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Abstract

Monte Carlo localization (MCL) is a Bayesian algorithm for
mobile robot localization based on particle filters, which has
enjoyed great practical success. This paper points out a lim-
itation of MCL which is counter-intuitive, namely that better
sensors can yield worse results. An analysis of this problem
leads to the formulation of a new proposal distribution for the
Monte Carlo sampling step. Extensive experimental results
with physical robots suggest that the new algorithm is signif-
icantly more robust and accurate than plain MCL. Obviously,
these results transcend beyond mobile robot localization and
apply to a range of particle filter applications.

Introduction

Monte Carlo Localization (MCL) is a probabilistic algorithm
for mobile robot localization that uses samples (particles) for
representing probability densities. MCL is a version of par-
ticle filters [4, 10, 12, 15]. In computer vision, particle filters
are known under the name condensation algorithm [9]. They
have been applied with great practical success to visual track-
ing problems [9, 2] and mobile robot localization [3, 6, 11].

The basic idea of MCL is to approximate probability dis-
tributions by sets of samples. When applied to the problem
of state estimation in a partially observable dynamical sys-
tem, MCL successively calculates weighted sets of samples
that approximate the posterior probability over the current
state. Its practical success stems from the fact that it is non-
parametric, hence can represent a wide range of probability
distributions. It is also computationally efficient, and it is eas-
ily implemented as an any-time algorithm, which adapts the
computational load by varying the number of samples in the
estimation process [6].

This paper proposes a modified version of MCL, which
uses a different sampling mechanism. Our study begins with
the characterization of a key limitation of MCL (and particle
filters in general). While MCL works well with noisy sensors,
they fail catastrophically when the sensors are too accurate.
This effect is undesirable: Ideally, the accuracy of any sound
statistical estimator should increase with the accuracy of the
sensors.

An analysis of this effect leads to the formulation of a new
sampling mechanism (i.e., the proposal distribution), which
changes the way samples are generated in MCL. We propose
three different ways of computing the importance factors for
this new proposal distribution. Our approach, which can be
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viewed as the natural dual to MCL, works well in cases where
conventional MCL fails (and vice versa). To gain the best of
both worlds, the conventional and our new proposal distri-
bution are mixed together, leading to a new MCL algorithm
with a mixture proposal distribution that is extremely robust.

Empirical results illustrate that the new mixture proposal
distribution does not suffer the same limitation as MCL, and
yields uniformly superior results. For example, our new ap-
proach with 50 samples consistently outperforms standard
MCL with 1,000 samples. Additional experiments illustrate
that our approach yields much better solutions in challenging
variants of the localization problem, such as the kidnapped
robot problem [5]. These experiments have been carried
out both in simulation and with data collected from physi-
cal robots, using both laser range data and camera images for
localization.

Our approach generalizes a range of previous extensions
of MCL that have been proposed to alleviate these problems.
Existing methods include the addition of random samples
into the posterior [6], the generation of samples at locations
that are consistent with the sensor readings [11], or the use of
sensor models that assume an artificially high noise level [6].
While these approaches have shown superior performance
over strict MCL in certain settings, they all lack mathemati-
cal rigor. In particular, neither of them approximates the true
posterior, and over time they may diverge arbitrarily. Viewed
differently, our approach can be seen as a theory that leads to
an algorithm related to the ones above (with important differ-
ences), but also establishes a mathematical framework that is
guaranteed to work in the limit.

The paper first reviews Bayes filters, the basic mathemat-
ical framework, followed by a derivation of MCL. Based on
experiments characterizing the problems with plain MCL, we
then derive dual MCL. Finally, the mixture proposal distribu-
tion is obtained by combining MCL and its dual. Empirical
results are provided that illustrate the superior performance
of our new extension of MCL.

Bayes Filtering

Bayes filters address the problem of estimating the state x

of a dynamical system (partially observable Markov chain)
from sensor measurements. For example, in mobile robot
localization, the dynamical system is a mobile robot and its
environment, the state is the robot’s pose therein (often spec-
ified by a position in a Cartesian x-y space and the robot’s
heading direction �). Measurements may include range mea-
surements, camera images, and odometry readings. Bayes
filters assume that the environment is Markov, that is, past
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Figure 1: Global localization of a mobile robot using MCL (10,000 samples).

and future data are (conditionally) independent if one knows
the current state.

