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We present Monte Carlo methods for multi-target tracking

and data association. The methods are applicable to general

nonlinear and non-Gaussian models for the target dynamics and

measurement likelihood. We provide efficient solutions to two very

pertinent problems: the data association problem that arises due

to unlabelled measurements in the presence of clutter, and the

curse of dimensionality that arises due to the increased size of

the state-space associated with multiple targets. We develop a

number of algorithms to achieve this. The first, which we refer

to as the Monte Carlo joint probabilistic data association filter

(MC-JPDAF), is a generalisation of the strategy proposed in [1]

and [2]. As is the case for the JPDAF, the distributions of interest

are the marginal filtering distributions for each of the targets,

but these are approximated with particles rather than Gaussians.

We also develop two extensions to the standard particle filtering

methodology for tracking multiple targets. The first, which we

refer to as the sequential sampling particle filter (SSPF), samples

the individual targets sequentially by utilising a factorisation

of the importance weights. The second, which we refer to as

the independent partition particle filter (IPPF), assumes the

associations to be independent over the individual targets, leading

to an efficient component-wise sampling strategy to construct new

particles. We evaluate and compare the proposed methods on a

challenging synthetic tracking problem.
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I. INTRODUCTION

The detection and tracking of multiple targets is
a problem that arises in a wide variety of contexts.
Examples include radar based tracking of aircraft,
sonar based tracking of sea animals or submarines,
video based identification and tracking of people for
surveillance or security purposes, and many more. The
most commonly used framework for tracking is that
of Bayesian sequential estimation. This framework
is probabilistic in nature, and thus facilitates the
modelling of uncertainties due to inaccurate models,
sensor errors, environmental noise, etc. The general
recursions update the posterior distribution of the
target state, also known as the filtering distribution,
through two stages: a prediction step that propagates
the posterior distribution at the previous time step
through the target dynamics to form the one step
ahead prediction distribution, and a filtering step
that incorporates the new data through Bayes’ rule
to form the new filtering distribution. In theory the
framework requires only the definition of a model for
the target dynamics, a likelihood model for the sensor
measurements, and an initial distribution for the target
state.
The application of the Bayesian sequential

estimation framework to real world multi-target
tracking problems is plagued by two difficulties.
First, realistic models for the target dynamics and
measurement processes are often nonlinear and
non-Gaussian, so that no closed-form analytic
expression can be obtained for the tracking recursions.
In fact, closed-form expressions are available only in a
small number of cases. The most well-known of these
arises when both the dynamic and likelihood models
are linear and Gaussian, leading to the celebrated
Kalman filter (KF) [3]. The second difficulty is due to
the fact that in most practical tracking applications the
sensors yield unlabelled measurements of the targets.
This leads to a combinatorial data association problem
that is very challenging when targets have a small
separation compared with the measurement errors.
Furthermore, clutter measurements may arise due to
multi-path effects, sensor errors, spurious objects,
etc., further increasing the complexity of the data
association problem.
Many strategies have been proposed in the

literature to address the difficulties associated with
multi-target tracking. We do not attempt to give
an exhaustive summary here, but rather highlight
some of the key contributions over the years. When
tracking a single object closed-form expressions are
generally not available for nonlinear or non-Gaussian
models, and approximate methods are required. The
extended KF (EKF) [3] linearises models with weak
nonlinearities around the current state estimate, so
that the KF recursions can still be applied. However,
the performance of the EKF degrades rapidly as the
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nonlinearities become more severe. To alleviate this
problem the unscented KF (UKF) [4], [5] maintains
the second-order statistics of the target distribution
by recursively propagating a set of carefully selected
sigma points. This method requires no linearisation,
and generally yields more robust estimates. One of the
first attempts to deal with models with non-Gaussian
state or observation noise is the the Gaussian sum
filter (GSF) [6] that works by approximating the
non-Gaussian target distribution with a mixture
of Gaussians. It suffers, however, from the same
shortcoming as the EKF in that linear approximations
are required. It also leads to a combinatorial growth
in the number of mixture components over time,
calling for ad-hoc strategies to prune the number of
components to a manageable level. An alternative
method for non-Gaussian models that does not require
any linear approximations has been proposed in [7]. It
approximates the non-Gaussian state numerically with
a fixed grid, and applies numerical integration for the
prediction step and Bayes’ rule for the filtering step.
However, the computational cost of the numerical
integration grows exponentially with the dimension of
the state-space, and the method becomes impractical
for dimensions larger than four.
For general nonlinear and non-Gaussian models,

particle filtering [8, 9], also known as sequential
Monte Carlo (SMC) [10—12], or CONDENSATION
[13], has become a practical and popular numerical
technique to approximate the Bayesian tracking
recursions. This is due to its efficiency, simplicity,
flexibility, ease of implementation, and modelling
success over a wide range of challenging applications.
It represents the target distribution with a set
of samples, known as particles, and associated
importance weights, which are then propagated
through time to give approximations of the target
distribution at subsequent time steps. It requires only
the definition of a suitable proposal distribution from
which new particles can be generated, and the ability
to evaluate the dynamic and likelihood models. As
opposed to the strategy in [7], the computational
complexity for particle filters does not necessarily
become prohibitive with an increase in the dimension
of the state-space.
A large number of strategies are available to

solve the data association problem. These can be
broadly categorised as either single frame assignment
methods, or multi-frame assignment methods. We
focus mainly on the former here. Methods to solve
the multi-frame assignment problem include, e.g.
Lagrangian relaxation [14]. The multiple hypotheses
tracker (MHT) [15] attempts to keep track of all the
possible association hypotheses over time. This is an
NP-hard problem, since the number of association
hypotheses grows exponentially over time. Thus
methods are required to reduce the computational
complexity. The nearest neighbour standard filter

(NNSF) [16] associates each target with the closest
measurement in the target space. However, this simple
procedure prunes away many feasible hypotheses.
In this respect the joint probabilistic data association
filter (JPDAF) [16, 17] is more appealing. At each
time step infeasible hypotheses are pruned away
using a gating procedure. A filtering estimate is then
computed for each of the remaining hypotheses, and
combined in proportion to the corresponding posterior
hypothesis probabilities. The main shortcoming
of the JPDAF is that, to maintain tractability, the
final estimate is collapsed to a single Gaussian, thus
discarding pertinent information. Subsequent work
addressed this shortcoming by proposing strategies
to instead reduce the number of mixture components
in the original mixture to a tractable level [18, 19].
Still, many feasible hypotheses may be discarded by
the pruning mechanisms. The probabilistic multiple
hypotheses tracker (PMHT) [20, 21] (suboptimally)
assumes the association variables to be independent to
work around the problems with pruning. It leads to an
incomplete data problem that can be efficiently solved
using the expectation maximisation (EM) algorithm
[22]. However, the PMHT is a batch strategy, and
thus not suitable for online applications. The standard
version of the PMHT is also generally outperformed
by the JPDAF. Some of the reasons for this, and a
number of possible solutions, are discussed in [23].
Even though methods to solve the data

association problem do not usually rely on linear and
Gaussian models, this assumption is often made to
simplify hypothesis evaluation for target originated
measurements. For example, nonlinear models can
be accommodated by suitable linearising using the
EKF. As for the EKF, however, the performance of
the algorithms degrades as the nonlinearities become
more severe. Recently strategies have been proposed
to combine the JPDAF with particle techniques to
accommodate general nonlinear and non-Gaussian
models [1, 2, 24, 25]. The data association problem
has also been addressed directly in the context of
particle filtering. The feasibility of multi-target
tracking with particle filters has first been claimed
in [26] and [27], but the examples there deal only
with a single target. In [28] a method is described
that computes the distribution of the association
hypotheses using a Gibbs sampler [29] at each
time step. The method is similar in spirit to the one
described in [30] that uses Markov chain Monte
Carlo (MCMC) techniques [31] to compute the
correspondences between image points within the
context of stereo reconstruction. The main problem
with these MCMC strategies is that they are iterative
in nature and take an unknown number of iterations
to converge. They are thus not entirely suitable for
online applications. In [32] a method is presented
where the associations are sampled from an optimally
designed importance distribution. The method is
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intuitively appealing since the association hypotheses
are treated in a similar fashion to the target state,
so that the resulting algorithm is noniterative. It is,
however, restricted to jump Markov linear systems
(JMLS) [33]. An extension of this strategy, based on
the auxiliary particle filter (APF) [34] and the UKF,
that is applicable to general jump Markov systems
(JMS) is presented in [35]. Another approach that
is similar in spirit is described in [36]. Samples for
the association hypotheses are generated from an
efficient proposal distribution based on the notion of
a soft-gating of the measurements.
Particle filters have also been applied to the

problem of multi-target tracking based on raw
measurements, e.g. [37]—[39]. These so-called track
before detect (TBD) strategies construct a generative
model for the raw measurements in terms of a
multi-target state hypothesis, thus avoiding an explicit
data association step. However, such measurements
are not always readily available in practical systems,
and may lead to a larger computational complexity
if they are. For these reasons we do not consider
TBD techniques here, but instead focus our attention
on the more conventional thresholded measurement
procedure.
The multi-target tracking problem suffers from

the curse of dimensionality. As the number of targets
increases, the size of the joint state-space increases
exponentially. If care is not taken in the design of
proposal distributions an exponentially increasing
number of particles may be required to cover the
support of the multi-target distribution and maintain
a given level of accuracy. For poor proposals it may
commonly occur that particles contain a mixture
of good estimates for some target states, and bad
estimates for other target states. In the computation
of the particle weights, however, the entire particle
is penalised for the component targets with bad
estimates, so that even components with good
estimates are destroyed during the resampling stage.
This leads to a rapid depletion of the Monte Carlo
representation. This problem has been acknowledged
before in [40], where a selection strategy is proposed
that constructs new particles from individual target
states that are deemed to be accurately estimated. We
consider similar proposal strategies here.
Here we present a number of particle-filter-based

