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Abstract— For most outdoor applications, systems such as GPS
provide users with accurate position estimates. However, reliable
range-based localization using radio signals in indoor or urban
environments can be a problem due to multipath fading and
Line-of-Sight (LOS) blockage. The measurement bias introduced
by these delays causes significant localization error, even when
using additional sensors such as an Inertial Measurement Unit
(IMU) to perform outlier rejection.

We describe an algorithm for accurate indoor localization of
a sensor in a network of known beacons. The sensor measures
the range to the beacons using an Ultra-Wideband (UWB) signal
and uses statistical inference to infer and correct for the bias due
to LOS blockage in the range measurements. We show that a
particle filter can be used to estimate the joint distribution over
both pose and beacon biases. We use the particle filter estimation
technique specifically to capture the non-linearity of transitions
in the beacon bias as the sensor moves. Results using real-world
and simulated data are presented.
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I. INTRODUCTION

Since the Global Positioning System (GPS) became widely
accessible [1], localization in the absolute frame (or geolo-
cation) has found application in many different fields. In
areas with good Line-of-Sight (LOS) to GPS satellites, this
technique provides a good estimate (within a few meters) of
the user’s location on the earth. However, indoor geolocation
has always been a more difficult problem for several reasons.

First, the GPS signal is not strong enough to penetrate
through most materials. As soon as an object occludes the GPS
satellite, the signal is corrupted. This constrains the usefulness
of GPS to open environments, and limits its performance in
forests or in dense urban environments as retaining a lock
on the GPS signals becomes more difficult. GPS typically
becomes completely useless inside buildings. However the
need for accurate geolocation is not constrained to open
environments, both in civil and military applications. In the
commercial world for example, the tracking of inventory in
warehouses or cargo ships is an emerging need. In military
applications the problem of “blue force tracking”, i.e. knowing
where friendly forces are, is of vital importance, especially in
urban scenarios.

Our scenario is that of an agent (such as a person or
a vehicle) entering a building and accurately tracking its
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absolute position over time. The position estimate should
have a precision of one meter or less (i.e. on the order of
some of the building feature dimensions, such as hallway
width), a precision current indoor localization systems lack.
The solution presented in this paper relies on establishing a
local GPS-like network, where fixed beacons emit an Ultra-
Wideband (UWB) signal for ranging purposes (in that sense
they act just like GPS satellite). We assume that the location
of these beacons is known, for example because they are
placed outside and can rely on GPS. We also assume that
the agent carries an Inertial Measurement Unit (IMU) that
provides attitude rates and instant accelerations. The agent
then determines the time-of-arrival of the signals from which
it infers ranges to these fixed beacons. These ranges, coupled
with the IMU information, are then used to update the agent
position.

If the ranges to the beacons were accurate, then three
beacons would be sufficient to determine the agent position
with accuracy. However this is typically not the case in indoor
environments because of multipath fading and LOS blockage.

First, if a signal with a small bandwidth is used, it will suffer
from multipath fading. In the case of narrowband signals,
the distance between two points is inferred from the phase
difference between received and transmitted signals. In areas
with dense multipath, the received signal can be the sum of
a number of carriers arriving along different paths. The phase
measured will therefore be different than that of the sole LOS
carrier, and the range measurement will not reflect reality [2].

Second, in some areas of the building there may be no LOS
between transmitter and receiver. The received signal can then
be of two kinds. It may be from a direct path, where the
signal traveled along a straight line but had to go through
materials other than air: because the propagation of electro-
magnetic signals is slower in some materials than in the air, the
signal arrives with a greater delay. Alternatively, the received
signal may have come from reflections only. In both cases the
consequence of non-LOS (NLOS) propagation is the same:
the range estimate is larger than the true one.

The first difficulty–the fading of the signal due to multipath–
is satisfactorily resolved by choosing an appropriate radio
signal. Since the ranging accuracy increases with the band-
width [2], using a signal with a large bandwidth should resolve
this problem. UWB signals have been shown to be immune to



multipath fading [3]. For this reason UWB was selected as an
appropriate signal to perform indoor ranging in our proposed
concept.