The key idea of Bayes filtering is to estimate a probability
density over the state space conditioned on the data. This
posterior is typically called the belief and is denoted

Bel(x(t)) = p(x(t)jd(0:::t))

Here x denotes the state, x(t) is the state at time t, and d
(0:::t)

denotes the data starting at time 0 up to time t. For mo-
bile robots, we distinguish two types of data: perceptual data
such as laser range measurements, and odometry data or con-
trols, which carries information about robot motion. Denot-
ing the former by o (for observation) and the latter by a (for
action), we have

Bel(x(t)) = p(x(t)jo(t); a(t�1); o(t�1); a(t�2) : : : ; o(0)) (1)

Without loss of generality, we assume that observations and
actions arrive in an alternating sequence.

Bayes filters estimate the belief recursively. The initial be-
lief characterizes the initial knowledge about the system state.
In the absence of such, it is typically initialized by a uni-
form distribution over the state space. In mobile robotics, the
state estimation without initial knowledge is called the global
localization problem—which will be the focus throughout
much of this paper.

To derive a recursive update equation, we observe that Ex-
pression (1) can be transformed by Bayes rule to

p(o(t)jx(t); a(t�1); : : : ; o(0)) p(x(t)ja(t�1); : : : ; o(0))

p(o(t)ja(t�1); : : : ; o(0))

Under our Markov assumption, p(o(t)jx(t); a(t�1); : : : ; o(0))
can be simplified to p(o(t)jx(t)), hence we have

p(o(t)jx(t)) p(x(t)ja(t�1); : : : ; o(0))

p(o(t)ja(t�1); : : : ; o(0))

We will now expand the rightmost term in the denominator
by integrating over the state at time t� 1

p(o(t)jx(t))

p(o(t)ja(t�1); : : : ; o(0))

Z
p(x(t)jx(t�1); a(t�1); : : : ; o(0))

p(x(t�1)ja(t�1); : : : ; o(0)) dx(t�1)

Again, we can exploit the Markov assumption to simplify

p(x(t)jx(t�1); a(t�1); : : : ; o(0)) to p(x(t)jx(t�1); a(t�1)). Us-
ing the definition of the belief Bel, we obtain the important

recursive equation

Bel(x(t)) =
p(o(t)jx(t))

p(o(t)ja(t�1); : : : ; o(0))
(2)Z

p(x(t)jx(t�1); a(t�1)) Bel(x(t�1)) dx(t�1)

= �p(o(t)jx(t))

Z
p(x(t)jx(t�1); a(t�1))Bel(x(t�1))dx(t�1)

where � is a normalization constant. This equation is of cen-
tral importance, as it is the basis for various MCL algorithms
studied here.

We notice that to implement (2), one needs to know three

distributions: the initial belief Bel(x (0)) (e.g., uniform), the

next state probabilitiesp(x(t)jx(t�1); a(t�1)), and the percep-

tual likelihood p(o(t)jx(t)). MCL employs specific next state

probabilities p(x(t)jx(t�1); a(t�1)) and perceptual likelihood

models p(o(t)jx(t)) that describe robot motion and percep-
tion probabilistically. Such models are described in detail
elsewhere [7].

Monte Carlo Localization

The idea of MCL (and other particle filter algorithms) is to
represent the belief Bel(x) by a set of m weighted samples
distributed according to Bel(x):

Bel(x) = fxi; wigi=1;:::;m

Here each xi is a sample (a state), and wi is a non-negative
numerical factor (weight) called importance factors, which
sums up to one over all i.

In global mobile robot localization, the initial belief is a set
of poses drawn according to a uniform distribution over the
robot’s universe, and annotated by the uniform importance
factor 1

m
. The recursive update is realized in three steps.

1. Sample x
(t�1)
i

�Bel(x(t�1)) using importance sampling

from the (weighted) sample set representing Bel(x(t�1)).

2. Sample x
(t)
i
�p(x(t)jx(t�1)

i
; a

(t�1)). Obviously, the pair

hx
(t)
i ; x

(t�1)
i i is distributed according to the product dis-

tribution

q
(t) := p(x(t)jx(t�1); a(t�1))�Bel(x(t�1)) (3)

which is commonly called proposal distribution.
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Figure 2: Average error of MCL as a function of the number of
robot steps/measurements.