strategies for multi-target tracking and data association
for general nonlinear and non-Gaussian models. The
first, which we refer to as the Monte Carlo joint
probabilistic data association filter (MC-JPDAF),
is a generalisation of the strategy proposed in [1]
and [2] to multiple observers and arbitrary proposal
distributions. As is the case for the JPDAF, the
distributions of interest are the marginal filtering
distributions for each of the targets. Contrary to the
JPDAF, which approximates these with Gaussians, we
use particle approximations. The marginal association

probabilities required during the filtering step are
computed using these particles. We also develop
two extensions to the standard particle filtering
methodology for tracking multiple targets. The
first is an exact strategy that samples the individual
targets sequentially by utilising a factorisation of
the importance weights. We refer to this algorithm
as the sequential sampling particle filter (SSPF).
The second strategy assumes the associations to be
independent over the individual targets. This is similar
to the approximation made in the PMHT, and implies
that measurements can be assigned to more than
one target. This assumption effectively removes all
dependencies between the individual targets, leading
to an efficient component-wise sampling strategy to
construct new particles. We refer to this approach as
the independent partition particle filter (IPPF). As
opposed to the JPDAF, neither approach requires
a gating procedure, but captures the notion of a
soft-gating of the measurements by an efficiently
designed proposal distribution, similar in spirit to the
one in [36].
The remainder of the paper is organised as

follows. Section II introduces the Bayesian sequential
estimation framework, and shows how the general
recursions can be implemented using Monte Carlo
techniques, leading to the particle filter. Section III
discusses the modelling assumptions for the
multi-target tracking problem. It develops models for
the target dynamics, discusses the data association
problem, and derives a likelihood model conditional
on a known association hypothesis. It also develops
a prior for the association hypothesis, which is
required by the subsequent tracking algorithms.
The MC-JPDAF is outlined in Section IV. The
general framework is first presented, together with
the required assumptions, and then it is shown how
the framework can be implemented using Monte
Carlo techniques. The multi-target particle filtering
algorithms are developed in Section V, together with
efficient proposals for the association hypothesis.
Section VI discusses some choices for the target
state proposal distribution that is applicable to both
the MC-JPDAF and the multi-target particle filtering
algorithms. The proposed methods are evaluated and
compared on a challenging synthetic tracking problem
in Section VII. Finally, Section VIII summarises the
paper and makes a number of suggestions for future
research.

II. BAYESIAN SEQUENTIAL ESTIMATION AND
PARTICLE FILTERS

Since particle filters will form the core component
of the multi-target tracking algorithms developed
here, we begin by a brief description of the Bayesian
sequential estimation framework and its Monte Carlo
approximation, i.e., the particle filter. We describe the
framework for a generic model parameterised by a
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state xt, where t denotes the discrete time index. For
tracking the distribution of interest is the posterior
p(xt j y1: t), also known as the filtering distribution,
where y1: t = (y1 : : :yt) denotes all the observations up
to the current time step. In the Bayesian sequential
estimation framework the filtering distribution can be
computed according to the two step recursion

prediction step:

p(xt j y1: t¡1) =

Z
p(xt j xt¡1)p(xt¡1 j y1: t¡1)dxt¡1

filtering step:

p(xt j y1: t) =
p(yt j xt)p(xt j y1: t¡1)

p(yt j y1: t¡1)
(1)

where the prediction step follows from
marginalisation, and the new filtering distribution is
obtained through a direct application of Bayes’ rule.
The recursion requires the specification of a dynamic
model describing the state evolution p(xt j xt¡1), and
a model for the state likelihood in the light of the
current measurements p(yt j xt).

1 The recursion is
initialised with some distribution for the initial state
p(x0). Once the sequence of filtering distributions is
known point estimates of the state can be obtained
according to any appropriate loss function, leading
to, e.g., maximum a posteriori (MAP) and minimum
mean square error (MMSE) estimates.
The tracking recursion yields closed-form

expressions in only a small number of cases. The
most well-known of these is the KF [3] for linear
and Gaussian dynamic and likelihood models. For
general nonlinear and non-Gaussian models the
tracking recursion becomes analytically intractable,
and approximation techniques are required. SMC
methods [10—12], otherwise known as particle
filters [8, 9], or CONDENSATION [13], have
gained a lot of popularity in recent years as a
numerical approximation strategy to compute the
tracking recursion for complex models. This is due
to their efficiency, simplicity, flexibility, ease of
implementation, and modelling success over a wide
range of challenging applications.
The basic idea behind particle filters is very

simple. Starting with a weighted set of samples
fw(n)t¡1,x

(n)
t¡1g

N
n=1 approximately distributed according

to p(xt¡1 j y1: t¡1), new samples are generated from a
suitably designed proposal distribution, which may
depend on the old state and the new measurements,
i.e., x(n)t » q(xt j x

(n)
t¡1,yt), n= 1 : : :N. To maintain a

1The dynamic and likelihood models rely on the Markov

assumptions
xt ? y1: t¡1 j xt¡1

yt ? y1: t¡1 j xt

(2)

i.e., the current state is independent of all the previous

measurements given the previous state, and the current

measurements are independent of all the previous measurements

given the current state.

Fig. 1. Graphical model. Graphical model is given for single

time step. Filled dots indicate known variables, open dots indicate

unobserved random variables. Associations depicted in terms of

target to measurement associations, and also unobserved.

consistent sample the new importance weights are set
to

w(n)t / w(n)t¡1
p(yt j x

(n)
t )p(x

(n)
t j x(n)t¡1)

q(x(n)t j x(n)t¡1,yt)
,

NX

n=1

w(n)t = 1

(3)

where the proportionality is up to a normalising
constant. The new particle set fw(n)t ,x

(n)
t g

N
n=1 is then

approximately distributed according to p(xt j y1: t).
Approximations to the desired point estimates can
then be obtained by Monte Carlo techniques. From
time to time it is necessary to resample the particles
to avoid degeneracy of the importance weights. The
resampling procedure essentially multiplies particles
with high importance weights, and discards those
with low importance weights. A full discussion of
degeneracy and resampling falls outside the scope of
this work, but more detail can be found in [10].

III. MODEL DESCRIPTION

In this section we describe the elements of the
multi-target tracking model. The construction of
the state-space and the assumptions on the target
dynamics are first treated in Section IIIA. Section IIIB
then describes the measurement process and the data
association problem, and formulates the likelihood
conditional on a known association hypothesis. A
prior for the association hypothesis is developed in
Section IIIC. All the components of the model are
elucidated by the graphical model in Fig. 1. Where
appropriate we illustrate the various parts of the model
with practical examples.

A. State-Space and Dynamics

We assume that the number of targets to be
tracked K is fixed and known. Each target is
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parameterised by a state xk,t, k = 1 : : :K, which may
differ in interpretation over the individual targets. The
combined state is constructed as the concatenation
of the individual target states, i.e., xt = (x1,t : : :xK,t).
The individual targets are assumed to evolve
independently according to Markovian dynamic
models pk(xk,t j xk,t¡1), k = 1 : : :K. This implies that
the dynamics for the combined state factorises over
the individual targets, i.e.,

p(xt j xt¡1) =
KY

k=1

pk(xk,t j xk,t¡1): (4)

The tracking strategies we develop later can also be
applied to targets whose motion is coupled, such as
leader-follower behaviour and convoy movements. In
such cases the targets that are correlated need to be
treated jointly as a single “super target.” For simplicity
we do not explicitly consider this possibility here.

EXAMPLE 1 In the tracking application we
consider later we are interested in tracking K slowly
manoeuvring targets in the xy plane. We assume that
each component of the position evolves independently
according to a near constant velocity model of the
form in [16]. The state of the kth target comprises
its position and velocity in the xy plane, i.e., xk,t =
(xk,t, _xk,t,yk,t, _yk,t). Assuming further a uniform
discretisation with a sampling period of T seconds,
the state evolution equation for the kth target becomes

xk,t =Axk,t¡1+ vk,t (5)

with

A=

·
Acv 02£2

02£2 Acv

¸
, Acv =

·
1 T

0 1

¸
(6)

where 0n£m denotes the n£m matrix of zeros. The
state evolution noise vk,t is assumed to be zero-mean
Gaussian distributed with fixed and known covariance

§k =

"
¾2k,x§cv 02£2

02£2 ¾2k,y§cv

#
, §cv =

·
T3=3 T2=2

T2=2 T

¸
:

(7)

Note that under these assumptions the individual
target dynamics are linear and Gaussian, and
nonsingular.

B. Measurements, Data Association, and Likelihood

In the discussions that follow we suppress
the time index t whenever there is no danger of
ambiguity arising. Measurements for multi-target
tracking are assumed to be available from No spatially
distributed observers. We denote the observer
locations by pio, i= 1 : : :No, and allow them to vary
with time. At any particular time the combined set
of measurements from all the observers will be

denoted by y= (y1 : : :yNo), where yi = (yi1 : : :y
i
M i ) is

the vector comprising the M i measurements at the ith
observer. Note that the number of measurements at
each observer generally varies with time. The nature
of the individual measurements yij will depend on
the characteristics of the sensors. Typically each
measurement will correspond to an estimated line of
sight from the observer location to the measurement
source. Measurements do not only arise from the
targets to be tracked. Additional clutter measurements
may result due to multi-path effects, spurious objects,
sensor errors, etc. We assume that each of the targets
can generate at most one measurement per sensor at
a particular time step, but may go undetected. We
further assume that several or all of the measurements
may be due to clutter.
To deal with the data association problem it is

necessary to introduce a set of association variables.
These can be specified either as measurement to
target or target to measurement associations, with the
former being more commonly used. Both formulations
carry the same information, but are useful in different
contexts. We consider both in what follows. We
denote a measurement to target association (M! T)
hypothesis by ¸= (¸1 : : :¸No), where ¸i = (ri,M i

C ,M
i
T)

is the measurement to target association hypothesis
for the measurements at the ith observer, with M i

C the
number of clutter measurements, and M i

T the number
of target measurements. Note that M i =M i

C +M
i
T. The

elements of the association vector ri = (ri1 : : : r
i
M i ) are

given by

rij =

8
>>>>>><
>>>>>>:

