
Ann Oper Res
DOI 10.1007/s10479-010-0782-2

Monte Carlo hyper-heuristics for examination
timetabling

Edmund K. Burke · Graham Kendall · Mustafa Mısır ·
Ender Özcan

© Springer Science+Business Media, LLC 2010

Abstract Automating the neighbourhood selection process in an iterative approach that
uses multiple heuristics is not a trivial task. Hyper-heuristics are search methodologies that
not only aim to provide a general framework for solving problem instances at different dif-
ficulty levels in a given domain, but a key goal is also to extend the level of generality so
that different problems from different domains can also be solved. Indeed, a major chal-
lenge is to explore how the heuristic design process might be automated. Almost all existing
iterative selection hyper-heuristics performing single point search contain two successive
stages; heuristic selection and move acceptance. Different operators can be used in either of
the stages. Recent studies explore ways of introducing learning mechanisms into the search
process for improving the performance of hyper-heuristics. In this study, a broad empirical
analysis is performed comparing Monte Carlo based hyper-heuristics for solving capacitated
examination timetabling problems. One of these hyper-heuristics is an approach that over-
laps two stages and presents them in a single algorithmic body. A learning heuristic selection
method (L) operates in harmony with a simulated annealing move acceptance method us-
ing reheating (SA) based on some shared variables. Yet, the heuristic selection and move
acceptance methods can be separated as the proposed approach respects the common se-
lection hyper-heuristic framework. The experimental results show that simulated annealing
with reheating as a hyper-heuristic move acceptance method has significant potential. On
the other hand, the learning hyper-heuristic using simulated annealing with reheating move

E.K. Burke · G. Kendall · E. Özcan (�)
Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science,
University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
e-mail: exo@cs.nott.ac.uk

E.K. Burke
e-mail: ekb@cs.nott.ac.uk

G. Kendall
e-mail: gxk@cs.nott.ac.uk

M. Mısır
Department of Computer Engineering, Yeditepe University, Inonu Mahallesi, Kayisdagi Caddesi,
Kadikoy, Istanbul 34755, Turkey
e-mail: mmisir@cse.yeditepe.edu.tr

mailto:exo@cs.nott.ac.uk
mailto:ekb@cs.nott.ac.uk
mailto:gxk@cs.nott.ac.uk
mailto:mmisir@cse.yeditepe.edu.tr


Ann Oper Res

acceptance (L–SA) performs poorly due to certain weaknesses, such as the choice of re-
warding mechanism and the evaluation of utility values for heuristic selection as compared
to some other hyper-heuristics in examination timetabling. Trials with other heuristic se-
lection methods confirm that the best alternative for the simulated annealing with reheating
move acceptance for examination timetabling is a previously proposed strategy known as
the choice function.

Keywords Hyper-heuristics · Simulated annealing · Meta-heuristics · Examination
timetabling · Reinforcement learning

1 Introduction

One definition of a hyper-heuristic is a (meta-)heuristic that carries out a search over the
heuristic space formed by a set of low level heuristics (Burke et al. 2003). Low level heuris-
tics can be either selected or generated during the search process. For example, Burke et al.
(2006, 2007a) uses a Genetic Programming meta-heuristic as a hyper-heuristic to search for
the best heuristic for solving a given online bin packing problem. During the evolutionary
search process, a heuristic is constructed using indivisible program components via genetic
operators. On the other hand, selection hyper-heuristics which manage a set of perturbative
low level heuristics, utilising a single configuration during the search, are usually iterative
methods (Bilgin et al. 2007; Özcan et al. 2006, 2008).

A selection hyper-heuristic framework is provided in Fig. 1. At each iteration, the most
suitable heuristic (or a subset) is chosen using a heuristic selection method and a new state
is generated after the application of the selected heuristic(s). This move is either accepted
or rejected based on an acceptance method. The process continues until a termination crite-
rion is met. A selection hyper-heuristic will be denoted as heuristic selection method–move
acceptance method from this point onward. At the high level, a hyper-heuristic interacts
with the problem domain via low level heuristics and gathers problem independent infor-
mation such as the number of heuristics, the quality change in a candidate solution after
applying a selected heuristic, or the success of a heuristic. Two major components are iden-
tified in existing selection hyper-heuristics: heuristic selection and move acceptance. Cowl-
ing et al. (2001a) used this framework and compared the performance of a number of sim-
ple hyper-heuristics embedding different heuristic selection components over a scheduling
problem: Simple Random, Random Permutation, Random Descent, Random Permutation
Descent, Greedy and Choice Function. The authors employed only two simple acceptance
methods in their study: (i) all moves are accepted (AM), and (ii) only improving moves
are accepted (OI). According to the experimental results, the Choice Function–All Moves
Accepted hyper-heuristic showed potential.

Simulated annealing, proposed by Kirkpatrick et al. (1983) and Cerny (1985) indepen-
dently, is a very well-known meta-heuristic within the operational research and artificial
intelligence communities. A comparative study by Bilgin et al. (2007) shows that com-
bining a different heuristic selection method with a different acceptance method might
yield improved performance. Furthermore, empirical results indicate that Monte Carlo based
hyper-heuristics, specifically the ones utilising simulated annealing deliver superior perfor-
mances. Similarly, Bai and Kendall (2005), Dowsland et al. (2007) and Bai et al. (2007)
report that variants of simulated annealing have great potential as a move acceptance com-
ponent in hyper-heuristics. Hence, this study investigates different selection hyper-heuristics
that utilise stochastic Monte Carlo based move acceptance methods for solving examination
timetabling problems.



Ann Oper Res

Fig. 1 A hyper-heuristic framework

Section 2 summarises previous studies on examination timetabling and describes the
problem formulation used in this study. Section 3 presents the details of selection hyper-
heuristics for examination timetabling used during the experiments. The computational re-
sults are discussed in Sect. 4. Finally, conclusions are provided in Sect. 5.

2 The examination timetabling problem

Most real-world examination timetabling problems can be represented as a constraint opti-
misation problem using a 3-tuple 〈E,I,K〉, where E represents events (variables), namely
examinations to be scheduled in this work, I contains the domain for each event and K is
the constraints set. A domain can be a product of sets, each representing a different resource
to be allocated for a given event. In this study, only time is considered as a resource.

E = {e1, e2, . . . , eN } (1)

K = {k1, k2, . . . , kM} (2)

Let S = {s1, s2, . . . , sL} denote possible ordered list of start times for an examination. The
examination timetabling problem can be described as a search for the best assignment ∀x, ∃y

(ex = sy ), where ex ∈ E and sy ∈ S, such that, given constraints are satisfied. The assignment
implies that the examination ex starts at sy .