3. To offset the difference between the proposal distribution
and the desired distribution (c.f., Equation (2))

� p(o(t)jx(t))p(x(t)
jx

(t�1)
; a

(t�1))Bel(x(t�1)) (4)

the sample is weighted by the quotient

� p(o(t)jx
(t)
i )p(x

(t)
i jx

(t�1)
i ; a

(t�1))Bel(x
(t�1)
i )

Bel(x
(t�1)
i ) p(x

(t)
i jx

(t�1)
i ; a(t�1))

/ p(o(t)jx(t)
i
) = wi (5)

This is exactly the new (non-normalized) importance factor
wi.

After the generation of m samples, the new importance fac-
tors are normalized so that they sum up to 1 (hence define
a probability distribution). It is known [17] that under mild
assumptions (which hold in our work), the sample set con-

verges to the true posterior Bel(x(t)) as m goes to infinity,

with a convergence speed in O( 1p
m
). The speed may vary

by a constant factor, which can vary drastically depending on
the proposal distribution.

Examples

Figure 1 shows an example of MCL in the context of local-
izing a mobile robot globally in an office environment. This
robot is equipped with sonar range finders, and it is also given
a map of the environment. In Figure 1a, the robot is globally
uncertain; hence the samples are spread uniformly trough the
free-space (projected into 2D). Figure 1b shows the sample
set after approximately 1 meter of robot motion, at which
point MCL has disambiguated the robot’s position up to a
single symmetry. Finally, after another 2 meters of robot mo-
tion the ambiguity is resolved, and the robot knows where it
is. The majority of samples is now centered tightly around
the correct position, as shown in Figure 1c.

Unfortunately, data collected from a physical robot makes
it impossible to freely vary the level of noise in sensing. Fig-
ure 2 shows results obtained from a robot simulation, model-
ing a B21 robot localizing an object in 3D with a mono cam-
era while moving around. The noise simulation includes a
simulation of measurement noise, false positives (phantoms)
and false negatives (failures to detect the target object). MCL
is directly applicable; with the added advantage that we can
vary the level of noise arbitrarily. Figure 2 shows system-
atic error curves for MCL in global localization for different
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Figure 3: Solid curve: error of MCL after 100 steps, as a function
of the sensor noise. 95% confidence intervals are indicated by the
bars. Notice that this function is not monotonic, as one might expect.
Dashed curve: Same experiment with high-error model.

sample set sizes m, averaged over 1,000 individual experi-
ments. The bars in this figure are confidence intervals at the
95% level. With 10,000 samples, the computation load on
a Pentium III (500 MhZ) is only 14%, indicating that MCL
is well-suited for real-time applications. The results also in-
dicate good performance as the number of samples is large.
The reader should notice that these results have been obtained
for perceptual noise level of 20% (for both false-negative
and false-positive) and an additional position noise that is
Gaussian-distributed with a variance of 10 degrees. For our
existing robot system, the errors are in fact much lower.

A Problem with MCL

As noticed by several authors [4, 11, 12, 15], the basic parti-
cle filter performs poorly if the proposal distribution, which is
used to generate samples, places too little samples in regions
where the desired posterior Bel(xt) is large.

This problem has indeed great practical importance in the
context of MCL, as the following example illustrates. The
solid curve in Figure 3 shows the accuracy MCL achieves
after 100 steps, using m = 1; 000 samples. These results
were obtained in simulation, enabling us to vary the amount
of perceptual noise from 50% (on the right) to 1% (on the
left); in particular, we simulated a mobile robot localizing an
object in 3D space from mono-camera imagery. It appears
that MCL works best for 10% to 20% perceptual noise. The
degradation of performance towards the right, when there is
a lot of noise, barely surprises. The less accurate a sensor,
the larger an error one should expect. However, MCL also
performs poorly when the noise level is too small. In other
words, MCL with accurate sensors may perform worse than
MCL with inaccurate sensors. This finding is a bit counter-
intuitive in that it suggests that MCL only works well in spe-
cific situations, namely those where the sensors possess the
“right” amount of noise.