0 if measurement j at
observer i is due
to clutter

k 2 f1 : : :Kg if measurement j at
observer i stems
from target k:

(8)

In a similar fashion we denote a target to
measurement association (T!M) hypothesis by
˜̧ = ( ˜̧ 1 : : : ˜̧No), where ˜̧ i = (r̃i,M i

C,M
i
T) is the target to

measurement hypothesis for the measurements at the
ith observer. For this formulation the elements of the
association vector r̃i = (r̃i1 : : : r̃

i
K) are given by

r̃ik =

8
>>>><
>>>>:

0 if target k is undetected
at observer i

j 2 f1 : : :M ig if target k generated
measurement j at
observer i:

(9)

As noted above these two representations are
equivalent, and it is straightforward to convert from
one to the other. More specifically, initialising the
corresponding association vectors with zero, the
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conversions for the ith observer are given by

T!M to M! T: ri
r̃i
k

= k if r̃ik 6= 0, k = 1 : : :K

M! T to T!M: r̃i
ri
j

= j if rij 6= 0, j = 1 : : :M i:

(10)

Conditional on any formulation of the association
hypothesis we assume the measurements at a
particular observer to be independent of each other,
and independent of those at the other observers.
This leads to a factorised likelihood model which,
conditional on the measurement to target association
hypothesis, becomes

p(y j x,¸) =
NoY

i=1

2
4Y

j2I i
0

piC(y
i
j) ¢
Y

j2I i

piT(y
i
j j xri

j
)

3
5 (11)

where I i0 = fj 2 f1 : : :M
ig : rij = 0g and I

i =

fj 2 f1 : : :M ig : rij 6= 0g
2 are, respectively, the

subsets of measurement indices at the ith observer
corresponding to clutter measurements and
measurements from the targets to be tracked. In the
above piC denotes the clutter likelihood model for the
ith observer, which is normally assumed to be uniform
over the volume of the measurement space Vi. The
likelihood for a measurement at the ith observer
associated with a particular target, denoted by piT,
depends only on the state of the target with which it
is associated. Under these assumptions the likelihood
simplifies to

p(y j x,¸) =
NoY

i=1

2
4(Vi)¡M i

C

Y

j2I i

piT(y
i
j j xri

j
)

3
5 : (12)

In a similar fashion the likelihood conditional on the
target to measurement association hypothesis becomes

p(y j x, ˜̧ ) =
NoY

i=1

2
4Y

j2I i
0

piC(y
i
j) ¢

KY

k=1

pi(yir̃i
k

j xk)

3
5

=

NoY

i=1

"
(Vi)¡M

i
C

KY

k=1

pi(yir̃i
k
j xk)

#
(13)

where, with a minor abuse of notation, the likelihood
in the second product can be written as

pi(yir̃i
k
j xk) =

(
1 if r̃ik = 0

piT(y
i
r̃i
k

j xk) otherwise:
(14)

EXAMPLE 2 If the sensors yield line of sight
measurements of the targets relative to the observers
in the xy plane, the individual measurements at the
ith observer can be written as yij = (R

i
j ,µ

i
j), where

Rij and µ
i
j are, respectively, the measured range and

2In terms of the target to measurement association hypothesis

these sets can be denoted by I i
0
= f1 : : :M ig n fr̃i

k
: k = 1 : : :Kg and

I i = fr̃i
k
: k = 1 : : :Kg, respectively.

bearing from the observer to the source, with the
bearing measured anti-clockwise from the x axis. If
the range and bearing are assumed to be corrupted by
independent Gaussian noise, the likelihood for the jth
measurement, under the hypothesis that it is associated
with the kth target, becomes

piT(y
i
j j xk) =N (y

i
j j ŷ

i
k,§

i
y) (15)

where §i
y = diag(¾

2
Ri ,¾

2
µi ) is the fixed and known

diagonal covariance with the individual noise

variances. The components of the mean ŷik = (R̂
i
k, µ̂

i
k) =

g(xk,p
i
o) are given by

R̂ik = ((xk ¡ x
i
o)
2+(yk ¡ y

i
o)
2)1=2

µ̂ik = tan
¡1

µ
yk ¡ y

i
o

xk ¡ x
i
o

¶ (16)

with pio = (x
i
o,y

i
o). For this model the volume of

the measurement space for the ith observer is
Vi = 2¼Rimax, where R

i
max is the maximum range

of the sensor. This follows from the measurement
independence assumption.

C. Association Prior

In most applications of practical interest the
association hypothesis is unknown, and thus needs
to be estimated alongside the other unknowns, or
marginalised from the problem. To achieve this within
a Bayesian framework it is necessary to define a
prior distribution over the association hypothesis.
We assume the prior for the association hypothesis
to be independent of the state and past values of the
association hypothesis. The prior we present here
follows closely the one described in [41]. For the
measurement to target association hypothesis we
assume that the prior factorises over the observers,
i.e.,

p(¸) =

NoY

i=1

p(¸i): (17)

For each of the observers the prior is further assumed
to follow the hierarchical structure given by

p(¸i) = p(ri jM i
C,M

i
T)p(M

i
C)p(M

i
T) (18)

with

p(ri jM i
C ,M

i
T) = [Ņ i (M i

C ,M
i
T)]

¡1

p(M i
C) = (¸

i
C)
M i
C exp(¡¸iC)=M

i
C!

p(M i
T) =

µ
K

M i
T

¶
P
M i
T

D (1¡PD)
K¡M i

T :

(19)

In the absence of measurements the prior for the
association vector is assumed to be uniform over
all the valid hypotheses. Given the number of target
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measurements, the number of valid hypotheses are
given by

Ņ i (M i
C ,M

i
T) =

µ
M i

M i
T

¶
K!

(K ¡M i
T)!

(20)

and follows from the number of ways of choosing
a subset of M i

T elements from the available M i

measurements, multiplied by the number of possible
associations between the M i

T detections and the
K targets. The number of clutter measurements
is assumed to follow a Poisson distribution, with
rate parameter ¸iC,

3 which is assumed to be fixed
and known. The binomial prior for the number of
target measurements follows from summing over the¡
K M i

T

¢
possible ways to group M i

T target detections
among the K targets under the assumption that all
the targets share the same fixed and known detection
probability PD. It is, of course, possible to associate
different detection probabilities with each of the
target-observer pairs, and have them vary with time,
but we do not consider this possibility here.
The prior for the target to measurement association

hypothesis follows a similar structure, with the only
difference being that the number of valid hypotheses
for a given number of target measurements is now
given by

N˜̧ i (M
i
C ,M

i
T) =

µ
K

M i
T

¶
M i!

(M i¡M i
T)!
: (21)

In the algorithms we develop later we make extensive
use of this form of the association prior. For this
form it is possible to obtain a factorisation over the
individual target associations that takes the form

p( ˜̧ i) = p(M i
C)

KY

k=1

p(r̃ik j r̃
i
1:k¡1) (22)

with

p(r̃ik = j j r̃
i
1:k¡1)

/

8
>>><
>>>:

1¡PD if j = 0

0 if j > 0 and j 2 fr̃i1 : : : r̃
i
k¡1g

PD
M i
k

otherwise,

(23)

where M i
k =M

i¡jfl : r̃il 6= 0, l = 1 : : :k¡ 1gj is the
number of unassigned measurements, taking into
account the assignments of the previous k¡ 1
associations. Note that this sequential factorisation
can be performed over any permutation of the
target ordering. Note further that the prior for the

3It is common practice to define the rate parameter in terms of

the spatial density of the clutter ¹i, i.e., ¸iC = ¹
iṼi. Here Ṽi is

the physical volume of the space observed by the sensor, to be

contrasted with the volume of the measurement space Vi.

number of target detections is implicitly captured
by the factorisation of the association vector, and
hence disappears from the expression for the
prior. This factorisation will aid in the design of
efficient sampling strategies to combat the curse of
dimensionality with an increase in the number of
targets.

IV. MONTE CARLO JPDAF

The JPDAF is probably the most widely applied
and successful strategy for multi-target tracking
under data association uncertainty. The original
formulation of the JPDAF in [16] and [17] assumes
linear and Gaussian models. For models with weak
nonlinearities the EKF can be applied to linearise
the system. Subsequent research has led to many
useful extensions to the standard JPDAF to address
some of its shortcomings and make it more generally
applicable. For example, methods to maintain a
mixture of Gaussians for each target state, instead
of a single Gaussian, are described in [18] and
[19].
Here we present a Monte Carlo implementation

of the general JPDAF framework, applicable to
general nonlinear and non-Gaussian models. This
strategy, which we refer to as the MC-JPDAF, is a
generalisation of the method proposed in [1] and
[2] to multiple observers and arbitrary proposal
distributions. We first outline the general JPDAF
framework in Section IVA, and then show in
Section IVB how this framework can be implemented
using Monte Carlo techniques, so that it applies
to general nonlinear and non-Gaussian models.
The JPDAF requires a gating procedure to keep
the number of valid association hypotheses to a
reasonable level. In Section IVC we describe a gating
procedure that is applicable within the context of a
Monte Carlo implementation of the JPDAF.