Two different types of constraints are identified: hard and soft constraints. Hard con-
straints must be satisfied, while soft constraints should be respected as much as possible.
The size of the search space for a timetabling problem increases exponentially as the number
of items to be scheduled increases and they are known to be NP-complete constraint opti-
misation problems (Even et al. 1976). Hence, an optimal solution might not be obtained by
a traditional approach. Many researchers have been applying many different non-traditional
methodologies to solve many different types of timetabling problems.

2.1 An overview of approaches to examination timetabling

The initial studies on computer based strategies for examination timetabling date back to
the 1960s (Cole 1964; Broder 1964). Research interest in examination timetabling has been



Ann Oper Res

progressively increasing since then. Carter et al. (1996) applied graph colouring heuristics
to construct examination timetables based on the fact that a basic version of a timetabling
problem can be reduced to a graph colouring problem (Leighton 1979). Moreover, Carter
provided a set of benchmark problem instances widely used by the examination timetabling
community, referred to as the Toronto benchmarks. In addition to heuristics (e.g., Marin
1998; Burke and Newall 2004), a variety of approaches are used for addressing a variety of
examination timetabling problems.

Evolutionary algorithms (Goldberg 1989; Ong et al. 2006; Krasnogor and Gustafson
2004) are the most frequently used approaches for examination timetabling. Burke et al.
(1996a) applied memetic algorithms for solving a subset of Toronto benchmarks and Not-
tingham University problems. Ergul (1996) implemented a steady state genetic algorithm
for solving the examination timetabling problem at the Middle East Technical University,
Ankara. Paquete and Fonseca (2001) designed a multi-objective evolutionary algorithm,
where each objective aims to satisfy a different type of constraint. Wong et al. (2002)
used a memetic algorithm with a non-elitist replacement strategy to solve an examination
timetabling problem at École de Technologie Supérieure. Burke and Newall (1999) com-
bined a problem decomposition strategy with a memetic algorithm for incrementally solv-
ing large examination timetabling problems. This strategy was modified later by Özcan and
Alkan (2007). Özcan and Ersoy (2005) proposed a framework for designing violation di-
rected adaptive operators, inspired from the previous studies in Ross et al. (1994), Corne
et al. (1994) and Alkan and Özcan (2003). Ersoy et al. (2007) investigated a set of hyper-
heuristics for selecting a hill climber during the evolutionary process for solving examina-
tion timetabling problems.

In addition to the hyper-heuristics based on constructive low level heuristics (Kendall
and Hussin 2005; Burke et al. 2007b), tabu search (Gaspero and Schaerf 2001), very large
neighbourhood search (Abdullah et al. 2007), simulated annealing (Merlot et al. 2003),
multi-stage approaches utilising case based reasoning (Petrovic et al. 2007), an iterative
greedy algorithm (Caramia et al. 2001, 2008) and great deluge (Müller 2009), fuzzy rea-
soning (Petrovic and Patel 2005; Asmuni et al. 2005), neural network (Corr et al. 2006) and
ant colony optimisation (Dowsland and Thompson 2005; Eley 2006) based approaches and
hybrid methods (Azimi 2005; Gogos et al. 2010) are some of the other techniques used to
solve different types of examination timetabling problems.

It is always interesting to know the state of the art approach for examination timetabling.
Unfortunately, there are many variants which make it difficult to compare different method-
ologies. Schaerf (2006) emphasise the importance of comparability and reproducibility of
the results in the research community. Competitions, such as ITC2007 (McCollum et al.
2010), take an active role in setting the state of the art for different problems including ex-
amination timetabling. Approaches compete in a fair environment over a set problems. It is
vital for researchers to generate robust and flexible approaches that will be able to solve un-
seen examination timetabling problem instances for a given institution. On the other hand,
there are many other issues that have to be dealt with considering the timetabling users. For
example, an easy to use graphical interface is as important as the embedded state of the
art approach for solving the problem itself from the user point of view. McCollum (2006)
discusses real world issues in examination and course timetabling observing that there is a
gap between research and practice from a commercial point of view. More on examination
timetabling can be found in the survey provided by Qu et al. (2009) which updates Carter
and Laporte (1996) and Carter (1986). The wider timetabling literature is discussed in more
detail in Burke et al. (1996b), Schaerf (1999) and Burke and Petrovic (2002).



Ann Oper Res

2.2 Problem formulation

Investigation of selection hyper-heuristics for examination timetabling is still an open re-
search area. In this study, a set of stochastic Monte Carlo based hyper-heuristics is compared
for solving a real-world problem as described in Bilgin et al. (2007). An examination starts
and ends within a given time slot of three hours and has to be assigned to a single time slot.

Xij = 1 if ei starts at sj , 0 otherwise (3)

∀i, ei ∈ E.
∑

∀j,sj ∈S

Xij = 1 (4)

This problem requires that the following constraints be satisfied:

– Examination conflict (k1): A student cannot sit for more than one examination at any
given time.

rti : 1 if the t th student takes the examination ei ∈ E, 0 otherwise

∀t.∀j, sj ∈ S.
∑

∀i,ei∈E

Xij rti ≤ 1 (5)

– Seating restriction (k2): The total number of students seated for all examinations at a given
time slot cannot exceed the pre-determined capacity (C).

bi =
∑

∀t

rti (6)

∀j, sj ∈ S.
∑

∀i,ei∈E

Xijbi < C (7)

Successive examination restriction (k3): It is also strongly preferable that there is a single
time slot between two successive examinations of a student in the same day. Since the size
of the gap is not important, disallowing successive examination assignments for a student in
the same day resolves this preference.

ouv : 1 if su, sv ∈ S are in the same day, 0 otherwise

∀t.
∑

∀i,ei∈E
∀j,ej ∈E

i �=j

∑

∀u�=L,su∈S

rtirtjXiuXj(u+1)ou(u+1) = 0 (8)

The evaluation function measures the quality of a given solution T based on the weighted
sum (wi ) of the number of these three types of constraint violations (viol(ki, T )) given a set
of students and the examinations that they have registered. If all the constraints are respected
then the evaluation function returns −1.

evaluate(T ) = −1∑
∀i,ki∈K wiviol(ki, T ) + 1

(9)



Ann Oper Res

Fig. 2 Pseudocode of Monte
Carlo based hyper-heuristic

3 Selection hyper-heuristics for examination timetabling

3.1 A Monte Carlo based hyper-heuristic framework

Figure 2 shows the Monte Carlo hyper-heuristic framework used in this study. The heuris-
tic selection method decides which low level perturbative heuristic (hID) to apply to the
candidate solution at hand. If the solution improves or its quality stays the same (�f ≤ 0,
assuming a minimisation problem), then it is accepted. If the solution worsens, it can still
be accepted with a probability based on a function, PD. In addition, the hyper-heuristic
maintains problem independent information. In Fig. 2, line 1, H is the pool of low level
heuristics. P represents the data structure(s) holding all relevant problem domain indepen-
dent information that might be required by a Monte Carlo hyper-heuristic, such as statistics,
or a utility value for each low level heuristic. An update function (labelled from update0-4)
either does nothing or keeps track of some relevant information during the search process
depending on the components of a Monte Carlo hyper-heuristic. An update function is as-
sumed to have access to the local variables, such as i, si , fnew or �f , since they might be
used as a parameter within a Monte Carlo hyper-heuristic component at a given iteration.
For example, PD might require �f .

