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Abstract. This paper presents Monte-Carlo Fork Search (MCFS), a
new algorithm that solves Cooperative Path-Finding (CPF) problems
with simultaneity. The background is Monte-Carlo Tree Search (MCTS)
and Nested Monte-Carlo Search (NMCS). Regarding MCTS, the key idea
of MCFS is to build a tree balanced over the whole game tree. To do
so, after a simulation, MCFS stores the whole sequence of actions in the
tree, which enables MCFS to fork new sequences at any depth in the
built tree. This idea fits CPF problems in which the branching factor is
too large for MCTS or A* approaches, and in which congestion may arise
at any distance from the start state. With sufficient time and memory,
Nested MCFS (NMCFS) solves congestion problems in the literature
finding better solutions than the state-of-the-art solutions, and it solves
N-puzzles without hole near-optimally. The algorithm is anytime and
complete. The scalability of the approach is shown for gridsize up to
200× 200 and up to 400 agents.

1 Introduction

Cooperative pathfinding (CPF) addresses the problem of finding paths for a
set of agents, for them to move to their goals. At each timestep, every agent
moves to a neighbouring cell. The set of agents has to find the minimal cost for
reaching its set of goals. The cost is the elapsed time. There are two families of
approaches: the coupled approach and the decoupled approach. In the coupled
approach, the whole set of agents is considered as one. One main bottleneck is
the size of the set of joint actions which is exponential in the number of agents.
In the decoupled approach, each agent is considered individually and the main
obstacle is managing the collisions between the agents.

A* is the prototype of the coupled approach. A* with operator decomposition
(A*+OD) [16] is a speed-up version of A*. ICTS [14] searches a solution in an In-
cremental Cost Tree (ICT). The weakness of the coupled approach is its inability
to solve large problems or including complex coordination between agents. How-
ever, very recently, a new work, TOMPP [21], modeling multi-agent pathfinding
as a network flow, contradicts this statement. Windowed Hierarchical Coopera-
tive A* (WHCA*) [15] illustrates the decoupled approach. Push&Swap (P&S)
[10] solves CPF problems on graphs with at least 2 empty cells. TASS (Tree-
based Agent Swapping Strategy) is designed to solve problems with at most



4 empty cells [7, 6]. These solvers are very fast but they cannot improve their
solution with more computing time.

In this paper we present Monte-Carlo Fork Search (MCFS) and its nested
version Nested Monte-Carlo Fork Search (NMCFS) for CPF. The background
is Monte-Carlo Tree Search (MCTS) [8] and NMCS [4]. MCTS and NMCS have
been applied with success to many planning problems such as Morpion Solitaire
[12]. However, their weakness lies in their inability to deal with the high branch-
ing factor of CPF problems. To solve CPF problems, our goal is to design a new
algorithm that has the strength of MCTS and NMCS, and is not sensitive to the
branching factor. The key idea is to make the built tree cover all the interesting
parts of the game tree in a balanced way.

Like MCTS, MCFS is anytime. It has been compared to TOMPP, TASS,
and Push&Swap on their test problems: specific congestion problems [9, 6], and
N-puzzles without hole problems with simultaneous actions [21]. For scalability,
MCFS has been assessed on grids with size up to 200×200, with obstacles (20%)
and with a number of agents up to 400. Some of the results obtained with the
parallel criterion are manually proved optimal, and the others are conjectured
to be near-optimal. The results are translated into the sequential criterion to be
compared with the numerous work using this criterion, and we show that MCFS
obtains better results on this criterion.

The outline of the paper is the following. First, we give the CPF problem
definition. Secondly, we relate previous work on CPF and on MCTS. Thirdly,
we present the MCFS and NMCFS algorithms. Fourthly, we describe the ex-
periments and the significant results. Fifthly, we discuss the properties of the
algorithm. Finally, we conclude and present future work.

2 CPF problem definition

The CPF literature contains a lot of work. Each work uses its specific criteria
to define the problem, which makes comparisons difficult. In the literature, the
cells are mostly squares used with 4-connectivity or 8-connectivity. Whatever
the grid connectivity, an agent can move on the neighbouring cells or stay, and
respect the two following rules: No two agents can be on the same cell (Rule 0),
No two agents can swap (Rule 1). With 8-connectivity, specialized rules must
define whether two agents may cross diagonally or not, whether an agent can
move diagonally when one obstacle is on its side, or whether it can cross two
obstacles situated on a diagonal. In this paper, we use squares and 4-connectivity
with rule 0 and rule 1 only.