At first glance, one might attempt to fix the problem by us-

ing a perceptual likelihood p(o(t)jx(t)) that overestimates the
sensor noise. In fact, such a strategy partially alleviates the
problem: The dashed curve in Figure 3b shows the accuracy
if the error model assumes a fixed 10% noise (shown there
only for smaller “true” error rates). While the performance
is better, this is barely a fix. The overly pessimistic sensor
model is inaccurate, throwing away precious information in
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Figure 4: Error of MCL with the dual (dashed line) and the mix-
ture (solid line) proposal distribution—the latter is the distribution
advocated here. Compare the solid graph with dashed one, and the
curves in Figure 3!

the sensor readings. In fact, the resulting belief is not any
longer a posterior, even if infinitely many samples were used.
As we will see below, a mathematically sound method exists
that produces much better results.

To analyze the problem more thoroughly, we first notice
that the true goal of Bayes filtering is to calculate the product
distribution specified in Equation (4). Thus, the optimal pro-
posal distribution would be this product distribution. How-
ever, sampling from this distribution directly is too difficult.
As noticed above, MCL samples instead from the proposal

distribution q
(t) defined in Equation (3), and uses the impor-

tance factors (5) to account for the difference. It is well-
known from the statistical literature [4, 12, 15, 17] that the
divergence between (3) and (4) determines the convergence
speed. This difference is accounted by the perceptual density

p(o(t)jx(t)): If the sensors are entirely uninformative, this
distribution is flat and (3) is equivalent to (4). For low-noise

sensors, however, p(o(t)jx(t)) is typically quite narrow, hence
MCL converges slowly. Thus, the error in Figure 3 is in fact
caused by two different types of errors: one arising from the
limitationof the sensor data (=noise), and one that arises from
the mismatch of (3) and (4) in MCL. As we will show in this
paper, an alternative version of MCL exists that practically
eliminates the second error source.

Alternative Proposal Distributions

An alternative proposal distribution, which alleviates this
problem, can be obtained by sampling directly from

�q(t) =
p(o(t)jx(t))

�(o(t))
with �(o(t)) =

Z
p(o(t)jx(t)) dx(t)(6)

This proposal distribution leads to the dual of MCL. It can
be viewed as the logical “inverse” of the sampling in regu-
lar MCL: Rather than forward-guessing and then using the
importance factors to adjust the likelihood of a guess based
on an observation, dual MCL guesses “backwards” from the
observation and adjusts the importance factor based on the

belief Bel(x(t�1)). Consequently, the dual proposal distri-
bution possesses complimentary strengths and weaknesses:
while it is ideal for highly accurate sensors, its performance
is negatively affected by measurement noise. The key advan-
tage of dual MCL is that when the distribution of p(ojx) is
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Figure 5: Error of plain MCL (top curve) and MCL with the mix-
ture proposal distribution (bottom curve) with 50 samples (instead
of 1,000) for each belief state.

narrow—which is the case for low-noise sensors—dual sam-
pling can be much more effective than conventional MCL.

Importance Factors

We will now provide three alternative ways to calculate the

importance factors for �q(t).

Approach 1 (proposed by Arnaud Doucet, personal com-

munication): Draw x
(t�1)
i

�Bel(x(t�1)). Hence, the pair

hx
(t)
i ; x

(t�1)
i i is distributed according to

p(o(t)jx(t))

�(o(t))
� Bel(x(t�1)) (7)

and the importance factor is obtained as follows:

wi =

"
p(o(t)jx

(t)
i
)

�(o(t))
�Bel(x

(t�1)
i

)

#�1

p(o(t)jx
(t)
i ) p(x

(t)
i jx

(t�1)
i ; a

(t�1)) Bel(x
(t�1)
i )

p(o(t)ja(t�1); : : : ; o(0))

=
p(x

(t)
i
jx

(t�1)
i

; a
(t�1)) �(o(t))

p(o(t)ja(t�1); : : : ; o(0))

/ p(x
(t)
i jx

(t�1)
i ; a

(t�1)) (8)

This approach is mathematically more elegant than the two
alternatives described below, in that it avoids the need to
transform sample sets into densities (which will be the case
below). We have not yet implemented this approach. How-
ever, in the context of global mobile robot localization, we

suspect the importance factor p(x
(t)
i
ja

(t�1)
; x

(t�1)
i

) will be

zero for many pose pairs hx
(t)
i
; x

(t�1)
i

i.

