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Abstract

To navigate reliably in indoor environments, a mobile robot

must know where it is. Thus, reliable position estimation is

a key problem in mobile robotics. We believe that prob-

abilistic approaches are among the most promising can-

didates to providing a comprehensive and real-time solu-

tion to the robot localization problem. However, current

methods still face considerable hurdles. In particular, the

problems encountered are closely related to the type of

representation used to represent probability densities over

the robot’s state space. Recent work on Bayesian filter-

ing with particle-based density representations opens up a

new approach for mobile robot localization, based on these

principles. In this paper we introduce the Monte Carlo

Localization method, where we represent the probability

density involved by maintaining a set of samples that are

randomly drawn from it. By using a sampling-based repre-

sentation we obtain a localization method that can repre-

sent arbitrary distributions. We show experimentally that

the resulting method is able to efficiently localize a mo-

bile robot without knowledge of its starting location. It is

faster, more accurate and less memory-intensive than ear-

lier grid-based methods.

1 Introduction

Two key problems in mobile robotics are global position

estimation and local position tracking. We define global

position estimation as the ability to determine the robot’s

position in an a priori or previously learned map, given no

other information than that the robot is somewhere on the

map. If no a priori map is available, many applications

allow for such a map to be built over time as the robot ex-

plores its environment. Once a robot has been localized

in the map, local tracking is the problem of keeping track

of that position over time. Both these capabilities are nec-

essary to enable a robot to execute useful tasks, such as

office delivery or providing tours to museum visitors. By

knowing its global position, the robot can make use of the

existing maps, which allows it to plan and navigate reli-

ably in complex environments. Accurate local tracking on

the other hand, is useful for efficient navigation and local

manipulation tasks. Both these sub-problems are of funda-

mental importance to building truly autonomous robots.

We believe that probabilistic approaches are among

the most promising candidates to providing a comprehen-

sive and real-time solution to the robot localization prob-

lem, but current methods still face considerable hurdles.

Kalman-filter based techniques have proven to be robust

and accurate for keeping track of the robot’s position.

However, a Kalman filter cannot represent ambiguities and

lacks the ability to globally (re-)localize the robot in the

case of localization failures. Although the Kalman filter

can be amended in various ways to cope with some of

these difficulties, recent approaches [1, 2, 3, 4, 5] have used

richer schemes to represent uncertainty, moving away from

the restricted Gaussian density assumption inherent in the

Kalman filter. In previous work [5] we introduced the grid-

based Markov localization approach which can represent

arbitrarily complex probabilitydensities at fine resolutions.

However, the computational burden and memory require-

ments of this approach are considerable. In addition, the

grid-size and thereby also the precision at which it can rep-

resent the state has to be fixed beforehand.

In this paper we present the Monte Carlo Localization

method (which we will denote as the MCL-method) where

we take a different approach to representing uncertainty:

instead of describing the probability density function itself,

we represent it by maintaining a set of samples that are ran-

domly drawn from it. To update this density representation

over time, we make use of Monte Carlo methods that were

invented in the seventies [6], and recently rediscovered in-

dependently in the target-tracking [7], statistical [8] and

computer vision literature [9, 10].

By using a sampling-based representation we obtain a

localization method that has several key advantages with

respect to earlier work:

1. In contrast to Kalman filtering based techniques, it is

able to represent multi-modal distributions and thus

can globally localize a robot.

2. It drastically reduces the amount of memory required

compared to grid-based Markov localization, and it



can integrate measurements at a considerably higher

frequency.

3. It is more accurate than Markov localization with a

fixed cell size, as the state represented in the samples

is not discretized.

4. It is easy to implement.

The remainder of this paper is organized as follows: in

the next section (Section 2) we introduce the problem of

localization as an instance of the Bayesian filtering prob-

lem. Then, in Section 3, we discuss existing approaches to

position estimation, focusing on the type of density repre-

sentation that is used. In Section 4, we describe the Monte

Carlo localization method in detail. Finally, Section 5 con-

tains experimental results illustrating the various properties

of the MCL-method.