The most important feature is the simultaneity or sequentiality of individ-
ual movements. A lot of work fall in the sequential category. In this work, we
use simultaneous, parallel moves. When the individual actions are executed in
parallel, the agents must respect rule 0: when several agents wish to move to-
wards the same cell, only one of them can actually move to the cell. However,
an agent may move to an occupied cell provided that this cell is freed by its
occupant during the timestep. Therefore, it is worth noting than joint actions



including circular individual actions are possible. For instance, 4 agents situated
on 4 adjacent cells can move circularly.

In the multi-agent context, two targets can be optimized: the sum of indi-
vidual costs (SUM), the maximum of individual costs (MAX). In most work
[16], [14], [15], [10], [7], the optimized target is SUM. However, in this paper,
we optimize MAX, that is to say the global elapsed time. Some work such as
[21] fall into this category. The maximum of individuals costs is also commonly
called makespan. Comparing work optimizing SUM with our work is still possi-
ble provided that we estimate the SUM target by counting the individual actions
of the sequences found.

At each timestep, an agent can either stay on its cell or move to an adjacent
cell provided it respects rule 0 and rule 1. During a timestep, all the agents act
simultaneously. The joint goal is found when all the agents have reached their
individual goals. The problem is to find the minimum number of timesteps to
reach the joint goal. In the following, a position refers to the set of positions of
the agents. A path, a plan, an episode, a simulation refer to the same concept:
a sequence of positions linked two-by-two by a joint action. The goal is the final
position. A hole is an empty cell. A CPF problem may have or not have holes.
Table 1 shows an instance of a CPF problem on a 4 × 4 grid.

Table 1: A 4×4-puzzle problem without hole. The first number in a cell represents the
position of an agent, and the second number its goal. For instance, agent 0 is located
on the lower right cell and its goal is the cell at the top left.

11 0 13 1 14 2 12 3

6 4 15 5 5 6 9 7

10 8 7 9 4 10 1 11

3 12 2 13 8 14 0 15

3 Related work

3.1 Cooperative Path-Finding

The starting point of CPF is centralized A*. A* works optimally on very small
problems with very few agents. To avoid the exponential number of actions in
the number of agents, Standley has proposed Operator Decomposition (OD)
[16]. A*+OD and an admissible heuristic are optimal [16].

ICTS [14] is a two-level search: a global level and a low level. At the global
level, the search proceeds on an Incremental Cost Tree (ICT) in which one node
corresponds to a vector of costs. At depth δ, the sum of the costs of a node
is the optimal cost plus δ. A node is a goal for ICT when there is an effective
combination of individual paths without conflict and with costs corresponding
to the costs of the node.

TOMPP [21], [20] optimizes the global elapsed time. It models a multi-agent
path-finding problem as a network flow and shows the equivalence between the
two models. It uses integer linear programming to solve the network flow problem
and the multi-agent path-finding problem as a consequence. TOMPP is tested



on the N-puzzle without hole, and in many-agents-many-obstacles problems.
TOMPP is time-optimal.

In video games, the optimal methods are not used because they are not
scalable. Adaptations of A* are used instead. Windowed HCA* (WHCA*) de-
composes the whole task into a series of single agent searches and searches m-
steps plans [15]. Sub-optimal methods with some completeness guarantees on
well-specified sub-classes of problems give good results: P&S [10] solves CPF
problems on graphs with at least 2 empty cells. TASS (Tree-based Agent Swap-
ping Strategy) [7] is designed to solve problems with at most 4 empty cells. [9]
and [6] provide interesting test problems. MAPP (Multi-Agent Path Planning)
[19] defines the Slideable class and presents a method complete on this class of
problems.

3.2 MCTS

MCTS is the approach that revolutionized computer go in 2006 with the UCT
method [8] and the Go playing programs Crazy Stone [5] or MoGo [13]. In the
following years, MCTS was also successful in many other games and planning
problems [3]. MCTS iteratively expands a tree starting a the root, and launches
simulations to obtain rewards at the end of the games. An iteration has four
phases: selection, expansion, simulation and propagation. In the selection phase,
MCTS starts at the root of the tree and go down to a leaf node by using the UCB
rule [1]. When reaching a node not fully expanded, MCTS chooses the next state
with its simulation policy, and adds the corresponding node into the tree. Then
MCTS starts the simulation phase. At the end of the simulation, the reward is
obtained and propagated into the nodes browsed by the selection phase.