Approach 2 Alternatively, one may in an explicit

forward phase sample x
(t�1)
j �Bel(x(t�1)) and then

x
(t)
j �p(x(t)

jx
(t�1)
j ; a

(t�1)), which represents the robot’s

belief before incorporating the sensor measurement. The

“trick” is then to transform the samples x
(t)
j into a kd-

tree [1, 14] that represents the density p(x(t)
ja

(t�1)
; d

(0:::t)),
which is again the pose belief just before incorporating the

most recent observation o
(t).
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Figure 6: Robot poses sampled according to �q for the scan shown
on the right, using a pre-compiled version of the joint distribution
p(o; x) represented by kd-trees.

After this first phase, the importance weights of our sam-

ples x
(t)
i ��q(t) are then calculated as follows:

wi =

"
p(o(t)jx

(t)
i
)

�(o(t))

#�1
p(o(t)jx

(t)
i
) p(x

(t)
i
ja

(t�1)
; d

(0:::t�1))

p(o(t)jd(0:::t�1); a(t�1))

/ p(x(t)
i
ja

(t�1)
; d

(0:::t�1)) (9)

This approach avoids the danger of generating pairs of poses

hx
(t)
i ; x

(t�1)
i i for which wi = 0, but it involves an explicit

forward sampling phase, which can be computationally ex-
pensive (below we will mix the forward samples with back-
ward samples which partially overcomes this criticism).

Approach 3 The third approach combines the best of both
worlds, in that it avoids the explicit forward-sampling phase
of the second approach, but also tends to generate large im-
portance factors. In particular, it transforms the initial belief

Bel(x(t�1)) into a kd-tree. For each sample x
(t)
i ��q(t), we

now draw a sample x
(t�1)
i

from the distribution

p(x(t)
i
ja

(t�1)
; x

(t�1))

�(x
(t)
i ja(t�1))

(10)

where

�(x
(t)
i ja

(t�1)) =

Z
p(x

(t)
i ja

(t�1)
; x

(t�1)) dx(t�1)(11)

In other words, our approach projects x
(t)
i back to a possi-

ble successor pose x
(t�1)
i . Consequently, the pair of poses

hx
(t)
i ; x

(t�1)
i i is distributed according to

p(o(t)jx
(t)
i )

�(o(t))
�

p(x
(t)
i ja

(t�1)
; x

(t�1)
i )

�(x
(t)
i ja(t�1))

(12)

which gives rise to the following importance factor:

wi =

"
p(o(t)jx

(t)
i )

�(o(t))
�

p(x
(t)
i ja

(t�1)
; x

(t�1)
i )

�(x
(t)
i ja(t�1))

#�1

Figure 7: Left: The interactive tourguide robot Minerva. Right:
Ceiling Map of the Smithsonian Museum.

p(o(t)jx(t)
i
)p(x(t)

i
jx

(t�1)
i

; a
(t�1)) Bel(x(t�1)

i
)

p(o(t)jd(0:::t�1))

=
�(o(t)) �(x

(t)
i
ja

(t�1)) Bel(x
(t�1)
i

)

p(o(t)jd(0:::t�1))

/ �(x(t)
i
ja

(t�1)) Bel(x(t�1)
i

) (13)

where Bel(x
(t�1)
i

) is calculated using the kd-tree repre-
senting this belief density. The only complication arises

from the need to calculate �(x(t)
i
ja

(t�1)), which depends on

both x
(t)
i and a

(t�1). Luckily, in mobile robot localization,

�(x
(t)
i ja

(t�1)) can safely be assumed to be a constant, al-
though this assumption may not be valid in general.

The reader should notice that all three approaches require
a method for sampling poses from observations according to

�q(t)—which can be non-trivial in mobile robot applications.
The first approach is the easiest to implement and mathemat-
ically most straightforward. However, as noted above, we
suspect that it will be inefficient for mobile robot localiza-
tion. The two other approaches rely on a density estimation
method (such as kd-trees). The third also requires a method
for sampling poses backwards in time, which further compli-
cates its implementation. However, the superior results given
below may well make this additional work worthwhile.