2 Robot Localization

In robot localization, we are interested in estimating the

state of the robot at the current time-step k, given knowl-

edge about the initial state and all measurements Zk =
fzk; i = 1::kg up to the current time. Typically, we will

work with a three-dimensional state vector x = [x; y; �]T ,

i.e. the position and orientation of the robot. This estima-

tion problem is an instance of the Bayesian filtering prob-

lem, where we are interested in constructing the posterior

density p(xkjZk) of the current state conditioned on all

measurements. In the Bayesian approach, this probability

density function (PDF) is taken to represent all the knowl-

edge we possess about the state xk, and from it we can

estimate the current position. Often used estimators are the

mode (the maximum a posteriori or MAP estimate) or the

mean, when the density is unimodal. However, particu-

larly during the global localization phase, this density will

be multi-modal and calculating a single position estimate

is not appropriate.

Summarizing, to localize the robot we need to recur-

sively compute the density p(xkjZk) at each time-step.

This is done in two phases:

Prediction Phase In the first phase we use a motion

model to predict the current position of the robot in the

form of a predictive PDF p(xkjZk�1), taking only mo-

tion into account. We assume that the current state xk is

only dependent on the previous state xk�1 (Markov) and

a known control input uk�1, and that the motion model is

specified as a conditional density p(xkjxk�1;uk�1). The

predictive density over xk is then obtained by integration:

p(xkjZk�1) =

Z
p(xkjxk�1;uk�1) p(xk�1jZk�1) dxk�1

(1)

Update Phase In the second phase we use a measure-

ment model to incorporate information from the sensors

to obtain the posterior PDF p(xkjZk). We assume that

the measurement zk is conditionally independent of earlier

measurements Zk�1 given xk, and that the measurement

model is given in terms of a likelihood p(zkjxk). This

term expresses the likelihood that the robot is at location

xk given that zk was observed. The posterior density over

xk is obtained using Bayes theorem:

p(xkjZk) =
p(zkjxk)p(xkjZk�1)

p(zkjZ
k�1)

(2)

After the update phase, the process is repeated recur-

sively. At time t0 the knowledge about the initial state x0
is assumed to be available in the form of a density p(x0).
In the case of global localization, this density might be a

uniform density over all allowable positions. In tracking

work, the initial position is often given as the mean and co-

variance of a Gaussian centered around x0. In our work,

as in [11], the transition from global localization to track-

ing is automatic and seamless, and the PDF evolves from

spanning the whole state space to a well-localized peak.

3 Existing Approaches:

A Tale of Density Representations

The solution to the robot localization problem is ob-

tained by recursively solving the two equations (1) and (2).

Depending on how one chooses to represent the density

p(xkjZk), one obtains various algorithms with vastly dif-

ferent properties:

The Kalman filter If both the motion and the measure-

ment model can be described using a Gaussian density,

and the initial state is also specified as a Gaussian, then

the density p(xkjZk) will remain Gaussian at all times. In

this case, equations (1) and (2) can be evaluated in closed

form, yielding the classical Kalman filter [12]. Kalman-

filter based techniques [13, 14, 15] have proven to be ro-

bust and accurate for keeping track of the robot’s position.

Because of its concise representation (the mean and co-

variance matrix suffice to describe the entire density) it

is also a particularly efficient algorithm. However, in its

pure form, the Kalman filter does not correctly handle non-

linear or non-Gaussian motion and measurement models, is

unable to recover from tracking failures, and can not deal

with multi-modal densities as encountered during global

localization. Whereas non-linearities, tracking failure and

even multi-modal densities can be accomodated using non-

optimal extensions of the Kalman filter, most of these dif-

ficulties stem from the the restricted Gaussian density as-

sumption inherent in the Kalman filter.



Topological Markov Localization To overcome these

disadvantages, different approaches have used increasingly

richer schemes to represent uncertainty. These different

methods can be roughly distinguished by the type of dis-

cretization used for the representation of the state space.

In [1, 2, 3, 4], Markov localization is used for landmark-

based corridor navigation and the state space is organized

according to the topological structure of the environment.

Grid-based Markov Localization To deal with multi-

modal and non-Gaussian densities at a fine resolution (as

opposed to the coarser discretization in the above meth-

ods), one can perform numerical integration over a grid of

points. This involves discretizing the interesting part of

the state space, and use it as the basis for an approxima-

tion of the density p(xkjZ
k), e.g. by a piece-wise con-

stant function [16]. This idea forms the basis of our previ-

ously introduced grid-based Markov localization approach

(see [5, 11]). Methods that use this type of representation

are powerful, but suffer from the disadvantages of compu-

tational overhead and a priori commitment to the size of

the state space. In addition, the resolution and thereby also

the precision at which they can represent the state has to be

fixed beforehand. The computational requirements have

an effect on accuracy as well, as not all measurements can

be processed in real-time, and valuable information about

the state is thereby discarded. Recent work [11] has begun

to address some of these problems, using octrees to ob-

tain a variable resolution representation of the state space.

