distribution (6). For log-linear models, a sample from this distribution can be 
obtained directly by extracting ZR\A from a sample of ZR generated under HO as 
described above. 

4.1. Example: Log-linear Interaction Model 
For multiway tables, when the columns of X represent dummy variables for main 

effects and interactions, the model matrix can be written as a Kronecker product. 
The resulting model has been called a log-linear interaction model (Knuiman and 
Speed, 1988). The inverse of a Kronecker product of non-singular matrices is the 
Kronecker product of the corresponding inverse matrices. This facilitates the 
calculation of X-T. 

For a 2d-table, where the parameters corresponding to the second level are 
constrained to be 0 and the first component of 3 is the d-way interaction, 

d ~~d 
I'I x-T=0 I U0 

X = X ( o 1 ), -1 1 ) 

The exact conditional distribution for tests of goodness of fit can now be derived by 
substituting the elements of X-T into expression (7). For example, for a test of no 
three-way interaction in a 23-table, 

f (z IZ\1) oc {ZI! (Z2 - z1)! (Z3 - z1)! (z4 - Z3- Z2 + Z1)! (Z5 - Z1)! (Z6 - Z5-Z2 

+ z1)! (Z7 - Z5- Z3 + z1)! (Z8 - Z7- Z6 + Z5 - z4 + Z3 + Z2 - z1)}j'. (9) 

Tests for conditional independence and independence lead to multivariate con- 
ditional distributions. Generation from these distributions is possible by Gibbs 
sampling, although more direct approaches exist (Agresti, 1992). However, for d ) 4 
there are many models for which direct generation is infeasible. 

We present two numerical examples: a 24-table where the exact results, obtained by 
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complete enumeration, are available for comparison and a 28-table where the 
MCMC method provides the only feasible method for estimating the p-value. For 
each estimate we present an approximate 99% confidence interval, based on the 
method of Raftery and Lewis (1992). 

Morgan and Blumenstein (1991) presented a 24-table with variables denoted by H, 
I, R and V and calculated the p-value for a test of the reduced model HRV + 
HI + IR + IV against the alternative HRV + HIR + IV, using the probability of ZR\A 
as a test statistic. We generated a sample of 100000 realizations from the exact 
conditional distribution of ZR and extracted the sample of ZR\A, the univariate 
sufficient statistic corresponding to the HIR interaction. The p-value, estimated by 
the generated empirical tail probabilities of ZR\A, was 0.029. The approximate 99% 
confidence interval (0.026, 0.032) contains the exact p-value, 0.030. Morgan and 
Blumenstein (1991) also compared the fit of the model HR V + HIR against the same 
alternative. The approximate 99% confidence interval (0.119, 0.131) for the exact 
two-sided p-value obtained from a further run of the Gibbs sampler was again in 
good agreement with the exact value, 0.126. 

Whittaker (1990), p. 280, presented a 28-table with 665 observations and con- 
sidered the all-two-way interaction model. The data are sparse, 165 of the 256 cells 
are empty and asymptotic goodness-of-fit tests are unreliable. We performed two 
exact conditional tests for this model by using the Gibbs sampler. Here, R contains 
the indices for the three- and higher way interactions and r = 219, the residual 
degrees of freedom for the all-two-way interaction model. We generated a sample of 
100000 realizations of ZR from its exact conditional distribution. As the conditional 
probabilities of ZR up to a constant of proportionality are given by expression (7), 
they can be used as a test statistic for goodness of fit. The estimated p-value, using 
these probabilities as a test statistic, is 0.156 ? 0.005. Alternatively, the estimated p- 
value, using the likelihood ratio (LR) statistic, is 0.116 ? 0.004. Note that the 
observed LR statistic, 144.56, is in the right-hand tail of its exact distribution, but in 
the left-hand tail of its asymptotic distribution, X219' 

For this table, Whittaker (1990) selected a reduced model with a further 14 
parameters set to 0. Here, R also contains the indices for these 14 parameters. We 
performed an exact test of this reduced model against the all-two-way interaction 
model, using a sample from the distribution of ZR\A, conditional on Z\R, where A 
contains the indices for the three- and higher way interactions. The conditional 
probabilities of ZR\A, given in the general case by expression (6), are not explicitly 
available, even up to a constant of proportionality. If r - a is small, then these 
probabilities can be estimated by Monte Carlo integration, as in the 24-example 
where r - a = 1. However, in the current example, r - a = 14 and this is not feasible. 
A one-dimensional summary, such as the LR statistic, is necessary. For the LR 
statistic, the estimated exact p-value is 0.315 ? 0.014, based on a sample of 100000. 
As expected, the asymptotic p-value, 0.303, is much closer to the exact value than for 
the goodness-of-fit test. 