4 MCFS

This section presents the rationale of MCFS compared to MCTS, the algorithm
in its nested version or not, how the basic simulations are performed, and the
necessary pre and post-processing. Overall, since congestion may arise at any
point of a solution plan, the key idea of MCFS is to explore the game tree in a
balanced manner by:

– making use of the whole simulation to build the tree,
– forking new paths at appropriate nodes of the built tree,
– not entering into the curse of the branching factor.

4.1 Similarities and differences with MCTS

Like MCTS, MCFS iteratively builds a tree with four stages: selection, expan-
sion, simulation and propagation. The simulation stage and the propagation
stage in MCFS remain identical to the corresponding stages in MCTS. Like
MCTS, MCFS uses the optimism faced to uncertainty principle by using the



UCB rule [1]. The difference between MCTS and MCFS mainly lies in the man-
ner in which the game tree is explored, the start of the next simulation is selected,
and the built tree is expanded at each iteration. MCTS explores the game tree
by respecting a width principle: at a node, MCTS prefers to explore an unex-
plored action rather than an already explored child node. Consequently, MCTS
can be stuck near the root if the branching factor is high. The tree built by
MCTS browses the upper part of the game tree only. Moreover, the next simu-
lation starts from a leaf node of the built tree. Furthermore, in standard MCTS,
MCTS adds one node after each simulation.

MCFS explores the game tree in a depth-first manner. First, after each it-
eration, all the states encountered during the simulation become nodes added
into the MCFS tree. Secondly, at the beginning of an iteration, with the help of
the UCB rule, MCFS selects the best node to fork among all the nodes of the
built tree. This is very different from the MCTS selection stage that starts from
the root node and iteratively chooses a child node with the UCB rule until it
reaches a node with an unexplored action. In MCFS, the next simulation starts
from this selected node which is an interior node of the built tree. In MCFS, the
built tree has only one leaf node: the goal node.

12 345

MCFS MCTS

Fig. 1: The tree built by MCFS (left) and MCTS (right) within the game tree repre-
sented by a triangle. The root is at the top. The goal is the bottom line. Each action
is a small straight line. The circles represent nodes whith a fork. The numbers are the
iteration numbers.

Figure 1 shows an overview of how the trees built by MCFS and MCTS fill the
whole game tree. As iterations are going on, the MCTS tree is deepening, and the
MCFS tree is widening. At iteration 1, a length-12 sequence is found. The second
iteration selects the root as a starting node, and a length-15 sequence is found.
Iteration 3 selects a node situated at depth 2 on the current best sequence, and
finds a length-15 sub-sequence giving a length-17 sequence. Iteration 4 selects a
node at depth 4 and finds a sub-sequence of length 5 giving a length-9 sequence,
the new current best. Iteration 5, selects a node at depth 6 and finds a sub-
sequence of length 2 giving a sequence of length 8, the new current best. And
so on until the iteration budget is exhausted. The idea to allow MCFS to fork
sub-sequences anywhere in the game tree is respected.



int NMCFS(a, b, bestSeq, lev)1

begin2

if lev == 0 then3

return sample(a, b, actualSeq)4

end5

n = 1 ; lmin = +∞ ; actualSeq ; Node root(a)6

while n ≤ it do7

Node nd = root.selectNode() ; pos = nd.positions8

l = NMCFS(pos, b, actualSeq, lev − 1)9

if l + nd.depth < lmin then10

lmin = l + nd.depth ; bestSeq = seq(root(a), nd) + actualSeq11

end12

nd.backUp(l) ; nd.append(actualSeq, l, b) ; n = n + 113

end14

return lmin15

end16 Algorithm 1: NMCFS

4.2 MCFS and NMCFS Algorithms

Since the pseudo-code of NMCFS is very similar to that of MCFS, Algorithm
1 directly shows the pseudo-code for NMCFS. (The MCFS pseudo-code corre-
sponds to the NMCFS pseudo-code with lev = 1). NMCFS takes the starting
position (a), the goal position (b) and the nesting level (lev) as inputs. NMCFS
returns the length of the best plan found (bestSeq) (line 1). If the level is zero,
NMCFS calls sample the basic simulation function. n is the number of simula-
tions performed so far. lmin contains the current best length. actualSeq is the
sequence of positions played at each iteration. root is the root node initialized
with the starting position a. NMCFS is a while loop (lines 7-14). it is the num-
ber of iterations to perform. During an iteration, the best node of the tree is
selected (line 8) with equation 1. NMCFS is called, starting on this node with
the nesting level minus one (line 9). The length of the simulation plus the depth
of the node in the tree is compared to lmin (line 10). If the comparaison holds,
lmin and bestSeq are updated (line 11). The nodes between the selected node
and the root are updated with l, and the tree is expanded by adding actualSeq
to it (backUp and append line 13).