A. JPDAF Framework

Instead of maintaining the filtering distribution
for the joint state p(xt j y1: t) the JPDAF effectively
combats the curse of dimensionality by recursively
updating the marginal filtering distributions for each
of the targets pk(xk,t j y1: t), k = 1 : : :K, through the
Bayesian sequential estimation recursions in (1). The
prediction step proceeds independently for each target
as

pk(xk,t j y1: t¡1) =

Z
pk(xk,t j xk,t¡1)pk(xk,t¡1 j y1: t¡1)dxk,t¡1:

(24)

Due to the data association uncertainty the filtering
step cannot be performed independently for the
individual targets. The JPDAF gets around this
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difficulty by performing a soft assignment of targets
to measurements according to the corresponding
posterior probabilities of these marginal associations.
More specifically, it achieves this by defining the
likelihood for the kth target as

pk(yt j xk,t) =
NoY

i=1

2
4¯i0k +

M iX

j=1

¯ijkp
i
T(y

i
j,t j xk,t)

3
5 (25)

where ¯ijk = p(r̃
i
k,t = j j y1: t), j = 1 : : :M

i, is the
posterior probability that the kth target is associated
with the jth measurement, with ¯i0k the posterior
probability that the kth target is undetected. The
likelihood is assumed to be independent over the
observers. The component of the likelihood for each
observer is a mixture, with one mixture component for
each possible target to measurement association, and
the mixture weights equal to the posterior probabilities
of the corresponding marginal associations. With
the definition of the likelihood above the filtering
step proceeds in the normal way specified by
(1), i.e.,

pk(xk,t j y1: t)/ pk(yt j xk,t)pk(xk,t j y1: t¡1): (26)

Thus with the definitions for the one step ahead
prediction distribution in (24) and the filtering
distribution in (26) the JPDAF fits within the
Bayesian sequential estimation framework of (1).
All that remains is the computation of the posterior
probabilities of the marginal associations ¯ijk, where

i= 1 : : :No ranges over the observers, j = 0 : : :M
i

ranges over the measurements, with 0 signifying that
the target in question is not associated with any of
the measurements, and k = 1 : : :K ranges over the
targets. These marginal probabilities can be computed
by summing over the corresponding joint association
probabilities, i.e.,

¯ijk = p(r̃
i
k,t = j j y1: t) =

X

f ˜̧ it2¤̃
i
t: r̃

i
k,t
=jg

p( ˜̧ it j y1: t) (27)

where ¤̃it is the set of all valid joint target to
measurement association hypotheses for the data
at the ith observer. Thus the posterior probability
for a particular target to measurement association is
obtained by summing over all the joint association
hypotheses in which this marginal association occurs.
Under the assumptions discussed below the posterior
probability for the joint association hypothesis can be
expressed as

p( ˜̧ it j y1: t)/ p(
˜̧ i
t)(V

i)¡M
i
C

Y

j2I i

pri
j,t
(yij,t j y1: t¡1) (28)

where p( ˜̧ it) is the joint association prior developed
in Section IIIC, and pk(y

i
j,t j y1: t¡1) is the predictive

likelihood for the jth measurement at the ith observer
using the information from the kth target, given in the

standard way by

pk(y
i
j,t j y1: t¡1) =

Z
piT(y

i
j,t j xk,t)pk(xk,t j y1: t¡1)dxk,t:

(29)

To obtain the expression for the joint association
posterior probability in (28) it was necessary to
assume that the predictive likelihood is independent
over the observers, as well as over the individual
measurements at each of the observers. In the
likelihood the conditioning was also changed from the
target to measurement associations to the measurement
to target associations. This is valid since both
representations carry the same information, and are
related through a deterministic one-to-one mapping.
The original formulation of the JPDAF in [16]

and [17] assumes linear and Gaussian forms for
the dynamic and likelihood models, and a Gaussian
approximation for the filtering distribution. Under
these assumptions Kalman filter updates are obtained
for the one step ahead prediction distribution in (24)
and the predictive likelihood in (29). The mixture
likelihood in (25) is collapsed into a single Gaussian,
so that a Kalman filter update is also obtained for
the filtering distribution in (26). In the next section
we show how the general JPDAF framework can be
implemented using Monte Carlo techniques, making
it applicable to general nonlinear and non-Gaussian
models.

B. Monte Carlo Implementation

The Monte Carlo implementation of the JPDAF
presented in this section is a generalisation of the
strategy proposed in [1] and [2] to multiple observers
and arbitrary proposal distributions. It aims to
represent the marginal filtering distributions for
each of the targets with Monte Carlo samples, or
particles, instead of a Gaussian, as is the case for
the standard JPDAF. More specifically, for the kth
target, assume that a set of samples fw(n)k,t¡1,x

(n)
k,t¡1g

N
n=1

is available, approximately distributed according to
the marginal filtering distribution at the previous
time step pk(xk,t¡1 j y1: t¡1). At the current time step
new samples for the target state are generated from a
suitably constructed proposal distribution, which may
depend on the old state and the new measurements,
i.e.,

x(n)k,t » qk(xk,t j x
(n)
k,t¡1,yt), n= 1 : : :N: (30)

We are not specific about the form of the state
proposal distribution here, but will delay the
presentation of particular forms for this distribution
until Section VI. Using these Monte Carlo samples the
predictive likelihoods in (29) can straightforwardly be
approximated as

pk(y
i
j,t j y1: t¡1)¼

NX

n=1

®(n)k,t p
i
T(y

i
j,t j x

(n)
k,t ) (31)
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where the predictive weights are given by

®(n)k,t / w
(n)
k,t¡1

pk(x
(n)
k,t j x

(n)
k,t¡1)

qk(x
(n)
k,t j x

(n)
k,t¡1,yt)

,

NX

n=1

®(n)k,t = 1:

(32)

This approximation can now straightforwardly be
substituted into (28) to obtain approximations for
the joint association posterior probabilities, from
which approximations for the marginal target to
measurement association posterior probabilities can
be computed according to (27). These approximations
can, in turn, be used in (25) to approximate the target
likelihood. Finally, setting the new importance weights
to

w(n)k,t / w
(n)
k,t¡1

pk(yt j x
(n)
k,t )pk(x

(n)
k,t j x

(n)
k,t¡1)

qk(x
(n)
k,t j x

(n)
k,t¡1,yt)

,

NX

n=1

w(n)k,t = 1

(33)

leads to the sample set fw(n)k,t ,x
(n)
k,t g

N
n=1 being

approximately distributed according to the marginal
filtering distribution at the current time step
pk(xk,t j y1: t).
We conclude this section by presenting a

summary of the MC-JPDAF algorithm. Assuming
that the sample sets fw(n)k,t¡1,x

(n)
k,t¡1g

N
n=1, k = 1 : : :K,

are approximately distributed according to the
corresponding marginal filtering distributions at the
previous time step pk(xk,t¡1 j y1: t¡1), k = 1 : : :K, the
algorithm proceeds as follows at the current time
step.

ALGORITHM 1 MC-JPDAF
² For k = 1 : : :K, n= 1 : : :N, generate new samples

for the target states x(n)k,t » qk(xk,t j x
(n)
k,t¡1,yt).

² For k = 1 : : :K, n= 1 : : :N, compute and
normalise the predictive weights

®(n)k,t / w
(n)
k,t¡1

pk(x
(n)
k,t j x

(n)
k,t¡1)

qk(x
(n)
k,t j x

(n)
k,t¡1,yt)

,

NX

n=1

®(n)k,t = 1:

(34)

² For k = 1 : : :K, i= 1 : : :No, j = 1 : : :M
i, compute

the Monte Carlo approximation for the predictive
likelihood

pk(y
i
j,t j y1: t¡1)¼

NX

n=1

®(n)k,t p
i
T(y

i
j,t j x

(n)
k,t ): (35)

² For i= 1 : : :No, enumerate all the valid joint
target to measurement association hypotheses at the

ith observer to form the set ¤̃it.

² For i= 1 : : :No,
˜̧ i
t 2 ¤̃

i
t, compute the joint

association posterior probability

p( ˜̧ it j y1: t)/ p(
˜̧ i
t)(V

i)¡M
i
C

Y

j2I i

pri
j,t
(yij,t j y1: t¡1):

(36)

² For k = 1 : : :K, i= 1 : : :No, j = 0 : : :M
i, compute

the marginal association posterior probability

¯ijk =
X

f ˜̧ it2¤̃
i
t: r̃

i
k,t
=jg

p( ˜̧ it j y1: t): (37)

² For k = 1 : : :K, n= 1 : : :N, compute the target
likelihood

pk(yt j x
(n)
k,t ) =

NoY

i=1

2
4¯i0k +

M iX

j=1

¯ijkp
i
T(y

i
j,t j x

(n)
k,t )

3
5 :

(38)

² For k = 1 : : :K, n= 1 : : :N, compute and
normalise the particle weights

w(n)k,t / w
(n)
k,t¡1

pk(yt j x
(n)
k,t )pk(x

(n)
k,t j x

(n)
k,t¡1)

qk(x
(n)
k,t j x

(n)
k,t¡1,yt)

,

NX

n=1

w(n)k,t = 1:

(39)

² For k = 1 : : :K, if resampling is required then
for n= 1 : : :N, sample an index m(n)» fw(l)k,tg

N
l=1 and

replace fw(n)k,t ,x
(n)
k,t gÃ fN¡1,xm(n)k,t g.

The resulting sample sets fw(n)k,t ,x
(n)
k,t g

N
n=1, k = 1 : : :K,

are then approximately distributed according to the
corresponding marginal filtering distributions at the
current time step pk(xk,t j y1: t), k = 1 : : :K. Note that
the resampling step can be performed independently
for each of the targets. Resampling is necessary to
avoid degeneracy of the particle sets, and is normally
invoked once an estimate of the effective sample size,
which acts as a measure of degeneracy, falls below
a predefined threshold. A more complete discussion
about degeneracy and resampling can be found in
[10].

C. Gating

The biggest drawback of the JPDAF is its
computational complexity. Recall that the computation
of the marginal association posterior probabilities
in (27) requires enumeration over all the valid joint
target to measurement associations. For a particular
observer the total number of such associations is given
by4

N˜̧ =

min(K,M)X

MT=0

N˜̧ (MC,MT) (40)

where the number of hypotheses for a given number
of target detections and clutter measurements
N˜̧ (MC ,MT) follows from the expression in (21). The

4The issues surrounding gating applies independently to each of

the observers. We thus focus on a single observer, and drop the

observer index in the discussion for notational clarity. For the same

reason we also suppress the time index.
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Fig. 2. Measurement gating. Targets mapped into measurement

space (circles) and their validation regions (ellipses).

Only measurements (squares) that fall inside validation region

for a particular target are candidates to be associated with

that target.

number of valid hypotheses increases exponentially

with an increase in the number of measurements and

targets, rendering exhaustive enumeration infeasible

for even moderate values for these quantities. Thus

if the JPDAF is to remain a practical alternative for

solving the multi-target tracking problem methods

are required to reduce the number of hypotheses to

a feasible level.