3.2 Heuristic selection methods

Simple Random (SR), Greedy (GR), Choice Function (CF) and a learning scheme (L) are
utilised as heuristic selection methods. Simple Random selects a heuristic randomly with
equal probability. The Greedy method tests all heuristics using the same candidate solution.
It keeps the new solution which has the best quality and feeds it into the move acceptance.
The choice function maintains a record of the performance of each heuristic. Three different
criteria are maintained: i) the individual performance of the heuristic (10), ii) how well



Ann Oper Res

the heuristic has performed with other heuristics (11) and iii) the elapsed time since the
heuristic has been called (12). The heuristic having the best score is selected at each step
and applied to the candidate solution. If hID is the selected low level heuristic, then the scores
of all heuristics are updated using (13). Cowling et al. (2001a, 2002) tested these heuristic
selection methods against AM and OI move acceptance methods. The CF parameters α,
β (∈ (0,1]) and δ are adjusted automatically as described in Cowling et al. (2001b). They
emphasise the importance of the latest performance.

In(y) and Tn(y) (In(x, y) and Tn(x, y)) denote the change in the evaluation function and
the amount of time taken, respectively, when the nth last time the heuristic y was selected
and employed (immediately after the heuristic x).

∀i, g1(hi) =
∑

n

αn−1 In(hj )

Tn(hj )
(10)

∀i, g2(hID, hi) =
∑

n

βn−1 In(hj , hID)

Tn(hj , hID)
(11)

∀i, g3(hi) = elapsedTime(hi) (12)

∀i, score(hi) = αg1(hi) + βg2(hID, hi) + δg3(hi) (13)

3.3 Move acceptance methods

Ayob and Kendall (2003) report a fast move acceptance method which is similar to simulated
annealing (Kirkpatrick et al. 1983; Cerny 1985). The proposed hyper-heuristic fits into the
framework presented in Fig. 2. It is referred to as EMCQ and the approach uses (14) as
its PD function. The only update required is incrementing a counter whenever a worsening
move occurs and resetting it whenever there is an improvement in the solution quality. The
authors tested only the Simple Random heuristic selection method in their study.

e
− �f m

Q , (14)

Q in (14) is a counter for successive worsening moves.
m is the unit time in minutes that measures the duration of the heuristic execution.
Considering that different machines have different properties, EMCQ cannot be thought

of as a general strategy. Obviously, more instructions will be executed in a unit time on a fast
machine as compared to a slower machine. In this study, m counts the number of successive
B steps, e.g., m is incremented at every 200 iterations. This type of strategy generates a
more general acceptance method applicable in different environments.

Özcan et al. (2006) compared the performances of many heuristic selection and move
acceptance combinations in hyper-heuristics. The results show that a standard simulated an-
nealing move acceptance performs the best, especially combined with the Choice Function
approach. Simulated annealing uses a linear cooling schedule as shown in (15). This method
will be denoted as MC, respecting their notation.

e
− �f

�F(1− i
T

) , (15)

�F in (15) is an expected range for the maximum fitness change and T = maxIterations.
Since the number of violation would be 0 for the best case, �F is computed by evaluating
the first configuration.



Ann Oper Res

Bai and Kendall (2005) showed that a more elaborate simulated annealing hyper-heuristic
based on Metropolis criterion is also promising. Bai et al. (2007) extended this previous
study and presented a new hyper-heuristic scheme that embeds a variant of the reinforcement
learning mechanism (L) into the heuristic selection process. The move acceptance method
employs a more sophisticated scheme using annealing and reheating phases (SA). SA is a
modified version of MC with reheating. The proposed hyper-heuristic is denoted as L–SA
respecting their notation. During the annealing phase, the following formula is used as the
PD function (in Fig. 4, line 13):

e− �f
t (16)

The temperature (t ) is reduced based on the nonlinear function provided by Lundy and Mees
(1986):

t = t

1 + βt
, (17)

β = (t0 − tfinal)itemp

maxIterations · t0 · tfinal
, (18)

itemp is the number of iterations at a temperature
During the reheating phase, t = t

1−βt
is used to increase the temperature up to the tem-

perature when the last improvement was observed. Then the system goes into the annealing
phase again. In their study, Bai et al. (2007) present a learning heuristic selection method
and SA as a united framework. In this study, heuristic selection and the move acceptance
components of a hyper-heuristic are separated in order to evaluate the performance of SA
with reheating as suggested using different heuristic selection methods. The learning mech-
anism for heuristic selection, denoted as L, assigns a weight to each heuristic and updates
them periodically. The percentage of accepted calls and the calls generating new solutions
made to a heuristic are used as the weight of a given heuristic during the annealing and
reheating phases, respectively. These weights are then used to select a heuristic based on
a random choice strategy. The L–SA hyper-heuristic is tested over nurse rostering, course
timetabling and bin packing problems using nine, three and five low level heuristics. The
results demonstrate the success of L–SA. More on the algorithmic details and parametric
choices can be found in Bai et al. (2007).

In this study, three Monte Carlo based move acceptance methods described above are
utilised: standard simulated annealing (MC), simulated annealing with reheating (SA) and
exponential Monte Carlo (EMCQ). EMCQ differs from simulated annealing, since it does
not require any cooling schedule.