This has the advantage of concentrating the computation

and memory usage where needed, and addresses to some

extent the limitation of fixed accuracy.

Sampling-based Methods Finally, one can represent

the density by a set of samples that are randomly drawn

from it. This is the representation we will use, and it forms

the topic of the next section.

4 Monte Carlo Localization

In sampling-based methods one represents the density

p(xkjZ
k) by a set of N random samples or particles Sk =

fsik; i = 1::Ng drawn from it. We are able to do this be-

cause of the essential duality between the samples and the

density from which they are generated [17]. From the sam-

ples we can always approximately reconstruct the density,

e.g. using a histogram or a kernel based density estimation

technique.

The goal is then to recursively compute at each time-

step k the set of samples Sk that is drawn from p(xkjZ
k).

A particularly elegant algorithm to accomplish this has re-

cently been suggested independently by various authors. It

is known alternatively as the bootstrap filter [7], the Monte-

Carlo filter [8] or the Condensation algorithm [9, 10].

These methods are generically known as particle filters,

and an overview and discussion of their properties can be

found in [18].

In analogy with the formal filtering problem outlined in

Section 2, the algorithm proceeds in two phases:

Prediction Phase In the first phase we start from the set

of particles Sk�1 computed in the previous iteration, and

apply the motion model to each particle sik�1
by sampling

from the density p(xkjs
i
k�1

;uk�1):

(i) for each particle sik�1
:

draw one sample s0
i
k from p(xkjs

i
k�1

;uk�1)

In doing so a new set S0k is obtained that approximates

a random sample from the predictive density p(xkjZ
k�1).

The prime in S0k indicates that we have not yet incorpo-

rated any sensor measurement at time k.

Update Phase In the second phase we take into account

the measurement zk, and weight each of the samples in

S0k by the weight mi
k = p(zkjs

0i
k), i.e. the likelihood of

s0
i
k given zk. We then obtain Sk by resampling from this

weighted set:

(ii) for j=1..N:

draw one Sk sample sjk from fs0
i
k;m

i
kg

The resampling selects with higher probability samples s0
i
k

that have a high likelihood associated with them, and in do-

ing so a new set Sk is obtained that approximates a random

sample from p(xkjZ
k). An algorithm to perform this re-

sampling process efficiently in O(N) time is given in [19].

After the update phase, the steps (i) and (ii) are repeated

recursively. To initialize the filter, we start at time k = 0
with a random sample S0 = fsi

0
g from the prior p(x0).

4.1 A Graphical Example

One iteration of the algorithm is illustrated in Figure 1.

In the figure each panel in the top row shows the exact den-

sity, whereas the panel below shows the particle-based rep-

resentation of that density. In panel A, we start out with a

cloud of particles Sk�1 representing our uncertainty about

the robot position. In the example, the robot is fairly local-

ized, but its orientation is unknown. Panel B shows what

happens to our belief state when we are told the robot has

moved exactly one meter since the last time-step: we now

know the robot to be somewhere on a circle of 1 meter

radius around the previous location. Panel C shows what

happens when we observe a landmark, half a meter away,

somewhere in the top-right corner: the top panel shows the

likelihood p(zkjxk), and the bottom panel illustrates how

each sample s0
i
k is weighted according to this likelihood.
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p(xk�1jZk�1) p(xkjZk�1) p(zkjxk) p(xkjZk)

Fig. 1: The probability densities and particle sets for one

iteration of the algorithm. See text for detail.

Finally, panel D shows the effect of resampling from this

weighted set, and this forms the starting point for the next

iteration.

4.2 Theoretical Justification

Good explanations of the mechanism underlying the el-

egant and simple algorithm sketched above are given in

[19, 20]. We largely follow their exposition below:

Prediction Phase To draw an approximately random

sample from the exact predictive PDF p(xkjZ
k�1), we use

the motion model and the set of particles Sk�1 to construct

the empirical predictive density [20]:

p̂(xkjZk�1) =
NX
i=1

p(xkjsik�1;uk�1) (3)

Equation (3) describes a mixture density approximation to

p(xkjZ
k�1), consisting of one equally weighted mixture

component p(xkjsik�1;uk�1) per sample sik�1. To sample

from this mixture density, we use stratified sampling and

draw exactly one sample s0
i
k from each of the N mixture

components to obtain S0k.

