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ABSTRACT

This paper surveys recent research on using Monte Ca
techniques to improve quasi-Monte Carlo technique
Randomized quasi-Monte Carlo methods provide a bas
for error estimation. They have, in the special case
scrambled nets, also been observed to improve accura
Finally through Latin supercube sampling it is possibl
to use Monte Carlo methods to extend quasi-Monte Car
methods to higher dimensional problems.

1 INTRODUCTION

The problem we consider is the estimation of an integr

I =
∫

[0,1]d
f(x)dx. (1)

Standard manipulations can be applied to express integr
over domains other than the unit cube or with respe
to nonuniform measures in the form (1). Similarly, the
integrand f in (1) subsumes weighting functions from
importance sampling or periodization. We are especial
interested in cases where the dimensiond is large, and
some of the methods considered here apply to the ca
d = ∞.

The focus of this article is on ways of combining
Monte Carlo and quasi-Monte Carlo solutions to thi
integration problem. Our goal is to provide readers wit
enough information to see what can be done and deci
whether the approach is worthy of further investigation fo
their problems. For those readers who want to impleme
these constructions or to gain a full understanding of whe
and why the methods can work, there are references
the literature.

Section 2 describes the effect of the dimensiond
on the problem of computing (1). This section also
presents an ANOVA decomposition of the integrand an
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some notions of the effective dimension of the integran
Section 3 describes some simulation methods, Mo
Carlo, quasi-Monte Carlo and hybrids thereof, that can
used on high dimensional integration problems. For ve
high dimensional problems, some of these methods l
effectiveness. Section 4 describes methods of using lo
dimensional integration methods on higher dimensio
problems. Brief conclusions are given in Section 5.

2 THE PROBLEM OF DIMENSION

This section presents working definitions of high and ve
high dimensional problems, taken from Owen (1998). T
ANOVA decomposition is based on Owen (1992) an
other references cited there. The definitions of effect
dimension are from on Caflisch, Morokoff and Owe
(1997).

2.1 High and very high dimensions

When d = 1, there are standard integration techniqu
that have very good accuracy whenf is smooth. See
Davis and Rabinowitz (1984). For smalld > 1 iterated
versions of such rules, based on Fubini’s theorem, can
very effective. But for a rule with errorsO(n−r) in one
dimension, the errors becomeO(n−r/d) in d dimensions.
A working definition of a high dimensional problem i
one where iterated integrals are computationally infeasi
or insufficiently accurate.

High dimensional problems are best handled
simulation methods, including Monte Carlo and qua
Monte Carlo (equidistribution). These are reviewed
Section 3.

In sufficiently large dimensions it becomes difficu
to even construct quasi-Monte Carlo point sets w
meaningful equidistribution properties. For examp
some constructions are not especially equidistributed un
n = O(d2) which can be too large. A working definition
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of a very high dimensional problem is one where iterat
integrals are computationally infeasible or insufficient
accurate. Monte Carlo is still available for such problem
as is Latin hypercube sampling (Section 4.1). Lat
Supercube sampling (Section 4.4) is directed at extend
quasi-Monte Carlo into very high dimensional problems

2.2 ANOVA Decomposition

Let A = {1, 2, . . . , d} denote the set of input variables to
the functionf on [0, 1]d. We can writef as a sum of
2d functions, one for each subset ofA, with that function
only depending on the variables in its subset. That is

f(x) =
∑
u⊆A

fu(x), (2)

where fu(x) only depends on those components ofx
whose indices are inu.

For any choices offu with u 6= A, we can make
(2) hold by choosingfA by subtraction. For example,
suppose

f(x) = 30 + 20x1 + 10x2 − 16x1x2

wherex = (x1, x2) ∈ [0, 1]2. This can be rewritten as

f(x) = f∅(x) + f{1}(x) + f{2}(x) + f{1,2}(x)

where f∅(x) = 41, f{1}(x) = 12(x1 − 0.5), f{2}(x) =
2(x2 − 0.5), and f{1,2}(x) = −16(x1 − 0.5)(x2 − 0.5).
Notice that

∫ 1
0 f{1}(x1)dx1 = 0. This is reasonable; had

f{1} integrated to some other constant we could ha
added that constant tof∅ and subtracted it fromf{1}.
More generally, when some structure can be attribut
to either fu or fv with v ⊂ u we prefer on grounds of
parsimony to attribute it tofv.