3.4 Representation and low level heuristics

A candidate solution is implemented as an ordered array of integer values representing a
time-slot assigned for each exam. This direct encoding is illustrated in Fig. 3. Four heuristics
are implemented to be used with the hyper-heuristics for solving an examination timetabling
problem. Figure 4 shows the pseudo-code of these heuristics. Three of them perform a search
over constraint based neighbourhoods based on a tournament strategy employed while se-
lecting an examination for rescheduling and assigning a new period. The number of items
(e.g. examinations) that are allowed to enter into a tournament is referred to as tour-size.
In our implementation, none of the selected items are allowed to be the same item. Hence,



Ann Oper Res

Fig. 3 Encoding of a candidate
solution and its mapping
(decoding)

– RESCHEDULE_EXAM_CONFLICT – RESCHEDULE_ SUCCESSIVE_EXAM

1. Choose tour-size1 number of examinations for tournament, randomly.
2. Determine the winner examination for rescheduling that generates maximum number

of conflicts for the given constraint. In case of equality, employ random selection.
3. Choose tour-size2 number of time slots for tournament, randomly.
4. Assign the selected examination to the winner time slot that has the least number of

targeted constraint type violations. In case of equality, employ random selection.

– RESCHEDULE_SEATING

1. Choose tour-size3 number of time slots for tournament, randomly. This phase guar-
antees that at least one of the selected time slots contains at least one examination
assignment.

2. Determine the one (winner) with the maximum capacity conflict.
3. Choose tour-size4 number of examinations for tournament, randomly that are assigned

to the selected time slot.
4. Determine the winner examination that has more attendants for rescheduling. In case

of equality, employ random selection.
5. Choose tour-size5 number of time slots for tournament, randomly.
6. Assign the selected examination to the winner time slot that has the least seating ca-

pacity violation. In case of equality, employ random selection.

– RANDOM_RESCHEDULING
Make a pass over the examinations one by one and randomly reschedule an examina-

tion with a probability of 1/number_of _exams

Fig. 4 Pseudocode of low level heuristics

given I items, the probability of the wth item to be selected for tournament is w/(I −w+1),
where 1 ≤ w ≤ tour-size. A single item wins the tournament based on a predetermined cri-
terion. It is allowed to select a number of items for tournament less than tour-size, since it
might not be possible to find unique tour-size number of items based on the criterion at a
given time. The last heuristic is a random perturbation similar to the mutation operator in
Genetic Algorithms (Goldberg 1989).

A constraint based heuristic considers only a specific constraint type and ignores the
rest during the rescheduling of a selected exam. Only the violations caused by a targeted
constraint type are attempted to be reduced. Improvement after such a process does not
imply that the overall quality of a candidate solution will improve as well. On the contrary,
a new candidate solution with a worse quality value might arise. This is the reason why
the move acceptance method becomes important within the framework of selection hyper-
heuristics based on perturbative low level heuristics.



Ann Oper Res

Table 1 Characteristics of the modified Toronto benchmark dataset used during the experiments

Instance Examinations Students Enrollment Conflict density Days Capacity

car91 I 682 16925 56877 0.13 17 1550

car92 I 543 18419 55522 0.14 12 2000

ear83 I 190 1125 8109 0.27 8 350

hecs92 I 81 2823 10632 0.42 6 650

kfu93 461 5349 25118 0.06 7 1955

lse91 381 2726 10918 0.06 6 635

pur93 I 2419 30029 120681 0.03 10 5000

rye92 486 11483 45051 0.07 8 2055

sta83 I 139 611 5751 0.14 4 3024

tre92 261 4360 14901 0.18 10 655

uta92 I 622 21266 58979 0.13 12 2800

ute92 184 2749 11793 0.08 3 1240

yor83 I 181 941 6034 0.29 7 300

4 Computational experiments

4.1 Experimental setup

Carter et al. (1996) provided the most commonly used data set, referred to as the Toronto
benchmark set by the examination timetabling community. There are 13 real world problems
in the data set. 10 of them are obtained from the universities around the world and the rest
from Canadian high schools. We use the standard notation introduced by Qu et al. (2009).
Although there are similarities with the previous studies, the examination timetabling prob-
lem described in this work is unique. Initially, it is presented by Özcan and Ersoy (2005) as
a real world problem that is dealt with at Yeditepe University, Istanbul. The Toronto bench-
mark data is extended with new properties, accordingly and used in Bilgin et al. (2007). This
problem is a capacitated variant of examination timetabling. There is a maximum capacity
of seating available during exams at each time slot. The timetable size is fixed with three
examination slots per day for a given number of days. The characteristics of each problem
instance based on the formulation in Sect. 2.2 are summarised in Table 1.

Pentium IV, 3 GHz Linux machines with 2 Gb memory are used during the experiments.
Fifty runs are performed with each hyper-heuristic for a given problem instance. Fifty initial
configurations are generated randomly for each problem instance and the same set of fifty
initial configurations are used by each hyper-heuristic for each problem instance during the
runs. Bai et al. (2007) argue that the L–SA hyper-heuristic performs better as the number
of iterations is increased. Hence, all the approaches are tested using two termination criteria
using two values for the maximum number of iterations is exceeded; 106 and 107. Only one
evaluation is performed at each iteration.

As a performance criterion, ranking based on the best result from the runs is used. Ranks
are in the range [1..number-of-hyper-heuristics] from best to worst and ties are considered.
As another performance measure, %-improvement is used as in (19).

%-improvement(x, y) = Qx − Qy

Qy

, (19)



Ann Oper Res

Fig. 5 Average ranks with
standard deviations of SR–MC,
CF–MC and L–SA
hyper-heuristics for solving
hecs92 I, ear83 I, tre92, lse91 and
car91 I

where Qx denotes the quality of the best result obtained in fifty runs using the hyper-
heuristic x. Hence, this value shows how much the approach x improves over the best result
produced by y. Similarly, average %-improvement computes the percentage improvement
introduced by an approach over another one using the average quality of solutions over fifty
runs for a given problem instance. The cumulative distribution function as described in (20)
is obtained based on the experiments.

F(x) = P (X ≤ x) =
∑

xi≤x

p(xi) (20)

where i ∈ [1..50], X is a discrete random variable, xi is the quality of the best solution
obtained in the ith run, and p(xi) is the probability to attain xi . In the following sections,
our computational results are discussed.

4.2 Comparison of L–SA, SR–MC and CF–MC

The reinforcement learning–simulated annealing with reheating hyper-heuristic (L–SA) has
not been tested on the examination timetabling problems before (Bai et al. 2007). On the
other hand, Bilgin et al. (2007) show that the Choice Function (CF) heuristic selection com-
bined with standard simulated annealing (denoted as MC) performs the best for examina-
tion timetabling. This hyper-heuristic is one of the best known approaches reported so far
for solving the examination timetabling problems in Table 1. A set of preliminary exper-
iments are performed to compare L–SA to SR–MC and CF–MC over a subset of bench-
mark problems, namely; hecs92 I, ear83 I, tre92, lse91 and car91 I. In the previous study,
hyper-heuristics are given 600 seconds to execute. In this study, the termination criterion is
the number of evaluations. Hence, the experiments using MC hyper-heuristics are repeated.
Considering the best in fifty runs, the performances of the hyper-heuristics are ranked from
1 to 3 for each problem instance. Figure 5 illustrates the average rank of each hyper-heuristic
for a given maximum number of iterations.