Update Phase In the second phase we would like to

use the measurement model to obtain a sample S0k from

the posterior p(xkjZ
k). Instead we will use Eq. (3) and

sample from the empirical posterior density:

p̂(xkjZ
k) / p(zkjxk)p̂(xkjZ

k�1) (4)

This is accomplished using a technique from statistics

called importance sampling. It is used to obtain a sample

from a difficult to sample density p(x) by instead sampling

from an easier density f(x). In a corrective action, each

sample is then re-weighted by attaching the importance

weight w = p(x)=f(x) to it. In the context of the parti-

cle filter, we would like to sample from p(x) = p̂(xkjZk),
and we use as importance function f(x) = p̂(xkjZk�1),
as we have already obtained a random sample S0k from it

in the prediction step. We then reweight each sample by:

mi
k =

g(x)

f(x)
=

p(zkjxk)p̂(xkjZ
k�1)

p̂(xkjZk�1)
= p(zkjxk)

The subsequent resampling is needed to convert the set of

weighted or non-random samples back into a set of equally

weighted samples Sk = fsikg.

The entire procedure of sampling, reweighting and sub-

sequently resampling to sample from the posterior is called

Sampling/Importance Resampling (SIR), and is discussed

in more depth in [17].

5 Experimental Results

Fig. 2: The robots RHINO (left) and

MINERVA (right) used for the experiments.

The Monte Carlo localization technique has been tested

extensively in our office environment using different

robotic platforms. In all these applications our approach

has shown to be both efficient and robust, running com-

fortably in real-time. In order to test our technique un-

der more challenging circumstances, the experiments de-

scribed here are based on data recorded from RHINO, an

RWI B21 robot, and MINERVA, an RWI B18 robot (see

Figure 2). While the data collected by RHINO was taken

in a typical office environment, MINERVA’s datasets con-

sist of logs recorded during a deployment of the robot as a

museum tour-guide in the Smithsonian’s National Museum

of American History. Although the data was collected at an

earlier time the time-stamps in the logs were used to recre-

ate the real-time datastream coming from the sensors, so

that the results do not differ from results obtained on the

real robots.



Robot position
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Fig. 3: Global localization:

Initialization.

Fig. 4: Ambiguity due to symmetry. Fig. 5: Achieved localization.

5.1 Global Localization

One of the key advantages of the MCL-method over

Kalman-filter based approaches is its ability to represent

multi-modal probability distributions. This ability is a

precondition for localizing a mobile robot from scratch,

i.e. without knowledge of its starting location. The global

localization capability of the MCL-method is illustrated in

Figs. 3 to 5. In this particular experiment, we used the

sonar readings recorded from RHINO in a department of

the University of Bonn, Germany. In the first iteration, the

algorithm is initialized by drawing 20,000 samples from a

uniform probability density save where there are known to

be (static) obstacles. The robot started in the left corner

of the corridor and the distribution of the samples after the

first scan of sonar measurements is observed, is shown in

Figure 3. As the robot enters the upper left room (see Fig-

ure 4), the samples are already concentrated around two

positions. One is the true location of the robot and the

other occurs due to the symmetry of the corridor (imagine

the robot moving into the lower right room). In addition,

a few scattered samples survive here and there. It should

be noted that in this early stage of localization, the abil-

ity to represent ambiguous probability distributions is vital

for successful position estimation. Finally, in the last fig-

ure (Figure 5), the robot has been able to uniquely deter-

mine its position because the upper left room looks (to the

sonars) different from the symmetrically opposed room.

5.2 Accuracy of Position Tracking

To compare the accuracy of the Monte Carlo method

with our earlier grid-based approach, we again used data

recorded from RHINO. Figure 6 shows the test environ-

ment with the path taken by the robot. The figure also de-

picts 22 reference points for which we determined the ac-

curate positions of the robot on its path (this data has also

been used for accuracy tests in [11, 21]). We conducted

four evaluations of the laser and the sonar measurements
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Fig. 6: Path of the robot and reference positions

with small corruptions on the odometry data to get statisti-

cally significant results. The average distance between the

estimated positions and the reference positions using the

grid-based localization approach is shown in Figure 7, as a

function of cell size (the error-bars provide 95% confidence

intervals). As is to be expected, the error increases with in-

creasing cell size (see [11] for a detailed discussion).
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Fig. 7: Accuracy of grid-based Markov localization using

different spatial resolutions.