A particularly useful choice for thefu is based on
the analysis of variance (ANOVA) decomposition from
statistical experimental design. (Montgomery (1984) is
standard reference on design.) In concept, one sim
embeds an equispacedqd grid in [0, 1]d, defines the main
effects and interactions on this grid, and then letsq → ∞
replacing sums by integrals.

We employ the following notation:|u| is the cardinality
of u, xu denotes the|u|-tuple consisting of components
xj with j ∈ u, and−u is the complement ofu in A. In
the function setting we let

fu(x) =
∫

z:zu=xu

(
f(z) −

∑
v⊂u

fv(z)

)
dz−u (3)

where the sum in (3) is over strict subsetsv 6= u. Equation
(3) definesfu by subtracting what can be attributed t
subsets ofu, and then averaging over all components n
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in u. Using a natural conventionf∅(x) = I, and another
convention givesfA(x) = f(x) −∑|u|<d fu(x).

The functionfu(x) only depends onxu. When it is
desired to emphasize this point, we writefu(xu). Formally,
fu(xu) = fu(z) at any pointz for which zu = xu. The
value of z−u does not enter. Foru = ∅ we may writef∅
without an argumentx, since the function is constant.

Let σ2 =
∫

(f(x) − I)2dx and suppose thatσ2 < ∞.
Now let σ2

u =
∫

fu(x)2dx for |u| > 0 and σ2
∅ = 0. Then

σ2 =
∑
u⊆A

σ2
u. (4)

Equation (4) partitions the variance off into parts
corresponding to each subsetu ⊆ A. The fu enjoy
some other easily verified properties: ifj ∈ u, then the
line integral

∫ 1
0 fu(x)dxj = 0, for any values ofxk with

k 6= j, and if u 6= v then
∫

fu(x)fv(x)dx = 0.

2.3 Effective Dimensions

The ANOVA decomposition can be used to consider notio
of the “effective” dimension of an integrand. For example
because an additive integrand

f(x) = f∅ + f{1}(x1) + · · · + f{d}(xd) (5)

is a sum of one dimensional integrands it can be mu
easier to integrate than a generald dimensional integrand.
In many application areas, additive integrands are ve
unlikely.

Nearly additive integrands may however be commo
in some application areas. Caflisch, Morokoff and Owe
(1997) found that a360 dimensional integrand motivated
by a problem in computational finance was very near
additive. They then defined two notions of effectiv
dimension using the ANOVA decomposition.

Definition 1 The effective dimension off , in the su-
perposition sense, is the smallest integerdS such that∑

0<|u|≤dS
σ2

u ≥ 0.99σ2.

Definition 2 The effective dimension off , in the trun-
cation sense, is the smallest integerdT such that∑

u⊆{1,2,...,dT } σ2
u ≥ 0.99σ2.

The truncation definition reflects that for some inte
grands, only a small number of the inputs might real
matter. The superposition definition reflects that for som
integrands, the inputs might only influence the outcom
through their joint action within small groups. For ex
ample, an additive function has superposition dimensi
1 and a quadratic function has superposition dimension
most 2, but either could have truncation definitiond.
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Clearly the threshold0.99 is an arbitrary choice
and other values could be used. It is immediate th
dS ≤ dT ≤ d. The value ofdT depends on the order in
which input variables are indexed. If one has subject matt
knowledge about which variables are most important, the
one would first order the variables in decreasing order
importance before applying Definition 2.

3 SIMULATION METHODS

The simulation methods we consider here are all of th
form

Î =
1
n

n∑
i=1

f(Xi) (6)

whereXi ∈ [0, 1]d. Using the ANOVA decomposition (2)
and noting thatf∅ = I, we find that

Î − I =
∑

|u|>0

Îu (7)

where for |u| > 0,

Îu =
1
n

n∑
i=1

fu(Xi) =
1
n

n∑
i=1

fu(Xu
i ) (8)

is the error in the estimate ofIu =
∫

fu(x)dx = 0. From
(8) we see that the contribution of̂Iu to the error comes
from the |u|-dimensional projected quadrature ruleXu

i ,
i = 1, . . . , n.

3.1 Monte Carlo

Simple Monte Carlo samplesXi independently from the
U [0, 1]d distribution and then applies the estimate (6).
is well known that Î − I has mean zero and variance
σ2/n, so that the Monte Carlo errors are of ordern−1/2 in
probability. Variance reduction techniques like stratificatio
and control variates (with finitely many strata or variates
and importance sampling, do not affect this rate, thoug
they may improve the constant.