Gating [16] is probably one of the most

straightforward and effective methods to achieve

this reduction. For each target a validation region is

constructed from the available information, and only

measurements that fall within the target validation

region are considered as possible candidates to be

associated with the particular target. This procedure

is graphically illustrated in Fig. 2.
We now present a gating procedure that can

be applied within the context of the MC-JPDAF.

The Monte Carlo approximation of the predictive

likelihood in (31) can be written as

pk(y j y1: t¡1)¼
NX

n=1

®(n)k N (y j ŷ
(n)
k ,§y) (41)

where ŷk = g(xk,po) is the mapping of the kth target
state into the measurement space, as illustrated

in Example 2. This Gaussian mixture can be

straightforwardly approximated by a single Gaussian

with mean and covariance given by

¹ŷk =

NX

n=1

®(n)k g(x
(n)
k ,po)

(42)

§ŷk =§y+

NX

n=1

®(n)k [g(x
(n)
k ,po)¡¹ŷk ][g(x

(n)
k ,po)¡¹ŷk ]

T:

Using these statistics a set of validated measurements

for the kth target can be obtained as

Yk = fyj : d
2
k (yj)· "g (43)

TABLE I

Viable Joint Associations for Configuration in Fig. 2

r̃1 r̃2 r̃3

0 0 0

0 0 3

2 0 0

2 0 3

3 0 0

where d2k (yj) is the squared distance based on the
measurement innovations, given by

d2k (yj) = (yj ¡¹ŷk )
T§¡1

ŷk
(yj ¡¹ŷk ) (44)

and " is a parameter determining the size of the
validation region. The validation region is an ellipsoid
that contains a given probability mass under the
Gaussian assumption. The value of the parameter
" is related to the specified value of the probability
mass to be included in the validation region. It can
be obtained using the fact that d2k is approximately
chi-squared distributed with number of degrees of
freedom equal to the dimension of yj . The set of valid
target to measurement associations for the kth target
follows straightforwardly as

r̃k 2 R̃k = fj : d
2
k (yj)· "g[ f0g: (45)

Note that we always allow each of the targets to be
undetected to take account of the possibility that any
or all of the measurements within the target validation
region may be due to clutter. As an example the valid
association sets for the configuration in Fig. 2 are

R̃1 = f0,2,3g, R̃2 = f0g and R̃3 = f0,3g. The set of

viable joint associations ¤̃ can now be constructed by
enumerating all the valid combinations of the elements

in the marginal sets R̃k, k = 1 : : :K. The number of
hypotheses obtained in this manner will typically be
substantially smaller than the number obtained by an
exhaustive enumeration. To complete our example the
set of viable joint associations for the configuration in
Fig. 2 is enumerated in Table I. There are only 5 such
joint associations, whereas an exhaustive enumeration
would have resulted in 34 joint associations, almost an
order of magnitude more.

REMARK 1 The validation region for the kth target
is given by Vk = fy : d

2
k (y)· "g. The probability

that a target measurement falls inside the validation
region PG can be obtained by integrating the predictive
likelihood over the validation region. This integration
is intractable, but a Monte Carlo approximation
follows as

PG =

Z

Vk

pk(y j y1: t¡1)dy¼
NX

n=1

®(n)k

Z

Vk

N (y j ŷ(n)k ,§y)dy:

(46)
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The validation region is generally not aligned with
the likelihood covariance, so that the Gaussian
integral above also becomes intractable. However, a
Monte Carlo approximation can be straightforwardly
obtained by generating samples from the Gaussian,
and computing the proportion of the samples that fall
inside the validation region, i.e.,

Z

Vk

N (y j ŷ(n)k ,§y)dy¼ L
¡1

LX

l=1

IVk
(y(l)+ ŷ(n)k ),

fy(l)gLl=1 »N (0,§y)

(47)

where IA(¢) denotes the indicator function for the set
A. Note that since the likelihood covariance is fixed
only a single set of samples is required to compute
the Gaussian integrals for all the terms in (46).
Subsequent to gating we need to replace the target
detection probability PD in the association prior with
PDPG, and restrict the predictive likelihood in (36) to
the validation region, i.e., normalise it with PG. In all
our experiments we found that PG was either unity, or
very close to it, so we ignored it, without detrimental
effects to the results.

V. MULTI-TARGET PARTICLE FILTERS

The JPDAF, even in its general form, suffers from
a number of shortcomings. It is only an approximate
method in that a number of independence assumptions
are made to perform both the filtering operations
and the computation of the association probabilities.
Furthermore, any practical implementation requires a
gating procedure to keep the number of association
hypotheses to a feasible level. In this section we
propose particle filtering strategies to solve the
multi-target tracking problem. The first strategy
samples the individual targets sequentially by
utilising a factorisation of the importance weights.
We refer to this algorithm as the SSPF. The second
strategy assumes the associations to be independent
over the individual targets. This is similar to the
approximation made in the PMHT, and implies
that measurements can be assigned to more than
one target. This assumption effectively removes all
dependencies between the individual targets, leading
to an efficient component-wise sampling strategy to
construct new particles. We refer to this approach
as the Independent partition particle filter (IPPF).
As opposed to the JPDAF, neither approach requires
a gating procedure, but captures the notion of a
soft-gating of the measurements by an efficiently
designed proposal distribution.
The particle filtering algorithms differ from the

MC-JPDAF in the manner in which they deal with
the data association uncertainty and their strategy to
combat the curse of dimensionality. The MC-JPDAF
takes care of the association uncertainty by combining

all of the feasible association hypotheses according
to their corresponding posterior probabilities, which
are in turn computed using the Monte Carlo samples.
On the other hand, the particle filtering strategies
augment the multi-target state with the unknown
association hypothesis. The association uncertainty
is then represented by Monte Carlo samples that are
generated from an efficient proposal distribution based
on the notion of a soft-gating of the measurements.
The MC-JPDAF effectively avoids the curse of
dimensionality by maintaining the marginal filtering
distributions for each of the targets. The particle
filtering strategies, on the other hand, exploit a
factorisation of the importance weights to decompose
the difficult joint estimation problem into a number
of easier estimation problems, each defined in the
state-space for a single target.
In what follows we first outline the standard

particle filter architecture, adapted for multi-target
tracking in Section VA. This strategy suffers greatly
from the curse of dimensionality. Sections VB and VC
then formulate the details of the SSPF and the IPPF,
respectively, as alternatives to the standard particle
filter for more efficient multi-target tracking.

A. Standard Particle Filter

Direct estimation of the filtering distribution of
the joint target state p(xt j y1: t), with xt = (x1,t : : :xK,t),
is difficult due to the unknown associations. To
overcome this difficulty we augment the joint target
state with the unknown associations, and attempt to

estimate the joint filtering distribution p(xt,
˜̧
t j y1: t)

recursively through time using particle techniques.
For the purpose of the particle filtering strategies
introduced in the following sections we choose to
work with the target to measurement associations.
Using Bayes’ rule the joint filtering distribution can
be expressed as

p(xt,
˜̧
t j y1: t)

/ p( ˜̧ t)p(yt j xt,
˜̧
t)

Z
p(xt j xt¡1)

£
X

˜̧
t¡1

p(xt¡1,
˜̧
t¡1 j y1: t¡1)dxt¡1

= p( ˜̧ t)p(yt j xt,
˜̧
t)

Z
p(xt j xt¡1)p(xt¡1 j y1: t¡1)dxt¡1

(48)

where p( ˜̧ t) is the target to measurement association

prior in (22), p(yt j xt,
˜̧
t) is the conditional likelihood

in (13), and p(xt j xt¡1) is the joint state dynamics
in (4). As for the standard particle filter, assume

that a set of samples fw(n)t¡1,x
(n)
t¡1,

˜̧ (n)
t¡1g

N
n=1 is

available, approximately distributed according to
the filtering distribution at the previous time step
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p(xt¡1,
˜̧
t¡1 j y1: t¡1). The samples for the joint

state alone fw(n)t¡1,x
(n)
t¡1g

N
n=1 are then approximately

distributed according to the marginal filtering
distribution at the previous time step p(xt¡1 j y1: t¡1).
These samples are sufficient to obtain a Monte Carlo
approximation of the integral in (48), so that old
samples for the associations can be discarded. This
is due to the fact that the association hypotheses
are assumed to be temporally independent. At
the current time step new multi-target states and
association hypotheses are jointly proposed from some
appropriately defined proposal distribution, i.e.,

( ˜̧ (n)t ,x
(n)
t )» q(

˜̧
t,xt j x

(n)
t¡1,yt), n= 1 : : :N (49)

where we define the joint proposal so that it factorises
as

q( ˜̧ t,xt j xt¡1,yt) = q(
˜̧
t j xt,yt)q(xt j xt¡1,yt): (50)

Note that the proposal for the association hypothesis
depends only on information at the current time step.
It is straightforward to show that setting the new
importance weights to

w(n)t / w(n)t¡1
p( ˜̧ (n)t )p(yt j x

(n)
t ,
˜̧ (n)
t )p(x

(n)
t j x(n)t¡1)

q( ˜̧ (n)t j x(n)t ,yt)q(x
(n)
t j x(n)t¡1,yt)

,

NX

n=1

w(n)t = 1

(51)

leads to the sample set fw(n)t ,x
(n)
t ,
˜̧ (n)
t g

N
n=1 being

approximately distributed according to the joint
filtering distribution at the current time step

p(xt,
˜̧
t j y1: t).

However, such a straightforward implementation
of the particle filter suffers greatly from the curse of
dimensionality. As the number of targets increases
an exponentially increasing number of particles is
required to maintain the same estimation accuracy. In
practice, after the proposal step, it commonly occurs
that the resulting joint particles have good estimates
for some target states, and bad estimates for other
target states. In the computation of the importance
weights, however, the entire particle is penalised for
the component targets with bad estimates, so that even
components with good estimates are destroyed during
the resampling stage. This leads to a rapid depletion
of the Monte Carlo representation. The following two
sections develop particle filtering strategies to combat
this problem.