L–SA is superior to the other hyper-heuristics based on the standard simulated annealing
in finding the best. When the best performance of SR–MC is compared to CF–MC, it is ob-
served that SR–MC is slightly better than CF–MC for the maximum number of iterations of
106. Choice Function beats the simple random heuristic selection when the maximum num-
ber of iterations is increased to 107. It seems that given enough time, the learning mechanism
within the Choice Function becomes more effective in generating high quality solutions. L–
SA performs consistently the best for each problem instance when the number of steps is
increased.



Ann Oper Res

Table 2 %–improvement
generated by L–SA over
CF–EMCQ and SR–EMCQ for
each problem instance as the
maximum number of iterations
change from 106 to 107. Bold
entries compare and mark the
best hyper-heuristic from
CF–EMCQ and SR–EMCQ for a
given problem instance and
termination criterion

L–SA %–improvement

maxIteration = 106 maxIteration = 107

problem CF–EMCQ SR–EMCQ CF–EMCQ SR–EMCQ

car91 I 96.83 96.80 98.55 86.06

car92 I 88.64 88.48 90.58 90.70

ear83 I 73.60 74.71 78.68 79.92

hecs92 I 83.84 84.44 84.50 84.45

kfu93 95.25 95.36 95.24 95.29

lse91 79.85 80.30 83.20 84.04

pur93 I 81.36 81.49 86.11 86.65

rye92 93.43 93.46 93.77 94.15

sta83 I 52.09 54.21 50.62 52.19

tre92 92.27 91.99 92.74 92.35

uta92 I 92.09 92.44 93.61 94.08

ute92 56.38 57.86 58.44 58.34

yor83 I 73.75 75.25 76.46 77.29

The average performance comparison of these hyper-heuristics yields the same results
and reveals the success of L–SA. CF–MC delivers a similar average performance to SR–
MC. The Choice Function is slightly better than Simple Random when combined with MC
for maxIteration = 107, and vice versa for maxIteration = 106. Excluding ear83 I, L–SA
generates an average %-improvement of at least 32% over CF–MC for each problem in-
stance regardless of the termination criterion, hence L–SA and CF–MC are kept for further
experiments.

4.3 Performance of the EMCQ based hyper-heuristics

Ayob and Kendall (2003) concludes that the Simple Random–EMCQ hyper-heuristic is the
best choice for solving component placement sequencing problem. In this set of experi-
ments, the performances of L–SA (Bai et al. 2007) and CF–MC are compared to the Sim-
ple Random–EMCQ and Choice Function–EMCQ hyper-heuristics. To our knowledge, this
comparison has not been performed before in literature for any problem. EMCQ is a time
dependent move acceptance method as presented in (14). Some initial experiments are per-
formed to determine how many steps are taken in a unit time, so that the same framework
could be respected.

As shown in Table 2, L–SA outperforms both of these EMCQ based hyper-heuristics im-
proving their best results by approximately 82% on average for each problem instance using
any termination criterion. Choice Function–EMCQ performs better than Simple Random–
EMCQ in finding the best for at least nine out of thirteen problem instances regardless of
the termination criterion.

The empirical cumulative distribution function for L–SA and Choice Function–EMCQ
with different termination criterion is plotted in Fig. 6. {car92 I, yor83 I} is used to provide
representative cases for comparing the average performances of L–SA and Choice Function–
EMCQ, since a similar phenomenon is observed for the rest of the problems. The worst
result provided by L–SA in fifty runs is always better than the best result provided by Choice
Function–EMCQ. The Wilcoxon test for each problem instance over fifty runs confirms that



Ann Oper Res

Fig. 6 Empirical cumulative distribution function of the solution quality based on the best result obtained at
each run using the L–SA and CF–EMCQ hyper-heuristics with maxIteration = 106 and maxIteration = 107

for (a) car92 I, and (b) yor83 I

L–SA performs significantly better than EMCQ based hyper-heuristics within a confidence
interval of 95% for all problem instances.

The performances of EMCQ based hyper-heuristics are also compared to the MC based
hyper-heuristics over hecs92 I, ear83 I, tre92, lse91 and car91 I. CF–EMCQ, SR–EMCQ,
CF–MC and SR–MC hyper-heuristics are ranked from 1 to 4 for each problem instance, in-
dicating best to worst, respectively. The average ranks of CF–EMCQ, SR–EMCQ, CF–MC
and SR–MC for 106 iterations are 3.4, 3.6, 1.40 and 1.60, respectively. CF–MC improves
almost on all best solutions produced by CF–EMCQ and SR–EMCQ in any case. The %-
improvements obtained for each problem instance in different settings are presented in Ta-
ble 3. The results show that EMCQ performs poorly. Even the standard simulated annealing
move acceptance outperforms EMCQ hyper-heuristics regardless of the heuristic selection
method.

4.4 Comparison of the SA based hyper-heuristics

Different SA based hyper-heuristics are implemented using different heuristic selection
methods, namely; Choice Function, Greedy and Simple Random. L–SA delivers a very poor



Ann Oper Res

Table 3 %–improvement
generated by CF–MC over
CF–EMCQ and SR–EMCQ for
each problem instance as the
maximum number of iterations
change from 106 to 107