The dimensiond does not appear in this rate. This
means that the effectiveness of Monte Carlo is independe
of the dimension, unless one is considering a dimensio
indexed sequence of functions for whichσ2 has a dimension
effect.

A third important feature of Monte Carlo sampling
is that error estimation is comparatively easy. An
unbiased estimate of var(Î) is s2/n wheres2 = (1/(n −
1))
∑n

i=1(f(Xi) − Î)2. This estimate is available from
the same data used to constructÎ.
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3.2 Quasi-Monte Carlo

The aim in quasi-Monte Carlo integration is to choose
Xi without the usual clusters and gaps seen in Mont
Carlo sampling. The reader unfamiliar with quasi-Monte
Carlo may consult Niederreiter (1992) for more information
about this topic, including background on the results cite
here. In particular, we refer below to(t, m, s)-nets and
(t, s)-sequences. These are quasi-Monte Carlo point se
defined and discussed in Niederreiter (1992).

If the integrand has bounded variation in the sense o
Hardy and Krause, then it is possible to find a deterministi
sequenceXi, i ≥ 1 along which

|Î − I| = O(n−1(log n)d). (9)

If we do not require then point integration rule to include
the points of then − 1 point integration rule, then it is
possible to reduce the exponent oflog n to d − 1.

The rate in (9) is asymptotically superior to the rate
n−1/2 that characterizes Monte Carlo. In high dimensions
the rate (9) does not set in untiln is large. One simple
observation is that the error bound increases withn until
n equalsexp(d). Thus the smallestn for which (9) could
be relevant is likely to be at leastexp(d).

Morokoff and Caflisch (1995) have reported that QMC
methods usually beat MC in practice although the advanta
usually disappears by aboutd = 8. Paskov and Traub
(1995) by contrast found that QMC was very effective on
some integrands withd = 360. Caflisch, Morokoff and
Owen (1997) suggested that QMC was superior to MC
the effective dimension of the integrand was not large.

Accuracy considerations favor QMC over MC. QMC
has superior asymptotic accuracy, and in examples
usually has better small sample accuracy. The ma
practical disadvantage of QMC with respect to MC is tha
there is no way to estimate the accuracy achieved fro
the sample values. The constant implicit in (9) is the tota
variation of f in the sense of Hardy and Krause. There
appear to be no good ways to estimate that quantity, a
in any case, it can be a gross upper bound on the erro

3.3 Randomized Quasi-Monte Carlo

Randomized QMC methods have long been used to provi
a basis for error estimation in QMC methods. Owen (1995
surveys the use of such methods.

Here is a generic recipe for randomizing QMC
methods. LetA1, . . . , An be a QMC point set. Let
Xi be a randomized version ofAi. The randomization
should have the following properties:

RQMC-1 Xi ∼ U [0, 1]d, i = 1, . . . , n,

RQMC-2 X1, . . . , Xn is a QMC point set with proba-
bility 1.
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Property RQMC-1 makes the estimator (6) an unbiase
estimate ofI. Property RQMC-2 simply means that the
randomization has preserved whatever special properti
the underlying QMC point set had. The examples below
illustrate this.

Space does not allow a detailed description of QMC
points and their randomizations, but we discuss tw
examples briefly. Further details can be found in Owe
(1998).

Cranley and Patterson (1976) describe a form o
random rotation in which

Xj
i = Aj

i + U j mod1. (10)

Here U j are independentU [0, 1] random variables,j =
1, . . . , d and z mod1 meansz − bzc where bzc is the
greatest integer less than or equal toz. Certain lattice
rules (Sloan and Joe (1994)) have a structure that mak
them very accurate for periodic functions whose Fourie
coefficients decay rapidly. The rules are still accurate afte
rotation.

Some QMC methods, known as(t, m, s)-nets and
(t, s)-sequences, construct pointsAi so that certain hyper-
rectangles obtain a number of sample points proportion
to their volumes. The hyperrectangles involved have co
ordinates that are integers divided by powers of an integ
baseb ≥ 2. For suchAi it is possible to apply random
permutations to their digits in baseb in a way that preserves
their net properties and renders the resultingXi uniformly
distributed. See Owen (1995,1997a) for details. Owe
(1995) surveys earlier work on randomizing digits.