B. Sequential Sampling Particle Filter

If the association hypothesis were known the
filtering distribution would factorise completely
over the individual targets. Each of the targets could
then be treated independently, thus defeating the
curse of dimensionality. For an unknown association
hypothesis a complete factorisation of the filtering
distribution is not possible. It is, however, possible to

construct a proposal for the associations that factorises
sequentially over the individual target associations.
This facilitates a strategy where the targets and their
associations can be sampled sequentially, conditionally
on each other, in much the same way as the standard
particle filter samples states over time. We first
describe the architecture for such a particle filter,
which we term the SSPF, in Section VB1, before
presenting the details for the association proposal in
Section VB2.

1) SSPF Architecture: As was the case for the
MC-JPDAF we assume the proposal for the joint
target to factorise over the individual targets, i.e.,

q(xt j xt¡1,yt) =
KY

k=1

qk(xk,t j xk,t¡1,yt): (52)

Specific forms for the state proposal for the individual
targets are presented in Section VI. In turn we assume
the proposal for the association hypothesis to factorise
over the individual observers, i.e.,

q( ˜̧ t j xt,yt) =
NoY

i=1

q( ˜̧ it j xt,y
i
t): (53)

For each individual observer we define the proposal in
terms of the target to measurement association vector,

i.e., q( ˜̧ it j xt,y
i
t) = q(r̃

i
t j xt,y

i
t), with the proposals

for the number of clutter measurements M i
C and

target detections M i
T being implicit. Thus once the

association vector has been generated from the
proposal, the number of clutter measurements and
target detections are deterministically calculated.
However, we define the proposal for the association
vector such that the resulting number of clutter
measurements and target detections approximately
follow the corresponding prior models in (19). For
the time being we assume that the proposal for
the association vector takes a form that factorises
sequentially over the individual target associations,
i.e.,

q(r̃it j xt,y
i
t) =

KY

k=1

q(r̃ik,t j r̃
i
1:k¡1,t,xk,t,y

i
t): (54)

Note that the sequential factorisation can be
performed over any permutation of the individual
target associations. In practice we choose the order
randomly, as discussed below. However, for notational
clarity we retain the form above in the remainder
of the discussion. We delay the development of the
proposal for the individual target associations in the
factorisation above until Section VB2, and turn now to
the problem of computing the importance weights.
Substituting the expressions for the conditional
likelihood and joint state dynamics in (13) and (4),
respectively, the factorised form for the association
prior in (22), and the factorised forms for the state and
association proposals in (52) and (53), respectively,
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into (51) leads to an expression for the importance
weight given by

wt / wt¡1

"
NoY

i=1

(Vi)¡M
i
Cp(M i

C)

#
¢
KY

k=1

wk,t (55)

where the weight for the kth target is given by

wk,t /
pk(xk,t j xk,t¡1)

qk(xk,t j xk,t¡1,yt)
¢
NoY

i=1

pi(yi
r̃i
k,t
,t
j xk,t)p(r̃

i
k,t j r̃

i
1:k¡1,t)

q(r̃ik,t j r̃
i
1:k¡1,t,xk,t,y

i
t)

:

(56)

Note that the weight for the kth target wk,t depends
on those for the targets earlier in the sequence only
through the associations. This factorisation of the
importance weight suggests a sampling procedure
where the joint target state and association vector
are constructed in a sequential fashion in much the
same way as the standard particle filter samples states
over time. The importance weight for the particle can
be updated cumulatively during this construction,
facilitating resampling steps should the variance of the
cumulative weights become too high (i.e., the Monte
Carlo representation becomes degenerate). Because
of the resampling procedures the target sampled
first in the sequence will have the most depleted
representation, with the diversity increasing towards
the target sampled last in the sequence. To eliminate
this problem the procedure can be repeated a number
of times for different orderings of the targets, with
the final Monte Carlo representation obtained by
combining the samples obtained from the individual
runs.
The SSPF algorithm is summarised below. For

the sake of clarity the summary is given for a single
forward run of the algorithm. In practice the forward
run should be repeated a number of times for different
random permutations of the target ordering. The final
result can then be obtained by treating the resulting
discrete distributions as components of a mixture
distribution, and sampling the required number
of samples from this mixture. Assuming that the
sample set fw(n)t¡1,x

(n)
t¡1g

N
n¡1 is approximately distributed

according to the marginal filtering distribution at the
previous time step p(xt¡1 j y1: t¡1), a single forward
run of the SSPF algorithm proceeds as follows at the
current time step.

ALGORITHM 2 SSPF Forward Run
² For n= 1 : : :N, initialise the cumulative weights

®(n)0,t = w
(n)
t¡1.

² For k = 1 : : :K,
– For n= 1 : : :N, generate new samples for the

target states x(n)k,t » qk(xk,t j x
(n)
k,t¡1,yt).

– For i= 1 : : :No, n= 1 : : :N, generate samples

for the target to measurement associations r̃i(n)k,t »

q(r̃ik,t j r̃
i(n)
1:k¡1,t,x

(n)
k,t ,y

i
t).

– For n= 1 : : :N, update and normalise the
cumulative weights

®(n)k,t / ®
(n)
k¡1,t

pk(x
(n)
k,t j x

(n)
k,t¡1)

qk(x
(n)
k,t j x

(n)
k,t¡1,yt)

¢

NoY

i=1

pi(yi
r̃i(n)
k,t
,t
j x(n)k,t )p(r̃

i(n)
k,t j r̃

i(n)
1:k¡1,t)

q(r̃i(n)k,t j r̃
i(n)
1:k¡1,t,x

(n)
k,t ,y

i
t)

,

NX

n=1

®(n)k,t = 1:

(57)

– If resampling is required then for n=
1 : : :N, sample an index m(n)» f®(l)k,tg

N
l=1 and replace

f®(n)k,t ,x
(n)
1:k,t,fr̃

i(n)
1:k,tg

No
i=1gÃ fN¡1,xm(n)1:k,t,fr̃

im(n)
1:k,t g

No
i=1g.

² For n= 1 : : :N, compute and normalise the
particle weights

w(n)t / ®(n)K,t

"
NoY

i=1

(Vi)¡M
i(n)
C p(M i(n)

C )

#
,

NX

n=1

w(n)t = 1:

(58)

² If resampling is required then for n= 1 : : :N,
sample an index m(n)» fw(l)t g

N
l=1 and replace

fw(n)t ,x
(n)
t ,
˜̧ (n)
t gÃ fN¡1,xm(n)t , ˜̧m(n)t g.

Note that in the above M i(n)
C is deterministically

determined once the association vector r̃i(n)t has been

sampled. The resulting sample set fw(n)t ,x
(n)
t ,
˜̧ (n)
t g

N
n=1

is approximately distributed according to the
joint filtering distribution at the current time step

p(xt,
˜̧
t j y1: t). Since the forward run has to be repeated

a number of times at each time step computational
savings can be achieved by performing each forward
run on a reduced particle set. This reduced set can be
obtained by resampling with replacement from the
input particle set.
2) Association Proposal: In this section we

develop an efficient proposal for the target to
measurement associations, and show how to sample
from it. The proposal, which is similar in spirit to
the one developed in [36], is based on the notion
of a soft-gating of the measurements. The general
form of the proposal has already been alluded to in
the previous section where we discussed the SSPF
architecture. Recall from (53) that it depends only
on information available at the current time step,
and that it factorises over the individual observers.
For notational clarity we thus suppress the time
and observer indices here, and focus only on the
proposal for a single observer, with those for the other
observers following in a similar fashion. Recall also
from the previous section that the proposal is defined
in terms of the target to measurement association
vector, with the proposals for the number of clutter
measurements and target detections being implicit. As
discussed in the previous section the proposal for the
association vector is assumed to take the following
factorised form

q(r̃ j x,y) =
KY

k=1

q(r̃k j r̃1:k¡1,xk,y): (59)
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Recall from the discussion in the previous section
that the factorisation can be performed over any
permutation of the target ordering.
The components of the association vector are

sampled sequentially conditional on each other. The
proposal for the kth component is conditional on all
the components sampled earlier in the sequence. We
make use of this property to ensure that measurements
associated with targets earlier in the sequence are not
considered as candidates to be associated with the
current target. In this way the algorithm is guaranteed
to generate only valid association hypotheses. The
probability of a particular target to measurement
association should be high for those measurements
close to the target, and should diminish as the distance
between the measurement and target increases. For
targets with no measurements in their immediate
vicinity the probability of being undetected should
be significant. These requirements can be achieved by
using Bayes’ rule to define the proposal for the kth
component of the association vector as

q(r̃k = j j r̃1:k¡1,xk,y)

=
q(y j r̃k = j,xk)q(r̃k = j j r̃1:k¡1,xk)PM
l=0 q(y j r̃k = l,xk)q(r̃k = l j r̃1:k¡1,xk)

:

(60)

We assume the data component of the proposal to
factorise over the individual measurements, with the
unassigned measurements following a uniform clutter
model, and the assigned measurement to be generated
by the relevant likelihood model, i.e.,

q(y j r̃k = j,xk) =

½
V¡M if j = 0

V¡(M¡1)pT(yj j xk) if j 2 f1 : : :Mg:

(61)

We further set the prior component of the proposal
to be equal to the factorised form of the target to
measurement association prior in (23), i.e.,

qj = q(r̃k = j j r̃1:k¡1,xk) = p(r̃k = j j r̃1:k¡1): (62)

Thus each target has a non-zero probability of being
undetected, and previously assigned measurements
are prevented from being considered as candidates for
association to the current target. With these definitions
for the data and prior components the proposal for the
kth component of the association vector can finally be
expressed as

q(r̃k = j j r̃1:k¡1,xk,y)

=

8
>><
>>:

q0V
¡1

q0V
¡1+

PM

l=1
qlpT(yl j xk)

if j = 0

qjpT(yj j xk)

q0V
¡1+

PM

l=1
qlpT(yl j xk)

if j 2 f1 : : :Mg:

(63)

Since this distribution is discrete it can easily be
sampled from using standard techniques. Generating
a sample for the entire association vector can be
achieved by sequentially sampling the individual
components conditional on each other from r̃1 to r̃K .