CF–MC %-improvement

maxIteration = 106 maxIteration = 107

problem CF–EMCQ SR–EMCQ CF–EMCQ SR–EMCQ

car91 I 59.16 58.71 86.62 –

ear83 I 52.68 54.68 65.48 67.49

hecs92 I 83.02 83.65 85.11 85.06

lse92 64.57 65.35 75.36 76.59

tre93 76.82 75.96 89.14 88.57

Table 4 Performance comparison of SA hyper-heuristics based on rankings (1 to 4) with respect to the best
solution obtained in fifty runs. Ties are taken into account while computing the ranks

maxIteration = 106 maxIteration = 107

problem L–SA CF–SA GR–SA SR–SA L–SA CF–SA GR–SA SR–SA

car91 I 4 1 3 2 4 1 3 2

car92 I 4 2 1 3 4 2 1 3

ear83 I 3 1 2 4 1 4 2 3

hecs92 I 4 1 3 2 4 2 3 1

kfu93 4 2 3 1 4 1 2 3

lse91 4 2 1 3 2 1 3 4

pur93 I 3 1 4 2 3 2 4 1

rye92 3 4 2 1 4 2 1 3

sta83 I 3 1 4 2 4 1.5 3 1.5

tre92 2 1 3 4 3 1 4 2

uta92 I 3 4 1 2 3 4 1 2

ute92 4 1 3 2 1 4 2 3

yor83 I 3 4 1.5 1.5 3 2 1 4

avr. 3.38 1.92 2.42 2.27 3.08 2.12 2.31 2.50

st.dev. 0.65 1.26 1.08 0.97 1.12 1.16 1.11 1.00

performance in finding the best when compared to the rest of the hyper-heuristics as illus-
trated in Table 4. CF–SA delivers a superior performance with an average rank of 1.92 and
2.12 over L–SA with an average rank of 3.38 and 3.08 over all problem instances when the
maximum number of iterations is 106 and 107, respectively.

The average performance comparison between L–SA and CF–SA based on the Wilcoxon
test and the average %-improvement of the best approach over the other one for a given
problem instance are provided in Table 5. The average performance of CF–SA is better than
L–SA. It is observed that even SR–SA performs better than L–SA on average. The learning
mechanism loses against a random choice heuristic selection. Bai et al. (2007) claims that
L–SA yields a poor performance if hill climbers are used as low level heuristics. Yet, these
heuristics are not hill climbers in this study. The learning mechanism simply fails to discover
the best low level constraint based heuristic to employ at a step using historical information.
On the other hand, a Choice Function combined with the same move acceptance provides a
better learning mechanism.



Ann Oper Res

Table 5 Average performance comparison of the L–SA and CF–SA hyper-heuristics. A > B indicates
that the approach A performs significantly better than B within a confidence interval of 95% based on the
Wilcoxon test over fifty runs for a given problem, while A≈B indicates that A performs slightly better than
B and this performance variation is not statistically significant

maxIteration = 106 Avr. maxIteration = 107 Avr.

problem Performance %-impr. Performance %-impr.

car91 I CF–SA > L–SA 26.9 CF–SA > L–SA 52.9

car92 I CF–SA > L–SA 4.4 CF–SA > L–SA 19.2

ear83 I CF–SA ≈ L–SA 4.9 L–SA ≈ CF–SA –

hecs92 I CF–SA > L–SA 29.9 CF–SA > L–SA 31.0

kfu93 CF–SA ≈ L–SA 8.6 CF–SA ≈ L–SA 9.7

lse91 CF–SA ≈ L–SA 4.3 CF–SA ≈ L–SA 8.9

pur93 I CF–SA > L–SA 10.4 CF–SA > L–SA 2.1

rye92 L–SA ≈ CF–SA – CF–SA ≈ L–SA 5.6

sta83 I CF–SA ≈ L–SA 0.1 CF–SA ≈ L–SA 0.1

tre92 CF–SA ≈ L–SA 7.1 CF–SA ≈ L–SA 25.0

uta92 I L–SA ≈ CF–SA – L–SA ≈ CF–SA –

ute92 CF–SA ≈ L–SA 5.0 L–SA ≈ CF–SA –

yor83 I L–SA > CF–SA – CF–SA > L–SA 1.3

5 Conclusion

Hyper-heuristics are emerging as simple to implement methodologies for solving difficult
problems. As a sub-type, selection hyper-heuristics utilise perturbative (improvement) low
level heuristics. Such a hyper-heuristic attempts to improve an initial solution iteratively by
selecting the most appropriate heuristic to employ and deciding whether to accept or re-
ject the outcome at each step. In this paper, a set of new and previously proposed Monte
Carlo based selection hyper-heuristics are investigated over a set of examination timetabling
benchmark data. In almost all existing hyper-heuristics, an improving move is accepted.
Monte Carlo move acceptance methods also make use of this strategy. Furthermore, they al-
low acceptance of worsening moves based on a parametric probability distribution function.

As discussed in Özcan et al. (2008) and Bilgin et al. (2007), the choice of hyper-heuristic
components and the nature of low level heuristics affect the overall performance of a hyper-
heuristic. As a move acceptance approach, simulated annealing shows potential. It is ob-
served that the use of reheating within simulated annealing might improve the performance
of a hyper-heuristic even more. Simple Random and Greedy heuristic selection methods are
blind strategies. They get no feedback from the search process. On the other hand, Choice
Function and L heuristic selection methods dynamically get information and attempt to learn
to choose the right heuristic at a given decision point during the search. Although L–SA
performs better than some hyper-heuristics utilising standard simulated annealing move ac-
ceptance methods and EMCQ, it fails significantly against hyper-heuristics using Simple
Random, Greedy, Choice Function heuristic selection methods instead of L. Even increas-
ing the maximum number of iterations does not help. Choice function and L schemes are
based on reinforcement learning (Kaelbling et al. 1996). Heuristics are rewarded by means
of a utility function as they are successful in improving a solution or being accepted by the
move acceptance. Nareyek (2003) shows that using maximal utility value for heuristic selec-
tion performs better. The Choice Function makes use of this strategy, while L does not. This



Ann Oper Res

might be one of the reasons why L–SA performs worse than Choice Function–SA. Also, L
rewards a heuristic whenever the resulting solution is accepted whether the move yields an
improvement or not. Considering that L uses a short term memory, such a strategy might be
deceptive while choosing a low level heuristic.

In order to achieve a high level of generality, a hyper-heuristic should perform consis-
tently across different problem domains. In the context of selection hyper-heuristics based
on perturbative low level heuristics, it is vital to form the right coupling between heuristic
selection and move acceptance. Simulated annealing with reheating turns out to be a very
promising hyper-heuristic component based on the results that are obtained from previous
studies and this one. Furthermore, the work described in this paper contributes to the goal of
understanding the underlying relationship between heuristic selection and move acceptance
linking the heuristic design process and learning.

References

Abdullah, S., Ahmadi, S., Burke, E. K., Dror, M., & McCollum, B. (2007). A tabu-based large neighbourhood
search methodology for the capacitated examination timetabling problem. Journal of the Operational
Research Society, 58, 1494–1502.

Alkan, A., & Özcan, E. (2003). Memetic algorithms for timetabling. In Proc. of the congress on evolutionary
computation (Vol. 3, pp. 1796–1802).

Asmuni, H., Burke, E. K., & Garibaldi, J. M. (2005). Fuzzy multiple ordering criteria for examination
timetabling. In Lecture notes in computer science: Vol. 3616. Selected papers from the 5th international
conference on the practice and theory of automated timetabling (pp. 334–353). Berlin: Springer.