In one special case, the randomization of a QMC
point set can be shown to enhance the accuracy of th
integration rule. The explanation is that randomization
leads to cancellation of some error components. Owe
(1997b) shows that scrambled nets can lead to errors
size n−3/2(log n)(d−1)/2 in probability. The integrand
must have greater smoothness than bounded variation:
sufficient condition is that∂df(X)/

∏d
j=1 ∂Xj obey a Lip-

schitz condition (Owen 1997b). Hickernell (1996) shows
that this randomization can improve the equidistribution
of nets.

3.4 Using randomized QMC rules

In practice one can take a small numberr of independent
replicates of QMC points. The corresponding estimate
Î1, . . . , Îr are unbiased estimates ofI with common
varianceσ2

RQMC. The pooled estimatêI = (1/r)
∑r

k=1 Îk

has varianceσ2
RQMC/r, and an unbiased estimate of this

variance is
1

r(r − 1)

r∑
k=1

(Îk − Î)2.
574
Taking a large value ofr makes for a more accurate
variance estimate. But for a given number of functio
evaluationsN = nr one can usually expect that a large
value of n with a smaller value ofr should give better
accuracy inÎ. At the extreme, takingn = 1 and r = N
simply reproduces Monte Carlo estimation.

For scrambled nets, Owen (1997a) describes a fo
of internal replication in which consecutive blocks o
observations can be treated as replicates. The cost of t
compared to genuine replication, is usually an upward bi
in the estimated variance, while the gain is usually grea
accuracy inÎ.

4 VERY HIGH DIMENSIONS

For high enough dimensions it can be difficult to constru
QMC point sets with meaningful QMC properties an
reasonably small values ofn. To illustrate the difficulties,
consider(0, d)-sequences in baseb. These only exist for
b ≥ d. To have all hyperrectangles of size1/b × 1/b ×
1 · · · × 1 get n/b2 points each, takes at leastb2 ≥ d2

points. If one takes such a largen then every one of
the d(d − 1)/2 bivariate projections of theXi will be
equidistributed. But taking such a largen is costly if d is
large.

4.1 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a form of simultaneou
stratification on alld dimensions. McKay, Beckman and
Conover (1979) introduced a version of LHS for compute
experiments. Let

Xj
i =

πj(i) − U j
i

n
(11)

whereπj are uniform random permutations of the integer
1, . . . , n, the U j

i are U [0, 1] random variables, and all of
the πj and U j

i are independent.
An older version of LHS, due to Patterson (1954) ha

Xj
i =

πj(i) − 0.5
n

. (12)

In either (11) or (12), for each inputj = 1, . . . , d
and every interval of the form((m − 1)/n, m/n) for
m = 1, . . . , n, there is one observationXj

i in that interval.
Latin hypercube sampling can be used in any dimensi

d, evend > n. Because LHS stratifies each input variabl
individually, it is able to integrate near additive function
with great accuracy. Stein (1987) shows that

varLHS(Î) =
1
n

∑
|u|>1

σ2
u + o

(
1
n

)
. (13)
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The additive portion of the integrandf does not contribute
to the asymptotic variance under LHS.

In finite samples, LHS is never much worse than MC
Owen (1997a) shows that

varLHS(Î) ≤ 1
n − 1

σ2. (14)

Owen (1998) shows that LHS can also work fo
d = ∞. As in the finited setting, the additive part off
does not contribute to the asymptotic variance.

4.2 Padding

If an integrandf has nominal dimensiond but is nearly of
dimensions � d then one can employ ans dimensional
QMC or RQMC rule on the important input variables an
use something else for the others.

If one thinks of then by d matrix of Xj
i values as

the input to the simulation, then the leftmosts columns
can be filled with (R)QMC points. Something has to g
in the otherd − s columns. One might simply replace all
of those values by the central value0.5. But, this does
not make for an unbiased estimate ofI and so it can be
hard to estimate the error in the resulting estimate.

As an alternative, one can simply pad out the matr
by filling in a lower quality rule. For particle transport
problems, Spanier (1995) and Okten (1996) suggest fillin
out the remaining columns with simple Monte Carlo points
Owen (1994) considers filling out the remaining column
with a Latin hypercube sample. If one has used an RQM
rule on the firsts dimensions and MC or LHS padding,
then it becomes possible to estimate the variance ofÎ. A
further benefit is that if one has guessed incorrectly,
that some of the variables thought to be unimportant rea
are important, then the padding procedure can lose mu
less accuracy than one would lose by filling in0.5’s.