The NLOS propagation difficulties, however, remain: in
fact, they cannot be resolved at the hardware level. As
mentioned above, NLOS propagations add a positive bias
to the true range between agent and beacon, so that the
measured range is larger than the true value. This error has
been identified as a fundamental limiting factor in UWB
ranging performance [4]. If accurate UWB channel modeling
was available, then it may be possible to predict these biases
throughout the environment. However in many applications
such modeling will not be accurate, and often not available
at all (e.g. military scenarios). In GPS receivers there is a
redundancy in measurements so that corrupted measurements
can be discarded [5]. However in an indoor environment
we will not usually have this luxury since most if not all
range measurements are likely to be biased (see Section III):
the biases will have to be estimated. An indoor localization
method oblivious to them is unlikely to perform well.

We show in this paper that these biases can be estimated
jointly with the position estimate of the sensor, allowing
for the range measurements to be corrected and the sen-
sor accurately localized. We use a particle filter estimation
technique specifically to capture the non-linearity of bias
transitions. In particular, conventional Extended Kalman Filter
(EKF) approaches [6] to the problem fail. We demonstrate
experimentally that the biases can dominate the signal to the
extent that outlier rejection causes the EKF to lose track of its
position.

In this paper we will focus on indoor localization in an
environment with a set of beacons with a priori known
positions; we will not deal with the problem of Simultaneous
Localization And Mapping (SLAM) of the beacon position:
the goal is to have a system that provides the same capabilities
as GPS, but for an indoor environment. We do, however,
assume that no map of the physical layout building is available
to infer the signal bias.

The paper is organized as follows. In Section II we describe
Monte Carlo localization. In Section III we present results
from UWB ranging tests and use them to model the biases
in the localization algorithm. Section IV contains the results
from experiments utilizing real-world data from Section III.
We conclude this paper in Section VI.

II. LOCALIZATION

Our goal is to estimate the position of an agent moving
indoor, given a set of UWB beacon ranges and IMU mea-
surements. In this paper we restrict ourselves without loss of
generality to two dimensions. We also assume for simplicity
that the translational velocity of the agent is known at all
times. Our state vector x(t) at time t for the agent contains
the following variables:

• x(t), y(t) are the coordinates of the agent
• θ(t) and θ̇(t) are its heading angle and heading angle rate
Since we are in a 2D environment with known velocity, the

IMU considered in this paper needs only be a rate gyro. The
measurement received at time t are then:

• zθ(t), the heading angle rate of the agent from the IMU
• r(t) = {r1(t) . . . , rn(t)}, the ranges from the n beacons.
Given the IMU and range measurements of the beacons,

we use the Bayes’ filter equation [7] to maintain a probability
distribution over the current state x(t):

p(x(t)|zθ(t), r(t), zθ(t−1), r(t−1), . . .) =

α · p(zθ(t)|x(t)) · p(r(t)|x(t)) × (1)
∫

p(x(t)|x(t−1)) · p(x(t−1)|zθ(t−1), r(t−1), . . .)dx(t − 1)

where α is a normalization term. We have assumed that the
current state x(t) only depends on the previous state x(t− 1)
(by the Markov assumption), and that the measurements zθ(t)
and r(t) are independent given x(t).

A conventional EKF is often used to maintain the distribu-
tion p(x(t)) by linearizing the prediction and measurement
functions and modeling the noise terms as Gaussian [6].
These two constraints allow the distribution over x(t) to be
approximated as a Gaussian. The advantage to such a repre-
sentation is that the distribution can be represented using only
a small number of parameters (a mean vector and covariance),
and updated very efficiently. If, however, the prediction and
measurement models are not easily linearized and the noise
terms are not Gaussian, then the EKF typically does an
increasingly poor job of approximating the true distribution
over x, often leading to filter divergence.

An alternate technique for representing p(x(t)) is to main-
tain a set of sample states drawn from the distribution [8].
Good techniques exist to sample from distributions even when
the distribution itself cannot be represented, and statistics
such as the mean, variance and higher order moments of the
distribution can be computed directly from the samples instead
of from the distribution parameters.

Monte Carlo Localization [9] is a form of robot localization
using Importance Sampling [10], in which samples from a
target distribution p(x) are desired but cannot be drawn di-
rectly. Instead, samples are drawn from some known proposal
distribution q(x(t)) that does permit direct sampling. Each
sample is assigned an importance weight p(x(t))/q(x(t)),
and the set of weighted samples can be used in place of the
distribution p(x(t)). In sampling problems where the target
distribution changes over time, the sample weights can be
updated directly to reflect the new distribution, although finite
numerical precision can cause the sample weights to converge
eventually to 0. To avoid this problem, in Importance Sam-
pling Resampling [11], the weighted samples are periodically
resampled according to their weights to generate a new set of
uniformly weighted samples.