C. Independent Partition Particle Filter

Posterior dependencies between the targets exist
due to the unknown association hypothesis. These
dependencies can be removed by assuming the
associations to be independent over the individual
targets. This simplification is similar to the one
made by the PMHT, and implies that any particular
measurement can potentially be assigned to more than
one target. As we illustrate below such an assumption
facilitates an efficient component-wise sampling
strategy to construct new joint particles. We refer to
this algorithm as the IPPF. A similar strategy has been
proposed in a somewhat different context before in
[40].
More precisely, the PMHT simplification can be

achieved by redefining the association prior in (23) as

p(r̃k = j j r̃1:k¡1) = p(r̃k = j)/

8
<
:
1¡PD if j = 0

PD
K

otherwise

(64)

where we have suppressed the time and observer
indices for notational clarity. A prior of this form
further implies that the proposals for the individual
target associations in (63) also become independent,
i.e., q(r̃k j r̃1:k¡1,xk,y) = q(r̃k j xk,y). Thus the product
of the individual target weights in (56) now capture an
independent factorisation over both the targets and the
associations.
This factorisation immediately suggests an efficient

component-wise sampling strategy to construct new
particles. A new joint particle can be constructed
by sampling the individual target components from
the pool of particles, after the state prediction step,
according to the individual target component weights.
Thus the joint state-space is effectively partitioned so
that the algorithm does not suffer from the curse of
dimensionality. To ensure a properly weighted sample
the final particle weight should be set to

wt / wt¡1

"
NoY

i=1

(Vi)¡M
i
Cp(M i

C)

#
: (65)

A further resampling step on the joint particle can be
included should these weights become degenerate.
The IPPF algorithm is summarised below.

Assuming that the sample set fw(n)t¡1,x
(n)
t¡1g

N
n¡1 is

approximately distributed according to the marginal
filtering distribution at the previous time step
p(xt¡1 j y1: t¡1), the IPPF algorithm proceeds as follows
at the current time step.
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ALGORITHM 3 IPPF
² For k = 1 : : :K, n= 1 : : :N, generate new samples

for the target states x(n)k,t » qk(xk,t j x
(n)
k,t¡1,yt).

² For k = 1 : : :K, n= 1 : : :N, i= 1 : : :No, generate
samples for the target to measurement associations
r̃i(n)k,t » q(r̃

i
k,t j x

(n)
k,t ,y

i
t).

² For k = 1 : : :K, n= 1 : : :N, compute and
normalise the individual target weights

w(n)k,t /
pk(x

(n)
k,t j x

(n)
k,t¡1)

qk(x
(n)
k,t j x

(n)
k,t¡1,yt)

¢
NoY

i=1

pi(yi
r̃i(n)
k,t
,t
j x(n)k,t )p(r̃

i(n)
k,t )

q(r̃i(n)k,t j x
(n)
k,t ,y

i
t)

(66)NX

n=1

w(n)k,t = 1:

² For k = 1 : : :K, n= 1 : : :N, sample an index
mk(n)» fw

(l)
k,tg

N
l=1 and replace fx

(n)
k,t ,fr̃

i(n)
k,t g

No
i=1gÃ

fxmk(n)k,t ,fr̃imk(n)k,t gNoi=1g.
² For n= 1 : : :N, compute and normalise the

particle weights

w(n)t / w(n)t¡1

"
NoY

i=1

(Vi)¡M
i(n)
C p(M i(n)

C )

#
,

NX

n=1

w(n)t = 1:

(67)

² If resampling is required then for n= 1 : : :N,
sample an index m(n)» fw(l)t g

N
l=1 and replace

fw(n)t ,x
(n)
t ,
˜̧ (n)
t gÃ fN¡1,xm(n)t , ˜̧m(n)t g.

Note again that M i(n)
C is deterministically

determined once the association vector r̃i(n)t has been

sampled. The resulting sample set fw(n)t ,x
(n)
t ,
˜̧ (n)
t g

N
n=1

is approximately distributed according to the
joint filtering distribution at the current time step

p(xt,
˜̧
t j y1: t), under the PMHT assumption.

VI. TARGET STATE PROPOSAL

Both the MC-JPDAF in Section IV and the
multi-target particle filtering algorithms in Section
V require the specification of a proposal distribution
for the individual target states qk(xk,t j xk,t¡1,yt). This
section presents and discusses some choices for this
distribution.
In the original formulation of Monte Carlo

techniques for sequential estimation in [42] and [43]
the state proposal distribution was taken to be the
target dynamics, i.e.,

qk(xk,t j xk,t¡1,yt) = pk(xk,t j xk,t¡1): (68)

This is also the choice made in the first modern
variant of the particle filter, known as the bootstrap
filter [8]. Subsequently many particle filter
practitioners have adopted this choice, since it
leads to an intuitively simple strategy where new
particles are predicted from the target dynamics,
and the importance weights are proportional to the
corresponding particle likelihoods. It can, however,

lead to inefficient algorithms, since the state-space is
explored without any knowledge of the observations.
A standard approach to address this shortcoming
is to increase the state noise for the proposal. This,
however, leads to estimated trajectories that are
less smooth than those predicted by the true target
dynamics.
In [10] and [44] it is shown that the proposal

distribution that is optimal in the sense that it
minimises the variance of the importance weights is
of the form

qk(xk,t j xk,t¡1,yt)

= pk(xk,t j xk,t¡1,yt)/ p(yt j xk,t)pk(xk,t j xk,t¡1)

(69)

where p(yt j xk,t) is the likelihood conditional on the
target state only. For models with nonlinearities,
non-Gaussian noise, and data association uncertainty
it is generally not possible to obtain a closed-form
expression for the optimal proposal distribution.
As a compromise between the prior proposal and

the optimal proposal we define a mixture proposal of
the form

qk(xk,t j xk,t¡1,yt)

= °Dpk(xk,t j xk,t¡1) + (1¡ °
D)
X

(i,j)2Pk

°Mi,jq
i
k(xk,t j xk,t¡1,y

i
j,t):

(70)

A proportion of °D, 0· °D · 1, of the new particles
is sampled from the target dynamics. The remainder
of the new particles is sampled from a mixture
with each component accounting for one particular
measurement. The set Pk contains the observer and
measurement index pairs of those measurements
deemed to have an impact on the state of the kth
target. It can be found using a gating procedure
similar to the one described in Section IVC, but using
the particles approximating the filtering distribution
at the previous time step. The mixture weights should
sum to one, i.e.,

P
(i,j)2Pk

°Mi,j = 1, and can be set to
be inversely proportional to the distance between the
transformed target state and the measurement under
consideration. However, we normally set these weights
to be uniform. We assume each individual mixture
component to be of the form

qik(xk,t j xk,t¡1,y
i
j,t)/ p

i
T(y

i
j,t j xk,t)pk(xk,t j xk,t¡1)

(71)

where piT(y
i
j,t j xk,t) is the target likelihood at the ith

observer. The component proposal is thus equal to
the optimal proposal for the particular measurement,
i.e., for the assignment k = rij,t. However, even though
each component concerns only a single measurement
it is still not possible to obtain a closed-form result
in general. In these cases we aim to find the best
approximation to the optimal proposal within a given
parametric class of distributions, such as the Gaussian
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or Student-t distributions (see e.g. [10] for more detail
on approximation techniques). This procedure is
further exemplified in the example below.

EXAMPLE 3 This example follows on from Examples
1 and 2, and shows how to construct a Gaussian
approximation to the optimal proposal in (71) by
linearising the observation model (see also [10]). In
what follows we will suppress the time t, target k,
observer i, and measurement j indices for notational
clarity, and denote the old state by x0. Using the
notation of Examples 1 and 2 the dynamic and
likelihood models can be written as

p(x j x0) =N (x jAx0,§)

pT(y j x) =N (y j g(x,po),§y):
(72)

Performing a first-order Taylor series expansion of the
nonlinear mapping g around the point x? leads to a
Gaussian approximation of the optimal proposal of the
form

q(x j x0,y) =N (x j ¹?,§?) (73)

with
§? = (§¡1+ J?T§¡1y J

?)¡1

¹? =§?(§¡1Ax0+ J?T§¡1y (y¡ c
?))

c? = g(x?,po)¡ J
?x?:

(74)

In the above J? is the Jacobian of the nonlinear
mapping g evaluated at the point x?, and is given by

J? = R̂?¡1

"
(x?¡ xo) 0 (y?¡ yo) 0

¡R̂?¡1(y?¡ yo) 0 R̂?¡1(x?¡ xo) 0

#

(75)

where R̂? = ((x?¡ xo)
2+(y?¡ yo)

2)1=2 is the target
range. The point of expansion is normally taken to
be the deterministic component of the state prediction,
i.e., x? =Ax0.

VII. EXPERIMENTS AND RESULTS

In this section we evaluate and compare the
performance of the proposed multi-target tracking
algorithms on a challenging synthetic tracking
problem. In what follows all location and distance
measures are in metres, all angle measures in radians,
all time measures in seconds, and all velocity
measures in metres per second. We are interested in
tracking slowly manoeuvring targets in the xy plane.
We model each target with the near constant velocity
model of Example 1, with ¾x = ¾y = 5£ 10

¡4 for
all the targets. The discretisation time step for the
model is set to T = 1. We track the targets from two
sensors of the form described in Example 2, with
¾R = 5, ¾µ = 0:05, and Rmax = 150 for both sensors.
The sensors are located at (¡45,¡45) and (45,45),
respectively.