We also ran our MCL-method on the recordings from



the same run, while varying the number of samples used

to represent the density. The result is shown in Figure 8.

It can be seen that the accuracy of our MCL-method can
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Fig. 8: Accuracy of MCL-method for different numbers of

samples (log scale).

only be reached by the grid-based localization when using

a cell size of 4cm. Another salient property of this graph

is the trade-off between increased representational power

and computational overhead. Initially, the accuracy of the

method increases with the number of samples (shown on

a log scale for clarity). However, as increased process-

ing time per iteration causes available measurements to be

discarded, less information is integrated into the posterior

densities and the accuracy goes down.

5.3 National Museum of American History

The MCL-method is also able to track the position of a

robot for long periods of time, even when using inaccu-

rate occupancy grid maps and when the robot is moving

at high speeds. In this experiment, we used recorded laser

data from the robotic tour-guide MINERVA, as it was mov-

ing with speeds up to 1.6 m/sec through the Smithsonian’s

National Museum of American History. At the time of this

run there were no visitors in the museum, and the robot was

remotely controlled by users connected through the world

wide web1.

Tracking performance is illustrated in Figure 9, which

shows the occupancy grid map of the museum used for lo-

calization along with the trajectory of the robot (the area

shown is about 40 by 40 meters). This run lasted for 75

minutes with the robot traveling over 2200 meters, during

which the algorithm never once lost track. For this particu-

lar tracking experiment, we used 5000 samples. In general,

far fewer samples are needed for position tracking than for

global localization, and an issue for future research is to

adapt the number of samples appropriately.

1See also http://www.cs.cmu.edu/˜minerva

Fig. 9: A laser-based map of the Smithsonian museum

with a succesful track of over 2 km.

Global localization in this environment behaved equally

impressive: using MCL, the robot’s location was uniquely

determined in less than 10 seconds. This level of perfor-

mance can only be obtained with the grid-based Markov

localization when using very coarse grids, which are un-

suitable for tracking purposes. To gain the same flexibil-

ity as the MCL-method, a variable resolution approach is

needed, as proposed in [11] (see also discussion below).

6 Conclusion and Future Work

In this work we introduced a novel approach to mo-

bile robot position estimation, the Monte Carlo localiza-

tion method. As in our previous grid-based Markov local-

ization work, we represent probability densities over the

entire state space. Instead of directly approximating this

density function we represent it by a set of samples ran-

domly drawn from it. Recent research on propagating and

maintaining this representation over time as new measure-

ments arrive, made this technique applicable to the prob-

lem of mobile robot localization.

By using Monte Carlo type methods, we have combined

the advantages of grid-based Markov localization with the

efficiency and accuracy of Kalman filter based techniques.

As with grid-based methods, we are able to represent ar-

bitrary probability densities over the robot’s state space.

Therefore, the MCL-method is able to deal with ambigui-

ties and thus can globally localize a robot. By concentrat-

ing the computational resources (samples) on the relevant

parts of the state space, our method can efficiently and ac-

curately estimate the position of the robot.

Compared to our previous grid-based method, this ap-

proach has significantly reduced memory requirements

while at the same time incorporating sensor measurements

at a considerably higher frequency. Grid-based Markov lo-



calization requires dedicated techniques for achieving the

same efficiency or increasing the accuracy. Recent work,

for example [11], uses octrees to reduce the space and time

requirements of Markov localization. However, this tech-

nique has a significant overhead (in space, time, and pro-

gramming complexity) based on the nature of the underly-

ing data structures.

Even though we obtained promising results with our

technique, there are still warrants for future work. One

potential problem with the specific algorithm we used is

that of sample impoverishment: in the resampling step,

samples sik with high weight will be selected multiple

times, resulting in a loss of ’diversity’ [18]. Several im-

provements to the basic algorithm have recently been sug-

gested [19, 20, 18], and it makes sense to see whether they

would also improve localization performance.

In future work, the reduced memory requirements of the

algorithm will allow us to extend the robot’s state with ve-

locity information, possibly increasing the tracking perfor-

mance. One can even extend the state with discrete vari-

ables indicating the mode of operation of the robot (e.g.

cruising, avoiding people, standing still), enabling one to

select a different motion model for each mode. This idea

has been explored with great success in the visual track-

ing literature [22], and it might further improve localiza-

tion performance. In addition, this would also allow us to

generate symbolic descriptions of the robot’s behavior.
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