In equation 1, it is essential to notice that argmin is applied over the whole
tree, whis is very different from the MCTS selection. nd.lmin + nd.depth is
used as an exploitation term to focus the search near the current best sequence.
Concerning the exploration term, C is a parameter set experimentally. var is the
variance over the lengths of the sequences going through the node. It enables
MCFS to prefer nodes with high variance. nForks is the number of times the
node has been selected so far. log(n) makes it possible to forget no node for n
sufficiently large.



int sample(p, b, seq) begin1

l = 02

while ((p 6= b) and (l < ls)) do3

action = pseudoRandomChoice(b)4

p = play(p, action) ; seq[l] = p ; l = l + 15

end6

return l7

end8

Algorithm 2: Sample

nd = arg min
builttree

(lmin+ depth− C

√
var log(n)

1 + nForks
) (1)

4.3 Basic simulations

Algorithm 2 shows function sample that executes a basic simulation starting on
position p. seq contains the actual sequence played out. l is the current length
of the simulation. It executes a loop while the goal is not reached and l does not
exceed ls the maximal length of sequences. The joint action is determined by
pseudoRandomChoice. It returns a joint action according to a pseudo-random
policy. pseudoRandomChoice does not enumerate all the joint actions, which
could be tricky when the number of agents is large. Instead, each agent says
which cell it wants to move on: its wish. If all the wishes are compatible with
Rule 0 and Rule 1, then the joint action is valid and returned. When two wishes
are in conflict, the conflict is solved by prioritizing one agent over the other
at random. When all the conflicts are solved, the wishes become the actual
elementary actions, and the joint action is returned. If some conflicts cannot
be solved after a given number of tries, then the agents relax their wish, and
the wishes are formulated again. Without relaxing the wishes, the joint action
contains optimal individual actions only. With relaxing, the joint action may
also contain non optimal elementary actions. The function play transforms the
position according to the effects of the joint action.

4.4 Pre and Post processing

Before launching NMCFS, all the distances between two cells assuming the ob-
stacles and no agent are computed, and stored in a table to be used in the
simulations. After completing a best simulation, NMCFS counts the number of
elementary actions used.

5 Experiments

5.1 Set of problems

To assess our approach, we have taken three kinds of problems. First, we ad-
dressed the congestion problems of TASS and Push&Swap. [6] contains six in-



teresting problems which we named from 515 up to 520. Problem 5xy refers to
the problem defined by figure 5.xy pages 58–61 in [6]. For instance, 515 contains
10 agents with 19 cells and 520 contains 4 agents with 8 cells. [10] contains eight
specific problems: Tree, Corners, Tunnel, String, Loopchain, Connector, Rota-
tion, and Stacks. The first six problems contain between 3 and 7 agents on small
graphs with at most 18 nodes. The last two problems have 16 agents with 24 or
25 nodes.

Secondly, we addressed some N-puzzle problems with one hole (N = 8, 15, 24)
or no hole (N = 9, 16, 25). The N-puzzle problem with one hole in which SUM
is optimized is known to be NP-hard [11]. The N-puzzle problem without hole
in which MAX is optimized is very representative of the CPF class of problems.

Thirdly, we addressed medium-sized-to-large-grid-many-agents-with-obstacles
problems with a low level of congestion. [16] and [17] contain two such exam-
ples which we call s10 and s11. In video games, the problems encountered may
have one thousand agents or more [19]. Furthermore, they may have large grids,
like 512× 512 in reference benchmarks [18]. Since our pre-processing stage that
computes all the distances between two cells of the grid is currently limited to
200 × 200 grids, our approach cannot deal with such benchmarks. Instead, we
generated random problems on 25× 25 grids, with 125 (20%) obstacles and 100
agents, on 100 × 100 grids with 400 agents and 2000 (20%) obstacles, and on
200 × 200 grids with 400 agents and 4000 (10%) obstacles.