In the localization problem, our target distribution is
p(x(t)|z(t), r(t), z(t−1), r(t−1), . . .). Under the assumption
that we do not have a parametric representation of this distri-
bution, we maintain a set of particles where the ith particle
x[i](t) is written:

x[i](t) = [x[i](t), y[i](t), θ[i](t), θ̇[i](t)] (2)

Since we can sample from the prediction model (by sam-
pling simulated motions), our proposal distribution can be



given by:

q(x(t))=

∫

p(x(t)|x(t−1))p(x(t−1)|zθ(t−1),r(t−1),...)dx(t−1).

(3)
We can then use the measurement likelihood as the importance
weight, since

p(x(t)|zθ(t),r(t),...)
∫

p(x(t)|x(t−1))p(x(t−1)|zθ(t−1),r(t−1),...)dx(t−1)
(4)

= α · p(zθ(t)|x(t)) · p(r(t)|x(t))

If the measured ranges are unbiased, the measurement
models p(r(t)|x(t)) and p(zθ(t)|x(t)) will be sufficient to un-
ambiguously determine the agent position given measurement
of three beacons.

III. BEACON BIAS MODELING IN THE PARTICLE FILTER

As we have argued however, the ranges are positively
biased. In order to accurately estimate the position of the
agent, it is necessary to estimate both the robot position and
the set of beacon biases b(t) = {b1(t), . . . , bn(t)}, where n
is the number of beacons. The gyro, in addition to giving
noisy measurements, also has a bias that evolves over time.
We therefore included the gyro bias g(t) as a state variable to
be estimated.

The ith particle x[i](t) is then written:

x[i](t)=
[

x[i](t), y[i](t), θ[i](t), θ̇[i](t), g[i](t), b
[i]
1 (t),. . .

]

(5)

where b
[i]
j (t) is the bias estimate of the jth beacon for particle i.

In order to estimate the biases b(t) with the particle filter, we
need a proposal distribution (cf. equation 3) and a likelihood
model (cf. equation 4). Our likelihood model does not change
as a result of estimating biases, but we need to modify the
proposal distribution to model how these biases change over
time. We can learn this model by looking at actual UWB
measurements.

A. UWB Range Measurements

Using data collected by Win and Scholtz [12] we are able
to build a probabilistic model for the beacon bias transitions.
These measurements were collected on a floor of an office
building. A bandwidth in excess of 1GHz was used, and
the UWB transmitter was placed in a specific room, while
measurements were taken in different rooms. For an in-depth
description of the experiment, we refer the reader to [12]. For
the purpose of this paper, we focus on two sets of data, one
with measurements taken in one room, and the other with
measurements taken at regular intervals along a corridor.

B. Measurements From a Grid

For the first set of data, 49 measurements were taken in a
7x7 square grid with a 6 inch spacing between measurement
points. These were collected in a different room from the
transmitter (so that the signal had to propagate through several
walls). From the received signal we determined the time-of-
arrival of the signal by manual inspection (for algorithms, see
e.g. [13]), and inferred a range measurement. These range
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Fig. 1. Difference in metres (on the z axis) between the measured and true
ranges for 49 points using a UWB signal.

estimates were then compared to the true distances between
transmitter and receiver (this true distance was obtained from
the building floor plan, with a precision of about 0.1m).
Figure 1 shows the differences between the range estimates
using the measured signal and the true range for the 49
points. It can be seen that for most points there is a constant
difference of about 1m. This can be attributed to either LOS
blockage or propagation delays (as mentioned before, these
two phenomena produce the same effect). We also observe
that for 4 points located toward one edge of the grid, this
difference is higher. This shows that toward this edge either
the propagation delay increases, or a multipath signal becomes
the first arrival.

We draw two conclusions from this set of data. First, the
range estimates are positively biased, as expected. Second, the
value of the bias remains constant locally, and then suddenly
changes in a discrete amount as we move through the building.
For example, in Figure 1, notice the local plateau at 1m for
x < −4m and the sudden increase to 1.5m around x = −4m.
We use these observations to build a probabilistic model of
bias transitions in IV-A.