5. LOGISTIC REGRESSION 
The Gibbs sampler can also be used to perform Monte Carlo exact conditional 

tests for logistic regression models where Yi - binomial(mi, 7ri). Here, Oi = logit(7ri) 
=xT,, and 
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H(yi Xi ) ?c (yM)i i = 1,... n. (10) 

To test hypotheses concerning a model with p < n covariates, we construct the 
saturated model 

(? X2 ) (\R)() 

Here f\R is the vector of parameters corresponding to the p covariates (the nuisance 
parameters) and 3R is the vector of r additional parameters (set to 0 under Ho) which 
extends the model of interest to a saturated model. We assume, without loss of 
generality, that R = {1, .. ., r} and construct X as follows: the n x p matrix of 
covariates for the model of interest is partitioned into (X1, X2)T, where X1 is an r x p 
matrix, X2 is a p x p matrix, I is the r x r identity matrix and 0 is a p x r matrix of Os. 

The appropriate distribution for testing goodness of fit is conditional on the 
sufficient statistics for the regression parameters (McCullagh, 1986). In our frame- 
work, a goodness-of-fit test for the model of interest corresponds to the exact 
conditional test of Ho: 3R = 0. Here 

X-T ( I 0 (12) 

and the required exact conditional distribution is, from expressions (5) and (10), 

f(ZRIZ\R) o) (13) 

When mi = 1 for all i, this conditional distribution is uniform, since all the binomial 
coefficients equal 1. Hence, goodness-of-fit tests for pure binary data, based on this 
conditional distribution, are not sensible. For continuous covariates the conditional 
distribution of ZR iS often degenerate as, conditional on Z\R, only the observed z 
results in integer values of E_ x31zj within the required range [0, mi] for all i. 
However, when the covariate values are integer or evenly spaced, the exact con- 
ditional distribution is not usually degenerate. 

In general, evaluation of the normalizing constant in expression (13) is infeasible, 
and direct generation from this r-dimensional distribution is not practical. However, 
we can generate from this distribution by using a Gibbs sampler by generating from 
the first r univariate conditionals, 

f(Zk I Z\k) c( J ( C,, + X x) 'z (14) 
i= + +kZk/ I#Ak 

For i= 1, .. ., r, the ith row of X-T is ef , a vector of Os except for a 1 in the ith 
position, so, for all k, CiZ + xkizk = eiZ = zi. Hence 
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f (Zk IZ\k) (X Ck i) +vZ 

[(Zk) ftl(cjk ( ki) ifk=1,. . .,r, 

Zk Xkk i fr- X- k r+, 
oc ~~~~~~~~~~~~~~~~~~~(1 5) 

lr+ Ck Z if k =r + 1,, . .., n 

since the leading terms not involving Zk can be absorbed into the constant of 
proportionality. This reduction from n to at most p + 1 terms simplifies the 
implementation of the Gibbs sampler. 

Monte Carlo tests against non-saturated alternatives are again straightforward. 
The exact conditional test of HO: iR = 0 against HA: 3A = 0 is based on the marginal 
distribution (6). For logistic regression models, a sample from this distribution can 
be obtained by extraction if the parameters 3R\A are included initially in the extension 
to the saturated model. 

5.1. Example: Simple Linear Logistic Regression 
Consider the model logit(ir) = ,31 + ,32xi, i = 1,..., n. Here p = 2, r = n - 2, 

* ( i ~Xn-2) 

and from equation (12) 

0 0 

x-T 
(Xn -Xn-0)I 

1- _x i)I 0 0 (16) 
Xn-Xn- (-(Xn -X1) ... -(Xn-Xn-2) XnX- 

Xn-X - * * Xn-I-Xn-2 -Xn-I 

The exact conditional distribution for testing Ho: 3R = 0 is r dimensional and is given 
by expression (13). The first r univariate conditionals required for Gibbs sampling 
are, from expressions (15) and (16), 

f(zkz\k) OC(Zk) Xn- -kXkZk) Xn+-- XkZ) 

Xn -Xn-I Xn -Xn-I 

As a numerical example, we consider the dose-response data presented by Collett 
(1991), p. 75, in which 20 moths of each sex were exposed to one of six doses of 
cypermethrin, equally spaced on the log2-scale, and the number adversely affected 
was recorded. We tested the goodness of fit of the logistic model with log2(dose) as a 
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covariate, but without a sex effect. For this model the goodness-of-fit LR statistic is 
16.98 on 10 degrees of freedom with an asymptotic p-value of 0.075. The estim- 
ated Monte Carlo exact p-value, based on a sample of 100000 realizations, is 
0.113 ? 0.006 with 99% confidence. Although the asymptotic result casts some doubt 
on the model without a sex effect, the estimated exact p-value indicates a more 
reasonable fit. The exact conditional distribution is far from degenerate as, in 100000 
iterations, 56771 distinct values of the LR statistic were generated. 