Suppose thatA1 = {1, 2, . . . , s} ⊂ A is the set of all
input variables handled by an RQMC rule. It follows from
Theorem 1 of Owen (1998) that the resulting variance
Î is, under mild conditions,

1
n


σ2 −

∑
u⊆A1

σ2
u


+ o

(
1
n

)

under padding by Monte Carlo, and

1
n


σ2 −

∑
u⊆A1

σ2
u −

d∑
j=s+1

σ2
{j}


+ o

(
1
n

)

under padding by LHS. For these results the ANOVA
components of the integrand must enjoy some ext
smoothness that the underlying RQMC method require
These results say that one gets what one pays for:
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RQMC rule eventually balances out the errors infu for
u ⊆ A1, padding by LHS balances out some additional
additive components.

4.3 Engineering the Integrand

It is often possible to re-arrange a simulation so as to reduce
the effective dimension. For example, simulations driven
by Brownian motion sampled atd time points, may be
generated in any order whatsoever, not just in order of time
sequence. Caflisch, Morokoff and Owen (1997) generate
the end point first then fill in the midpoint, quarter-points
and so forth of the Brownian motion, in each case sampling
the new point from its conditional distribution given the
existing points. This process replaces the integrandf by
another one with the same value ofI, the same variance
σ2 and the same nominal dimensiond. The new integrand
was more strongly dominated by the first few steps and
this reduced the effective dimension. They were able to
employ LHS padding with scrambled nets, and also to use
Sobol’ sequences to good effect.

Similarly, Acworth, Broadie and Glasserman (1997)
used the principal components of Brownian motion to
reduce effective dimension. Fox (1996) discusses severa
ways to reduce effective dimension in discrete event
simulation.

4.4 Latin Supercube Sampling

Given a well engineered integrand, RQMC with padding
is able to reduce the variance substantially. But it only
reaps the benefits of RQMC for ANOVA effects within
the setA1 of variables balanced by the simulation.

In some cases, one would like to be able to obtain
the benefits of RQMC balance within several groups of
variables. Of course there are restrictions on what one can
obtain. A good fully d dimensional set of QMC points
may not exist for reasonablen.

The idea of Latin Supercube Sampling (LSS) is to use
(R)QMC within multiple groups of input variables. In a
simulation driven by several Brownian motions, there might
be one group of variables for each Brownian motion. In
a simulation that follows a sequence of particle collisions,
there might be one group of variables for each collision.

Suppose for example thatd = ks and that A1 =
{1, 2, . . . , s}, A2 = {s + 1, s + 2, . . . , 2s}, and so on until
Ak = {(k − 1)s + 1, (k − 1)s + 2, . . . , ks}.

Suppose further thatX j
i ∈ [0, 1]s, i = 1, . . . , n is an

s dimensional (R)QMC point set for eachj = 1, . . . , k.
Then LSS takes points

Xi = (X 1
π1(i),X 2

π2(i), . . . ,X k
πk(i)) ∈ [0, 1]d, i = 1, . . . , n,

where theπj are independent uniform random permutations
of 1, 2, · · · , n. More generally, there is no need for theAj
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to all contain equal numbers of input variables. It m
be true thatAj ∩ Al = ∅ wheneverj 6= l.

For largen, the pointsXi are well balanced in al
coordinate projectionsXu, whereu ⊆ Aj for somej, but
are not especially well balanced in any such projecti
where u has a nonempty intersection with two or mo
Aj . Accordingly, from (8) we expect that for largen the
variance ofÎ should be

1
n


σ2 −

k∑
j=1

∑
u⊆Aj

σ2
u


+ o

(
1
n

)
. (15)

At least (8) suggests thatfu for u ⊆ Aj should not
contribute to var(Î) under LSS. Under mild conditions
Owen (1998) shows that (15) holds.

The implication is as follows. If the integrand ha
or can be engineered to have, almost all of its ANO
variance contained within subsetsAj of input variables,
then an enormous variance reduction can be obtained
the extreme, one gets ans dimensional error rate for ad
dimensional problem. In the worst case though, it m
be true that almost none of the variance derives fromσ2

u

with u ⊆ Aj . In this event, LSS fails softly, giving a
variance that is essentially the same as simple MC wo
have given.

5 CONCLUSIONS

By employing randomness, it is possible to improve QM
in three ways. First, by replication, one can get sam
based error estimates. Second, for the case of scram
nets, one can introduce cancellation that improves accu
Third, by Latin supercube sampling, one can employ l
dimensional rules on high dimensional problems.
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