C. Measurements Along the Building’s Corridor

In this second experiment, 33 measurements were made at
regular intervals as the receiver was moved around the floor
along the building corridor. Again, for each point a range
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Fig. 2. Difference in metres between the measured and true ranges for the
33 corridor locations.
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Fig. 3. Path estimate for (a) Case 1 (IMU only), (b) Case 2 (IMU and beacons, but no bias estimation), (c) Case 3 (full pose and bias estimation) (d) EKF
with outlier rejection.

estimate was extracted from the received signal and compared
to the true range. This difference is plotted on Figure 2 for
all 33 points. It is seen that the positive bias changes as the
receiver moves along the corridor. In this case, the value of
the bias varied between 0.15m and 1m, and we will use these
values in our experiments in section IV. The distance between
two measurement points was about 2m, and we make an
approximation that the bias value remains constant between
two points. This assumption is consistent with our observation
above (III-B).

D. The Beacon Model

We can now construct a probabilistic model of beacon biases
based on this experimental data. We first define the rate of
beacon bias change rchange, which is the expected number
of times the bias changes per second and per beacon. This
rate typically depends on the environment, but we found that
the particle filter performed well even for inaccurate values of
rchange. In our experimental results, we set rchange = 1 Hz.
At each time step dt, the probability that the bias of the jth

beacon changes for a given particle is rchangedt. When this is
the case, the particle’s jth bias value is assigned a uniformly
distributed random number between 0 and b

[i]
j − ε or between

b
[i]
j + ε and β, where β is the maximum value the bias can

take, and ε is a positive number smaller than β. The role of ε

is to ensure that the bias change is sufficiently large, in order
to model the fact that when the bias changes, it is likely to
change to a value significantly different from the previous one
(e.g. in Figure 1, it jumps from 1m to 1.5m). Our bias motion
model is therefore a uniform distribution notched about the
current bias, where the notch has a width of 2ε. In practice,
we set ε to be equal to 3 standard deviations of the beacon
measurement noise.

We may have been tempted to simply model the bias
transition as a Gaussian centered at the current bias value. But
this does not agree with the measurements presented earlier,
and in fact simulations showed that the resulting estimation
performs poorly.

The probabilistic model of the agent’s dynamics is as
follows:

g[i](t) = g[i](t−1) + N(0, σ2
g) (6)

θ̇[i](t) = θ̇[i](t−1) + N(0, σ2
θ) (7)

θ[i](t) = θ[i](t−1) + θ̇[i](t−1)dt (8)
x[i](t) = x[i](t−1) + V cos(θ[i](t))dt (9)
y[i](t) = y[i](t−1) + V sin(θ[i](t))dt (10)

where V is the (known) translational velocity, and σg and σθ

are the standard deviations of the noise for the gyro and the
gyro bias, respectively. N(0, σ2) is a normally distributed ran-
dom number with mean 0 and variance σ2. In our experimental
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Fig. 4. Estimates of the biases of beacon 1 (left) and beacon 2 (right) are shown by the solid line. Note that beacon 1 is an actual beacon, and the bias is
being induced by some real physical process. Beacon 2 is simulated, and its bias is artificial induced.

results, σg = 0.001 and σθ = 3.
Note that our measurement model assumes not only that the

gyro measurements are independent of the beacon measure-
ments, but also that the beacon measurements are independent
of each other. Therefore, for a given particle x[i](t), the
likelihood is a product of n + 1 factors. The first factor is
the likelihood of the current measurement zθ(t), which we
model as a normal distribution

p(zθ(t)|x(t)) = N(θ̇, σ2
θ̇
), (11)

where σθ̇ = 0.1.
The n remaining factors are the likelihoods of the current

n range measurements given each particle’s position x(t) and
its n beacon biases {b

[i]
1 (t), b

[i]
2 (t), . . . , b

[i]
n (t)},

p(ri(t)|x(t), bi(t))=N(||x(t)−yi(t)||−bi(t), σ
2
rf ), (12)

where yi(t) is the location of the ith beacon, and the σrf is the
error in the range sensor taken from the sensor specification.
This was specified as σrf = .025m for our experiments.
This value in fact was a slight underestimate; using the range
measurements from the equal-bias points on the plateau (x <
−4m) in the room experiment (Figure 1) showed the variance
to be σrf = 0.03m.

IV. EXPERIMENTAL RESULTS

In this section we describe our simulation and then compare
the results for different cases. We only had access to actual
UWB signal data for a single transmitter, so the second signal
is simulated. Although in theory three beacons are necessary
to unambiguously localize an agent in 2D, two beacons are
sufficient in our case because we use an IMU and the agent’s
initial position is known, so that the ambiguity is removed.