6. DISCUSSION 

We have presented the theory for obtaining the form of the required conditional 
distribution for tests of nested hypotheses in log-linear and logistic regression 
models. We used a Gibbs sampling approach for generating from this conditional 
distribution to estimate an exact p-value. The implementation of this procedure does 
not depend on the choice of a test statistic, although the p-values may differ. 

Diaconis and Sturmfels (1993) used a Markov chain algorithm for sampling from 
discrete exponential families conditionally on a sufficient statistic. They gave exam- 
ples where certain chains are not connected, but they implicitly overcame lack of 
connectivity by reparameterization and overparameterization. Initial research suggests 
that a lack of connectivity occurs when some of the univariate conditional 
distributions are degenerate. Our implementation of the Gibbs sampler includes 
checks for this. In our experience, degeneracy may be overcome by reparam- 
eterization or by sampling from bivariate or trivariate conditional distributions. 
Useful reparameterizations include permuting parameters and saturating the model 
in a different way. 

How best to implement the Gibbs sampler is still an area of much current research 
and vigorous debate (see Smith and Roberts (1993), Gelman and Rubin (1992) and 
the accompanying discussions). However, we have not encountered any numerical 
problems in generation from discrete univariate conditionals, or evidence of lack of 
convergence of the Gibbs sampler. 

ACKNOWLEDGEMENT 

The work of the last two authors was supported by Economic and Social Research 
Council award H519255005 as part of the Analysis of Large and Complex Datasets 
Programme. 

REFERENCES 

Agresti, A. (1992) A survey of exact inference for contingency tables (with discussion). Statist. Sci., 7, 
131-177. 

Andersen, E. B. (1980) Discrete Statistical Models with Social Science Applications. Amsterdam: North- 
Holland. 

Bamdorff-Nielsen, 0. (1978) Information in Exponential Families. Chichester: Wiley. 
Besag, J. and Clifford, P. (1989) Generalized Monte Carlo significance tests. Biometrika, 76, 633-642. 
Collett, D. (1991) Modelling Binary Data. London: Chapman and Hall. 
Diaconis, P. and Sturmfels, B. (1993) Algebraic algorithms for sampling from conditional distributions. 

Technical Report. Department of Mathematics, Harvard University, Cambridge. 
Firth, D. (1991) Generalized linear models. In Statistical Theory and Modelling (eds D. V. Hinkley, N. 

Reid and E. J. Snell), pp. 55-82. London: Chapman and Hall. 



1996] EXACT CONDITIONAL TESTS 453 

Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences (with 
discussion). Statist. Sci., 7, 457-472. 

Knuiman, M. W. and Speed, T. P. (1988) Incorporating prior information into the analysis of 
contingency tables. Biometrics, 44, 1061-1071. 

Kolassa, J. E. and Tanner, M. A. (1994) Approximate conditional inference in exponential families via 
the Gibbs sampler. J. Am. Statist. Ass., 89, 697-702. 

Lehmann, E. L. (1986) Testing Statistical Hypotheses, 2nd edn. New York: Wiley. 
McCullagh, P. (1986) The conditional distribution of the goodness-of-fit statistic for discrete data. J. 

Am. Statist. Ass., 81, 104-107. 
Morgan, W. M. and Blumenstein, B. A. (1991) Exact conditional tests for hierarchical models in 

multidimensional contingency tables. Appl. Statist., 40, 435-442. 
Raftery, A. E. and Lewis, S. (1992) How many iterations in the Gibbs sampler? In Bayesian Statistics 4 

(eds J. M. Bernardo, J. 0. Berger, A. P. Dawid and A. F. M. Smith), pp. 777-784. Oxford: Oxford 
University Press. 

Smith, A. F. M. and Roberts, G. 0. (1993) Bayesian computation via the Gibbs sampler and related 
Markov chain Monte Carlo methods. J. R. Statist. Soc. B, 55, 3-23. 

Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics. Chichester: Wiley. 


	p. [445]
	p. 446
	p. 447
	p. 448
	p. 449
	p. 450
	p. 451
	p. 452
	p. 453