Ayob, M., & Kendall, G. (2003). A Monte Carlo hyper-heuristic to optimise component placement sequenc-
ing for multi head placement machine. In Proceedings of the international conference on intelligent
technologies (InTech’03), Chiang Mai, Thailand (pp. 132–141).

Azimi, Z. N. (2005). Hybrid heuristics for examination timetabling problem. Applied Mathematics and Com-
putation, 163(2), 705–733.

Bai, R., & Kendall, G. (2005). An investigation of automated planograms using a simulated annealing based
hyper-heuristics. In T. Ibaraki, K. Nonobe, & M. Yagiura (Eds.), Operations research/computer science
interface series: Vol. 32. Metaheuristics: progress as real problem solver (pp. 87–108). Berlin: Springer.

Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., & McCollum, B. (2007). A simulated annealing hyper-
heuristic methodology for flexible decision support (Tech. Rep. NOTTCS-TR-2007-8). School of CSiT,
University of Nottingham.

Bilgin, B., Özcan, E., & Korkmaz, E. E. (2007). An experimental study on hyper-heuristics and exam
timetabling. In Lecture notes in computer science: Vol. 3867. Practice and theory of automated
timetabling VI (PATAT 2006) (pp. 394–412). Berlin: Springer.

Broder, S. (1964). Final examination scheduling. Communications of the ACM, 7, 494–498.
Burke, E. K., & Newall, J. P. (1999). A multistage evolutionary algorithm for the timetable problem. IEEE

Trans Evolutionary Computation, 3(1), 63–74.
Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling problems through adaption of heuristic

orderings. Annals of Operations Research, 129, 107–134.
Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal

of Operational Research, 140(2), 266–280.
Burke, E. K., Newall, J. P., & Weare, R. F. (1996a). A memetic algorithm for university exam timetabling. In

Lecture notes in computer science: Vol. 1153. Selected papers from the first international conference on
practice and theory of automated timetabling (pp. 241–250). Berlin: Springer.

Burke, E. K., Elliman, D. G., Ford, P. H., & Weare, R. F. (1996b). Examination timetabling in British univer-
sities: a survey. In Lecture notes in computer science: Vol. 1153. Selected papers from the first interna-
tional conference on practice and theory of automated timetabling (pp. 76–90). Berlin: Springer.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P., & Schulenburg, S. (2003). Hyper-heuristics: An
emerging direction in modern search technology. In F. Glover & G. Kochenberger (Eds.), Handbook of
metaheuristics (pp. 457–474). Norwell: Kluwer Academic.

Burke, E. K., Hyde, M. R., & Kendall, G. (2006). Evolving bin packing heuristics with genetic programming.
In Lecture notes in computer science: Vol. 4193. Proceedings of the 9th international conference on
parallel problem solving from nature (PPSN 2006), Reykjavik, Iceland (pp. 860–869). Berlin: Springer.



Ann Oper Res

Burke, E. K., Hyde, M. R., Kendall, G., & Woodward, J. (2007a). Automatic heuristic generation with genetic
programming: evolving a jack-of-all-trades or a master of one. In GECCO ’07: proceedings of the
9th annual conference on genetic and evolutionary computation (pp. 1559–1565). New York: ACM.
doi:10.1145/1276958.1277273.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007b). A graph-based hyper-heuristic for
educational timetabling problems. European Journal of Operational Research, 176(1), 177–192.

Caramia, M., Dell’Olmo, P., & Italiano, G. F. (2001). New algorithms for examination timetabling. In Lecture
notes in computer science: Vol. 1982. WAE ’00: the 4th international workshop on algorithm engineer-
ing (pp. 230–242). London: Springer.

Caramia, M., Dellolmo, P., & Italiano, G. F. (2008). Novel local search-based approaches to university exam-
ination timetabling. INFORMS Journal on Computing, 20(1), 86–99.

Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms. Operations
Research Society of America, 34(2), 193–202.

Carter, M. W., & Laporte, G. (1996). Recent developments in practical examination timetabling. In Lecture
notes in computer science: Vol. 1153. Selected papers from the first international conference on practice
and theory of automated timetabling (pp. 373–383). Berlin: Springer.

Carter, M. W., Laporte, G., & Lee, S. (1996). Examination timetabling: Algorithmic strategies and applica-
tions. Journal of the Operational Research Society, 47(3), 373–383.

Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation
algorithm. Journal of Optimization Theory and Applications, 45(1), 41–51.

Cole, A. J. (1964). The preparation of examination timetables using a small-store computer. The Computer
Journal, 7, 117–121.

Corne, D., Ross, P., & Fang, H. L. (1994). Fast practical evolutionary timetabling. In Selected papers from
AISB workshop on evolutionary computing (pp. 250–263).

Corr, P. H., McCollum, B., McGreevy, M.A.J., & McMullan, P. (2006). A new neural network based construc-
tion heuristic for the examination timetabling problem. In Parallel problem solving from nature—PPSN
IX (pp. 392–401).

Cowling, P., Kendall, G., & Soubeiga, E. (2001a). A hyperheuristic approach to scheduling a sales summit. In
PATAT ’00: selected papers from the third international conference on practice and theory of automated
timetabling III (pp. 176–190). London: Springer.

Cowling, P., Kendall, G., & Soubeiga, E. (2001b). A parameter-free hyperheuristic for scheduling a sales
summit. In Proceedings of the 4th metaheuristic international conference (pp. 127–131).

Cowling, P., Kendall, G., & Soubeiga, E. (2002). Hyperheuristics: A tool for rapid prototyping in scheduling
and optimisation. In Lecture notes in computer science: Vol. 4193. EvoWorkShops (pp. 1–10). Berlin:
Springer.

Dowsland, K., & Thompson, J. (2005). Ant colony optimization for the examination scheduling problem.
Journal of the Operational Research Society, 56(4), 426–438.

Dowsland, K. A., Soubeiga, E., & Burke, E. (2007). A simulated annealing based hyperheuristic for deter-
mining shipper sizes for storage and transportation. European Journal of Operational Research, 179(3),
759–774.

Eley, M. (2006). Ant algorithms for the exam timetabling problem. In Proc. of the 5th international confer-
ence on the practice and theory of automated timetabling (pp. 364–382).

Ergul, A. (1996). Ga-based examination scheduling experience at middle east technical university. In Lecture
notes in computer science: Vol. 1153. Practice and theory of automated timetabling (pp. 212–226).
Berlin: Springer.