5.2 Experimental settings

The experiments were performed with elementary actions played simultaneously,
with 4-connectivity, and the global elapsed time as target of optimization. maxpl
is the heuristic value using the maximum over the individual path lengths. C = 1.
ls = 500. For each problem and each algorithm, we give the number of time steps
used (nts) and the number of elementary actions used (nea) to solve the problem.
Furthermore, we mention the computing time spent, the nesting level (lv) and
the number of iterations for each level (il). We used a 3.2 Ghz computer with 6
Gb to perform the experiments. We compare the results of NMCFS to those of
TASS [6], P&S [10, 9] and TOMPP [21].

Table 2: Results on Khorshid’s congestion problems.

nts nea
M Op TS M Op t lv il

520 6 6 34 17 17 0.1s 2 5
519 8 8 30 18 12 0.03s 2 5
518 10 10 58 26 ≤ 26 2m 2 30
517 13 13 170 31 ≤ 35 3m 2 30
515 15 ≤ 15 459 71 ≤ 71 30m 3 40
516 19 ≤ 19 234 86 ≤ 86 72h 3 30

5.3 Results

Congestion problems Table 2 shows the results on Khorshid’s congestion
problems. The results in terms of nts are new. For the first four problems,



we found the optimal value (Op) with paper and pen, and NMCFS found the
optimal values for these problems. For problems 516 and 515, we do not know
if the solutions are optimal or not. In terms of nea, NMCFS (M) outperforms
TASS (TS). The harder the problem, the larger the difference. TASS solves all
the problems in less than one second. NMCFS solved the easy problems in less
than one second, but used three days for problem 516 to find out the value in the
table. With less than 3 days of time, NMCFS was not able to solve the problems
of [6] which are more complex than problems 515 and 516.

Table 3: Results on Luna’s congestion problems.

nts nea
M Op P&S M Op t lv il

Rot. 1 1 18 16 16 0.01s 1 1
Tree 6 6 18 12 12 0.01s 1 5
Str. 8 8 26 20 ≤ 20 0.02s 1 5

Corn. 8 8 50 32 ≤ 32 1s 2 5
Conn. 16 ≤ 16 86 70 ≤ 70 1m 2 20
Tunn. 15 ≤ 15 81 49 ≤ 49 1h 3 30
Loop. 19 ≤ 17 350 106 ≤ 98 12h 2 200

Table 3 shows the results on Luna’s congestion problems. Again, the results
in terms of nts are new. For the problems Rotation, Tree, String, Corners and
Loopchain, we found the Op value with paper and pen. NMCFS found the
optimal value for Rotation, Tree, String, and Corners but not for Loopchain.
For Tunnel and Connector, we do not know if the results are optimal or not. In
terms of nea, NMCFS outperforms Push&Swap. For Loopchain, the difference is
large. Push&Swap solves all the problems in a few seconds [10]. NMCFS solves
the easy problems in less than one second, but used several hours for Loopchain.

N-puzzle problems Table 4 shows the results obtained by NMCFS on puzzle
problems. For the 8-Puzzle, NMCFS found the optimal solution quickly. For the
25-puzzle, NMCFS is slightly sub-optimal because the optimal length is 7 [20].
For the other puzzles, NMCFS found solutions for which the optimality remains
not known. For each problem, table 4 also gives the branching factor to show
that NMCFS is not constrained by this feature.

Table 4: Results and branching factors (bf) on N-puzzle problems.

n bf nts nea t lv il
8 123 4 26 0.1s 1 10
9 27 6 38 5s 1 10
15 3815 7 84 20m 3 50
16 951 8 90 4h 3 50

24 ≈ 105 7 141 8h 3 30

25 ≈ 3× 104 8 120 30h 3 30

Many-agents-large-grid problems Table 5 shows the results achieved by
NMCFS on large grids with many agents. na is the number of agents, nobs the
number of obstacles, pb the problem, and h the maxpl value. On 25×25 gridsize
problems with 20% of obstacles and 100 agents, the values are obtained in about



6 hours at level 2, and nea ranges in the interval 2350, 2570 with 2470 on average.
For a 30×20 grid with 100 agents and 17% of obstacles, [10] mentions the average
solution quality for WHCA* and P&S of 2700 and 2300 respectively. Table 5 also
shows the results achieved by NMCFS on 100× 100 grids with up to 400 agents
and 2000 obstacles. With such level of congestion (20% of obstacles and 4% of
agents), NMCFS at level 2 finds “good” solutions - not to say near-optimal. On
200× 200 grids with 400 agents and 4000 obstacles, since the congestion is very
low (10% of obstacles and 1% of agents), NMCFS finds the optimal solution
despite the size of the grid. We are currently investigating problems with more
agents (up to 2000) and larger grids (512× 512 grids of [18]). To do so, NMCFS
is not a bottleneck, instead we need to improve the pre-computation of distances
with a hierarchical approach [2].