A. Experimental Setup

An agent travels at a constant speed of 1m/s along a corridor
in an office building. It carries a rate gyro providing its instan-
taneous heading angle rate, and receives range measurements

from two beacons at a rate of 10Hz. The range measurements
from those two beacons are positively biased by b(t). For the
bias of one beacon, we use the actual range measurements
from a physical transmitter (as in section III). For the second
beacon, we simulated range measurements and a bias profile.
The map of the environment is shown in Figure 3. We assume
that the agent knows its initial state since prior to entering the
building it can use GPS to determine its exact location. We
show the results of the estimation using the particle filter for
the following cases:

• Case 1: the agent uses only its IMU to estimate x(t)
• Case 2: the agent uses its IMU and beacon range to

estimate x(t), but does not estimate b(t)
• Case 3: the agent uses its IMU and beacon range,

estimating the joint distribution over x(t) and b(t).

We also compare our results against an EKF with outlier
rejection.

Case 1 Results: The estimated trajectory of the agent
(Figure 3a) does not track the true trajectory, as the gyro noise
quickly dominates.

Case 2 Results: The results shown in Figure 3(b) are better
than in Case 1, but the path estimate oscillates about the
true trajectory, yielding a position error of more than 1m on
average. This is due to the fact that the ranges have unmodeled
bias. The position estimate oscillates as the particle filter tries
to best adjust to these biased measurements.

Case 3 Results: In this case the beacon biases are estimated
and the results of Figure 3(c) show a very close tracking of the
true path. The reason for such good performance comes from
the fact that the beacon biases are being estimated: the particle
likelihoods incorporate the biases, so the measurements can
still be used with confidence. Figure 4 shows the bias estimates
for beacon 1 and beacon 2.

We also show an EKF with outlier rejection for comparison.
Since only two beacons are present, there is not enough
redundancy to ensure sufficient measurement updates, so the
results are poor, as shown in Figure 3(d).
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simulation runs for Cases 1, 2, 3 and the EKF. The standard deviation is
shown.

B. Systematic Comparison

Cases 1, 2 and 3 and the EKF were performed over 100
simulation runs, shown in Figure 5. The mean error of Case 1
is not surprisingly much worse than the other two mean errors,
and Case 3 provides localization with twice the accuracy of
Case 2. Estimating the beacon biases doubles the average
accuracy in this example. It should be noted that in this
example the beacon biases were limited to a maximum of 1m,
so that the errors are fairly limited. If the biases are larger
than 1m (in Figure 1 some equal 1.5m), then we can expect
Case 2 to perform ever worse than Case 3.

V. RELATED WORK

Ours is not the first approach to using Monte Carlo tech-
niques for inference in sensor networks, however, we believe
that ours is the first range-based localization to demonstrate
robustness to hidden biases. In contrast, Ladd et al. [14]
build an explicit model of the spatial distribution of biases
which they then use to build an HMM and solve the global
localization problem. They are able to use 802.11 signals
to localize a laptop based only on beacon measurements,
however, they do require the substantial initial training phase.

Smith et al. [15] avoid many of the bias issues by explicitly
using two different range sensors in the Cricket system. Their
results indicate that the EKF approach with outlier rejection
provides accurate localization in the face of bias given a
sufficient number of beacons (several per room). However,
they do encounter periodic EKF failures; their assumption is
that having the moving agent transmit additional signals to the
beacons is sufficient to recover from the EKF failure.

Biswas et al. [16] take a similar approach to ours in
factoring the likelihood model, however, they are attempting
to solve a fundamentally different problem in assessing the
presence of enemy agents in the sensor network.

VI. CONCLUSIONS

A method based on the coupling of an IMU and UWB rang-
ing beacons has been proposed to improve indoor geolocation.
It has been shown to overcome the two main difficulties for

indoor localization. Using UWB signals resolves problems due
to multipath fading. The remaining issue (NLOS propagation)
adds a positive bias to the range measurement, which degrades
the localization accuracy and robustness if nothing is done.
However we showed that a particle filter can be used to
simultaneously estimate the state of the agent and the beacon
measurement biases. Experimental results incorporating real
and simulated UWB measurements demonstrated the efficacy
of the particle filter approach, which enabled us to localize the
agent within a few tenths of a meter. Although these results
are based on a limited set of data, we believe that this example
shows the validity of our concept to provide a realistic solution
to the challenge of accurate indoor geolocation. We hope to
further validate our system in the near future as we perform
more experiments.
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