Ersoy, E., Özcan, E., & Uyar, S. (2007). Memetic algorithms and hyperhill-climbers. In Proc. of the 3rd
multidisciplinary int. conf. on scheduling: theory and applications (MISTA’07) (pp. 159–166).

Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity flow problems.
SIAM Journal on Computing, 5(4), 691–703.

Gaspero, L. D., & Schaerf, A. (2001). Tabu search techniques for examination timetabling. In E. K. Burke
& W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Third international conference on
practice and theory of automated timetabling, PATAT2000 (pp. 104–117). Berlin: Springer.

Gogos, C., Alefragis, P., & Housos, E. (2010). An improved multi-staged algorithmic process
for the solution of the examination timetabling problem. Annals of Operations Research.
doi:10.1007/s10479-010-0712-3.

Goldberg, DE (1989). Genetic algorithms in search, optimization and machine learning. Boston: Addison-
Wesley.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey. Journal of
Artificial Intelligence Research, 4, 237–285.

Kendall, G., & Hussin, N. M. (2005). A tabu search hyper-heuristic approach to the examination timetabling
problem at the Mara University of Technology. In Lecture notes in computer science: Vol. 3616. Practice
and theory of automated timetabling V (pp. 270–293). Berlin: Springer.

http://dx.doi.org/10.1145/1276958.1277273
http://dx.doi.org/10.1007/s10479-010-0712-3


Ann Oper Res

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220,
671–680.

Krasnogor, N., & Gustafson, S. (2004). A study on the use of ‘self-generation’ in memetic algorithms. Natural
Computing, 3(1), 53–76.

Leighton, F. T. (1979). A graph coloring algorithm for large scheduling problems. Journal of Research of the
National Bureau of Standards, 84, 489–506.

Lundy, M., & Mees, A. (1986). Convergence of an annealing algorithm. Mathematical Programming, 34,
111–124.

Marin, H. T. (1998). Combinations of ga and csp strategies for solving the examination timetabling problem
(PhD thesis). Instituto Technologico y de Estudios Superiores de Monterrey.

McCollum, B. (2006). University timetabling: Bridging the gap between research and practice. In Proc. of the
5th international conference on the practice and theory of automated timetabling (pp. 15–35). Berlin:
Springer.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Gaspero, L., Qu, R., &
Burke, E. K. (2010). Setting the research agenda in automated timetabling: the second international
timetabling competition. INFORMS Journal on Computing, 22, 120–130.

Merlot, L. T., Boland, N., Hughes, B. D., & Stuckey, P. J. (2003). A hybrid algorithm for the examination
timetabling problem. In Lecture notes in computer science: Vol. 1153. Practice and theory of automated
timetabling IV, PATAT 2002 (pp. 207–231). Berlin: Springer.

Müller, T. (2009). Itc2007 solver description: A hybrid approach. Annals of Operations Research, 172(1),
429–446.

Nareyek, A. (2003). Choosing search heuristics by non-stationary reinforcement learning. In M. G. C. Re-
sende & J. P. de Sousa (Eds.), Metaheuristics: computer decision-making (pp. 523–544). Norwell:
Kluwer Academic, Chap. 9.

Ong, Y. S., Lim, M. H., Zhu, N., & Wong, K. W. (2006). Classification of adaptive memetic algorithms: a
comparative study. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 36(1), 141–152.

Özcan, E., & Alkan, A. (2007). A memetic algorithm for solving a timetabling problem: An incremental
strategy. In: P. Baptiste, G. Kendall, A.M. Kordon & F. Sourd (Eds.), Proc. of the 3rd multidisciplinary
int. conf. on scheduling: theory and applications (pp. 394–401).

Özcan, E., & Ersoy, E. (2005). Final exam scheduler—fes. In Proc. of the congress on evolutionary compu-
tation (pp. 1356–1363). New York: IEEE Press.

Özcan, E., Bilgin, B., & Korkmaz, E. E. (2006). Hill climbers and mutational heuristics in hyperheuristics.
In Lecture notes in computer science: Vol. 4193. Proceedings of the 9th international conference on
parallel problem solving from nature (PPSN 2006), Reykjavik, Iceland (pp. 202–211). Berlin: Springer.

Özcan, E., Bilgin, B., & Korkmaz, E. E. (2008). A comprehensive survey of hyperheuristics. Intelligent Data
Analysis, 12(1), 3–23.

Paquete, L. F., & Fonseca, C. M. (2001). A study of examination timetabling with multiobjective evolutionary
algorithms. In Proc. of the 4th metaheuristics international conference (MIC 2001) (pp. 149–154).

Petrovic, S., Patel, V., & Yang, Y. (2005). Examination timetabling with fuzzy constraints. In Lecture notes
in computer science: Vol. 3616. The 5th int. conf. on the practice and theory of automated timetabling
(pp. 313–333). Berlin: Springer.

Petrovic, S., Yang, Y., & Dror, M. (2007). Case-based selection of initialisation heuristics for metaheuristic
examination timetabling. Expert Systems with Applications, 33(3), 772–785.

Qu, R., Burke, E. K., McCollum, B., Merlot, L., & Lee, S. (2009). A survey of search methodologies and
automated system development for examination timetabling. Journal of Scheduling, 12(1), 55–89.

Ross, P., Corne, D., & Fang, H. L. (1994). Improving evolutionary timetabling with delta evaluation and di-
rected mutation. In PPSN III: proceedings of the international conference on evolutionary computation.
The third conference on parallel problem solving from nature (pp. 556–565). London: Springer.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127.
Schaerf, A. & Gaspero, L.D. (2006). Measurability and reproducibility in timetabling research: State-of the-

art and discussion (invited paper). In Proc. of the 6th int. conf. on the practice and theory of automated
timetabling (pp. 53–62).

Wong, T., Cote, P., & Gely, P. (2002). Final exam timetabling: a practical approach. In Proc. of the IEEE
canadian conference on electrical and computer engineering (Vol. 2, pp. 726–731).


	Monte Carlo hyper-heuristics for examination timetabling
	Abstract
	Introduction
	The examination timetabling problem
	An overview of approaches to examination timetabling
	Problem formulation

	Selection hyper-heuristics for examination timetabling
	A Monte Carlo based hyper-heuristic framework
	Heuristic selection methods
	Move acceptance methods
	Representation and low level heuristics

	Computational experiments
	Experimental setup
	Comparison of L-SA, SR-MC and CF-MC 
	Performance of the EMCQ based hyper-heuristics
	Comparison of the SA based hyper-heuristics

	Conclusion
	References