Table 5: Results on large grids with obstacles and many agents.

gridsize na nobs pb nts h nea t lv il
10 12 12 63 0.1s 1 58× 8 11 15
11 11 11 48 0.1s 1 5
1 43 41 2351 6h 2 50
2 43 43 2508 6h 2 50
3 44 41 2460 6h 2 50

25× 25 100 125

4 44 40 2569 6h 2 50
100 1000 1 164 164 6879 1m 1 1
200 2000 1 165 165 14203 5m 1 1100× 100
400 2000 1 171 171 33286 15m 1 1

200× 200 400 4000 1 344 344 55620 1h 1 1

6 Discussion

This section discusses some properties of MCFS: the anytime property, memory
use, completeness, optimality and computation time. Let it be the number of
iterations, na the number of agents, gs the gridsize, ls the length of the simula-
tions, nlv the number of nesting levels, and nnd the number of nodes. Figure 2
illustrates the anytime property of MCFS.

Concerning memory use, most of the memory used by MCFS concerns nnd.
nnd is linear in it, and linear in ls (which mainly depends on gs). The size of
a node depends linearly on na. Memory used by MCFS is in O(na × it × ls).
Nesting MCFS permits to build smaller trees at each nesting level and to save
memory. The memory used by NMCFS is in O(na × nlv × it1/nlv × ls). In our
experiments, the memory use was an obstacle for large grids for pre-processing
the individual distances between cells and storing them. In practice, this last
point is a current limitation of our approach.

To discuss the completeness of the approach, we have to prove that at least
one simulation will reach the goal. For the bad cases, MCFS use pseudo-random
simulations that are not biased: all the elementary actions are drawn with the
uniform distribution of probability. The set of agents executes a random walk
on a finite graph of the problem. If a problem is solvable, there is a sequence
linking the starting position to the goal, and given a sufficiently large number of
timesteps, a random walk on this graph encounters the goal position. However, if



the number of timesteps is finite, which is the case in practice, then some random
walks do not encounter the goal. If the number of timesteps is large enough, a
random walk reaches the goal with a probability p > 0. With a sufficiently large
number of random walks, the goal will be reached at least once. Provided we
set up ls and it at sufficiently large values, a least one simulation succeeds.
Therefore, MCFS, with ls and it sufficiently large, is complete on the set of
solvable CPF problems whose graph size is less than a given threshold.

The computation time is linear in it. One iteration time is mainly linear in
ls. At each timestep, the time to perform the choice of the joint action and to
process the effects of the joint action is at least linear in na. When collisions
have to be managed, the time is longer. Therefore, in the good case only, the
computation time of MCFS is in O(it× ls× na).

We have no proof of optimality, but we observed near-optimality in practice.
Asymptotically, we believe that all nodes will be visited infinitely, and the best
sequence found. The problem is that MCFS tackles the problem by lowering its
current upper bound progressively without using any measure of near-optimality.
The relevant question is which value of it garantees MCFS to find the optimal
solution.
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Fig. 2: lmin (i.e. nts) decreasing with the iteration number (neps) on four runs of
MCFS on the loopchain problem at level 2.

7 Conclusion

In this paper, we have described both MCFS, a new algorithm inspired from
MCTS, that solves CPF problems, and NMCFS its nested version. MCFS is
one of the first approaches that deals with CPF problems by optimizing time.
NMCFS near-optimally solves the 16-puzzle and the 25-puzzle, but it is still
surpassed by TOMPP. For congestion problems, NMCFS outperforms TASS
and P&S. For large problems with many agents, large grids, and obstacles, our
approach gives results with up to 400 agents and 200 × 200 gridsize. The cost
of obtaining such results is computation time. MCFS is anytime and provides
approximate solutions in limited time. Conversely to MCTS and A*, MCFS is
not constrained by the huge branching factor of CPF problems. With sufficient
time and memory, MCFS is complete. In finite time and with a finite memory,
MCFS is not complete, and near-optimal only.



The current work can be investigated further in several directions. First, we
want to handle benchmarks [18]. Secondly, studying the speed of convergence
to optimality is an important perspective. Thirdly, we aim at investigating the
effects of nesting levels. Fourthly, assessing MCFS on other planning problems
would be informative.
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