The Mixture Proposal Distribution

Obviously, neither proposal distribution is sufficient, as they
both fail in certain cases. To illustrate this, the dashed line in
Figure 4 shows the performance for the dual. As in the previ-
ous figure, the horizontal axis depicts the amount of noise in
perception, and the vertical axis depicts the error in centime-
ters, averaged over 1,000 independent runs. Two things are
remarkable in these experimental results: First, the accuracy
if now monotonic in perceptual noise: More accurate sensors
give better results. Second, however, the overall performance
is much poorer than that of conventional MCL. The poor per-
formance of the dual is due to the fact that erroneous sensor
measurements have a devastating effect on the estimated be-
lief, since almost all samples are generated at the “wrong”
place.

This consideration leads us to the central algorithm pro-
posed in this paper, which uses the following mixture

(1� �)q(t) + ��q(t) (14)



Figure 8: Part of the map of the Smithsonian’s Museum of National
History and path of the robot.

with 0 � � � 1 as the proposal distribution. In our exper-
iments, the mixing rate is set to � throughout. Experiments
with an adaptive mixing rate (using pursuit methods) did not
improve the performance in a noticeable way.

Sampling Form �q

The remaining principle difficulty in applying our new ap-
proach to robotics is that it may not be easy to sample poses
xi based on sensor measurements o. In particular, the previ-
ous MCL algorithm “only” requires an algorithm for calcu-
lating p(ojx); while there is obvious ways to extend this into
a sampling algorithm, sampling efficiently from �q may not a
straightforward matter—this is specifically the case for the
experiments with laser range finders described below.

Unfortunately, space limitations prohibit a detailed de-
scription of our solution. In our implementation, a kd-tree
representing the joint distribution p(o; x) is learned in a pre-
processing phase, using real robot data (a log-file) as a “sam-
ple” of o, and p(ojx) with randomly generated poses x to
generate a weighted sample that represents p(o; x). The nice
aspect of the tree is that it permits efficient sampling of the
desired conditional. Figure 6 shows a set of poses generated
for a specific laser range measurement o.

Experimental Results

Our experiments were carried out both in simulation and
for data collected with our tour-guide robot Minerva (shown
in Figure 7), collected during a two-week period in which
it gave tours to thousands of people in the Smithsonian’s
Museum of National History [18]. The simulation experi-
ments were carried out using the third method for calculat-
ing importance factors outlined above. A comparative study
showed no noticeable difference between this and the second
method. All real-world results were carried out using the sec-
ond approach, in part because it avoids backwards sampling
of poses. As noted above, we did not yet implement the first
method.

Simulation Figure 4 shows the performance of MCL with
the mixture proposal distribution, under conditions that are
otherwise identical to those in Figures 3. As these results
suggest, our new MCL algorithm outperforms both MCL and
its dual by a large margin. At every single noise level, our

0

0.2

0.4

0.6

0.8

1

250 500 1000 2000 4000

number of samples

Hybrid MCL

MCL without random samples

MCL with random samples

er
ro

r 
ra

te
 (

in
 p

er
ce

n
ta

g
e 

o
f 

lo
st

 p
o

si
ti

o
n

s)

Figure 9: Performance of conventional (top curve), conventional
with random samples (middle curve) and our new mixture (bottom
curve) MCL for the kidnapped robot problem in the Smithsonian
museum. The error rate is measured in percentage of time during
which the robot lost track of its position.

new algorithm outperforms its alternatives by a factor that
ranges from 1.07 (high noise level) to 9.7 (low noise level).
For example, at a noise level of 1%, our new MCL algorithm
exhibits an average error of 24:6cm, whereas MCL’s error is
238cm and that of dual MCL is 293cm. In comparison, the
average error with noise-free sensors and the optimal estima-
tor is approximately 19:5cm (it’s not zero since the robot has
to face the object to see it).

Our approach also degrades nicely to very small sample
sets. Figure 5 plots the error of conventional MCL (top curve)
and MCL with mixture proposal distribution (bottom curve)
for different error levels, using m = 50 samples only. With
50 samples, the computational load is 0.126% on a 500MHz
Pentium Computer—meaning that the algorithm is approxi-
mately 800 faster than real-time. While plain MCL basically
fails under this circumstances to track the robot’s position,
our new version of MCL performs excellently, and is only
slightly inferior to m = 1; 000 samples.