We consider tracking scenarios with K = 3 and
K = 4 targets. For the three target scenario the initial
target positions and velocities are given by (¡50,50),
(¡50,0), (¡50,¡50) and (1:0,¡1:5), (1:0,0:0),
(1:0,0:75), respectively. For the four target scenario
the first three targets are identical to the three target
scenario, with the initial position and velocity of
the fourth target given by (0,50) and (0:0,¡1:5),
respectively. For each scenario we evaluate the
tracking algorithms under three sets of conditions,
with increasing difficulty: an easy setting (PD = 1:0,
¸C = 0:5), a medium setting (PD = 0:8, ¸C = 2:0), and
a difficult setting (PD = 0:5, ¸C = 5:0). The detection
probability PD and the clutter rate ¸C are assumed
to be the same for both sensors. For each setting
we generate L= 100 time steps of artificial data by
simulating directly from the target and sensor models
as specified above.
For each setting we run the algorithms with an

increasing number of particles, i.e., N = 10, 50,
100, 200, 500, 1000, and repeat each experiment 20
times to get a statistical reflection of the behaviour
of the algorithms. We benchmark the performance
of the three multi-target tracking algorithms against
the standard particle filter. Gating is applied in the
MC-JPDAF. All the algorithms are initialised with
Gaussians around the true initial target states. For all
the algorithms the proposal distribution for the state
is taken to be the approximately optimal proposal of
Example 3, with ¾x = ¾y = 5£10

¡2 and the sensor
parameters as before. The standard particle filter uses
the same association proposal as that for the SSPF
defined in Section VB2, with the association proposal
for the IPPF defined in Section VC. The resampling
procedure, where applicable, is invoked as soon as
the effective sample size drops below half the actual
sample size N. For the SSPF three forward runs were
performed at each time step, with the sample size
reduced by half prior to each run. Using the particles
we computed MMSE estimates for the states and their
covariances as

x̂t =

NX

n=1

w(n)t x
(n)
t , §̂t =

NX

n=1

w(n)t (x
(n)
t ¡ x̂t)(x

(n)
t ¡ x̂t)

T:

(76)

Note that for the MC-JPDAF the MMSE estimates are
computed individually for each of the targets using the
appropriate marginal weights.
The root mean squared error (RMSE) statistics are

depicted in Fig. 3. For each setting and a particular
number of particles the graphs show the mean and
the standard deviation of the RMSE over the 20
repetitions of the experiment. The RMSE for a single
experiment was computed as

RMSE=

vuut1

L

LX

t=1

kx̂t¡ x
?
t k
2 (77)
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Fig. 3. RMSE error statistics. RMSE error (in metres) for standard particle filter (circles), SSPF (triangles), IPPF

(squares), and MC-JPDAF (upside-down triangles). Left column is for easy problem (PD = 1:0, ¸C = 0:5), middle column

for medium problem (PD = 0:8, ¸C = 2:0), right column for hard problem (PD = 0:5, ¸C = 5:0). Top row is for K = 3 targets and

bottom row is for K = 4 targets.

Fig. 4. Average execution time statistics. Average execution time (in seconds) per time step for standard particle filter (circles),

SSPF (triangles), IPPF (squares), and MC-JPDAF (upside-down triangles). Left column is for easy problem

(PD = 1:0, ¸C = 0:5), middle column for medium problem (PD = 0:8, ¸C = 2:0), right column for hard problem (PD = 0:5, ¸C = 5:0).

Top row is for K = 3 targets and bottom row is for K = 4 targets.
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Fig. 5. Example trajectories for three targets. True (stars) and estimated (ellipses) trajectories for K = 3 targets

and N = 200 particles. Ellipses indicate the 2-¾ region of corresponding estimate covariances. Left column is for easy problem

(PD = 1:0, ¸C = 0:5), middle column for medium problem (PD = 0:8, ¸C = 2:0), right column for hard problem (PD = 0:5, ¸C = 5:0).

Top row is for standard particle filter, second row for SSPF, third row for IPPF, and bottom row for MC-JPDAF. Dots indicate

observer locations.

where x?t is the true state at time t. As expected the
error generally decreases with an increase in the
number of particles, and appears to converge to a
fixed value. An exception occurs for the IPPF for the
experiments on the easy problem with K = 4 targets.
Due to the PMHT assumption the IPPF was unable to
disambiguate all the targets despite an increase in the
number of particles. This is further exemplified by
the example trajectories in Fig. 6 (third row, first
column).

The standard particle filter, which searches directly
in the joint space, is consistently outperformed by
the other algorithms. This is due to the fact that the
other algorithms all partition the space in some way
or another to reduce the complexity of the search
problem. The performance for the particle filtering
strategies decreases as the problem becomes more
difficult, in that more particles are required to achieve
the same estimation accuracy. Note also that the
relative performance of the IPPF rapidly degrades as
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Fig. 6. Example trajectories for four targets. True (stars) and estimated (ellipses) trajectories for K = 4 targets

and N = 200 particles. Ellipses indicate the 2-¾ region of the corresponding estimate covariances. Left column is for easy problem

(PD = 1:0, ¸C = 0:5), middle column for medium problem (PD = 0:8, ¸C = 2:0), right column for hard problem (PD = 0:5, ¸C = 5:0).

Top row is for standard particle filter, second row for SSPF, third row for IPPF, bottom row for MC-JPDAF. Dots indicate

observer locations.

the problem difficulty increases. For example, for K =
3 targets it performs as well as the MC-JPDAF on
the easy problem, similar to the SSPF on the medium
problem, and just marginally better than the standard
particle filter on the difficult problem. This provides
further evidence that the PMHT assumption required
to obtain the IPPF has an increasingly harmful effect
as the association problem becomes more difficult.
The MC-JPDAF consistently outperforms the

particle filtering strategies. What is even more

remarkable is that it converges for a relatively small
number of samples (between 100 and 200), and its
performance does not appear to degrade significantly
with an increase in the difficulty of the problem or the
number of targets.
The average execution time statistics are depicted

in Fig. 4. These are for a single time step of
nonoptimised Matlab implementations for each of
the algorithms. All the algorithms exhibit the same
exponential trend. However, the slope is reasonably
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Fig. 7. Tracking snapshots. Snapshots of tracking for K = 3 targets and N = 100 particles. Detection probability and clutter rate were

set to PD = 0:85 and ¸C = 1:0, respectively. Left column is for standard particle filter, second column for SSPF, third column for IPPF,

right column for MC-JPDAF. From top to bottom the rows correspond to snapshots taken at t = 1,10,20,35,85,100 in a simulation of

100 time steps. The target locations are indicated by stars, and particle clouds for the individual targets by dots. Line of sight

measurements from the stationary observers are indicated by dotted lines.

small, with the execution time increasing an order
of magnitude for a two order of magnitude increase
in the number of particles. Furthermore, most of the
algorithms achieve an acceptable error performance
while the average execution time per time step is well

within the limits of practically realisable systems.
The SSPF is computationally the most expensive,
with the performance of the other algorithms being
roughly similar. The computational complexity of the
MC-JPDAF increases somewhat relative to the other
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algorithms as the difficulty of the problem increases,
due to the fact that more association hypotheses pass
the gating test.
Some example trajectories for K = 3 and K = 4

targets are shown in Figs. 5 and 6, respectively. In
all cases N = 200 particles were used. As expected
the estimated trajectories become less accurate as
the difficulty of the problem increases. Note that the
estimated target locations are more accurate closer
to the observers. This is especially evident for the
blue target as it passes over the first observer. From
the figure it appears as if the estimate covariances
are smaller for the standard particle filter compared
to those for the other algorithms. This does not
imply that the standard particle filter yields more
accurate estimates. Rather it is indicative of the sample
depletion that occurs due to the global resampling
procedure employed by the standard particle filter.
Note also that both the IPPF and the MC-JPDAF are
not always able to disambiguate all the targets.
The sample depletion problem is further

exemplified by the tracking snapshots in Fig. 7. These
results are for K = 3 targets and N = 100 particles,
with the target detection probability and clutter rate set
to PD = 0:85 and ¸C = 1:0, respectively. The global
resampling procedure leads to a largely depleted
sample representation for the standard particle filter
after as few as 10 time steps. Due to the resulting
inaccuracy in the sample representation track is lost
and never fully recovered. The other particle filtering
strategies are able to maintain richer representations,
allowing them to successfully track all the targets.
The richest representation, however, is achieved by the
MC-JPDAF, for which the sample clouds consistently
reflect the reasonable uncertainty in the problem,
without being adversely affected by the resampling
procedure. Note also here the failure of the IPPF to
disambiguate all the targets (last row, third column).

VIII. CONCLUSIONS

In this paper we developed a number of strategies
for multi-target tracking and data association. The
methods are applicable to general nonlinear and
non-Gaussian models. The first method is the
MC-JPDAF, for which the distributions of interest
are the marginal filtering distributions for each of the
targets. As opposed to the standard JPDAF these are
approximated with particles rather than Gaussians. We
also presented two extensions to the standard particle
filtering methodology for tracking multiple targets.
The SSPF samples the individual targets sequentially
by utilising a factorisation of the importance weights.
The IPPF, on the other hand, further makes the
assumption that the associations are independent
over the individual targets, leading to an efficient
component-wise sampling strategy to construct new
joint particles. The proposed algorithms effectively

combat the curse of dimensionality by partitioning the
state-space, leading to a sequence of easier estimation
problems in each of the resulting subspaces.
The algorithms were evaluated and benchmarked

against the standard particle filter on a challenging
synthetic tracking problem. For all of the proposed
algorithms the tracking accuracy was superior to
that of the standard particle filter, with a comparable
computational cost. The performance of the IPPF
degraded rapidly with an increase in the difficulty of
the association problem, signifying the harmful effect
of the independence assumption under conditions
of a low detection probability and a high clutter
rate. The MC-JPDAF outperformed the particle
filtering strategies under all conditions. It consistently
converged for a relatively small number of particles,
and its performance did not degrade significantly with
an increase in the difficulty of the association problem
or the number of targets.
A number of open questions remain, and various

avenues are available for future research. Two very
pertinent problems are the modification of the
algorithms to deal with an unknown and variable
number of targets, and the development of automatic
initialisation (or detection) procedures. It may also be
possible to improve the performance of the SSPF by
incorporating the temporal smoothing ideas of [45]
and [46]: after sampling the targets sequentially in the
forward direction, a backward smoothing run may be
designed to further refine the sample representations
for the individual targets. The algorithms presented
here can also be applied, with mild modifications, to
the tracking of multi-part or extended objects [36, 47],
or objects whose motion exhibit some degree of
mutual correlation.
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