Real-World Experiments with Lasers Our approach was
tested using data recorded during a two-week deployment
of the mobile robot Minerva as a museum tour-guide in the
Smithsonian’s Museum of National History [18]. The data
contains logs of odometry measurements and sensor scans
taken by Minerva’s two laser range-finders. Figure 8 shows
part of the map of the museum and the path of the robot used
for this experiment.

As reported in [2, 3, 6], conventional MCL reliably suc-
ceeds in localizing the robot. To test our new approach under
even harder conditions, we repeatedly introduced errors into
the odometry information. These errors made the robot lose
track of its position with probability of 0.01 when advanc-
ing one meter. The resulting localization problem is known
as the kidnapped robot problem [5], which is generally ac-
knowledged as the most challenging localization problem.
As argued in [7], this problem tests the ability to recover from
extreme failures of the localization algorithm.

Figure 9 shows comparative results for three different ap-
proaches. The error is measured by the percentage of time,
during which the estimated position deviates by more than 2
meters from the reference position. Obviously, the mixture
proposal distribution yields significantly better results, even
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Figure 10: MCL with the standard proposal distribution (dashed
curve) compared to MCL with the new mixture distribution (solid
line). Shown here is the error for a 4,000-second episode of camera-
based localization in the Smithsonian museum.

if the basic proposal distribution is mixed with 5% random
samples (as suggested in [7] as a solution to the kidnapped
robot problem). The mixture proposal distribution reduces
the error rate of localization by as much as 70% more than
MCL if the standard proposal distribution is employed; and
32% when compared to the case where the standard proposal
distribution is mixed with a uniform distribution. These re-
sults are significant at the 95% confidence level, evaluated
over actual robot data.

Real-World Experiments with Vision We also compared
MCL with different proposal distributions in the context of
visual localization, using only camera imagery obtained with
the robot Minerva during public museum hours [2]. Figure 7
shows on the right a texture mosaic of the museum’s ceiling.
Since the ceiling height is unknown, only the center region in
the camera image is used for localization.

The image sequence used for evaluation is of extremely
poor quality, as people often intentionally covered the cam-
era with their hand and placed dirt on the lens. Figure 10
shows the localization error obtained when using vision only
(calculated using the localization results from the laser as
ground truth). The data covers a period of approximately
4,000 seconds, during which MCL processes a total of 20,740
images. After approximately 630 seconds, a drastic error in
the robot’s odometry leads to a loss of the position (which
is an instance of the kidnapped robot problem). As the
two curves in Figure 10 illustrate, the regular MCL sampler
(dashed curve) is unable to recover from this event, whereas
MCL with mixture proposal distribution (solid curve) recov-
ers quickly. These result are not statistically significant in
that only a single run is considered, but they confirm our find-
ings with laser range finders. Together, our result suggest that
the mixture distribution drastically increases the robustness
of the statistical estimator for mobile robot localization.

Conclusion

This paper introduced a new proposal distribution for Monte
Carlo localization, a randomized Bayesian algorithm for mo-
bile robot localization. Our approach combines two proposal
distribution which sample from different factors of the de-

sired posterior. By doing so, our approach overcomes a range
of limitations that currently exist for different versions of
MCL, such as the inability to estimate posteriors for highly
accurate sensors, poor degradation to small sample sets, and
the ability to recover from unexpected large state changes
(robot kidnapping). Extensive experimental results suggest
that our new approach consistently outperforms MCL by a
large margin. The resulting algorithm is highly practical, and
might improve the performance of particle filters in a range
of applications.

Acknowledgments
The authors are indebted to Nando de Freitas and Arnaud Doucet
for whose insightful comments on an earlier draft of a related paper.
We also thank Frank Dellaert and the members of CMU’s Robot
Learning Lab for invaluable suggestions and comments.

References
[1] J.L. Bentley. Multidimensional divide and conquer. Commu-

nications of the ACM, 23(4), 1980.

[2] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the con-
densation algorithm for robust, vision-based mobile robot lo-
calization. CVPR-99.

[3] J. Denzler, B. Heigl, and H. Niemann. Combining com-
puter graphics and computer vision for probabilistic self-
localization. Rochester University, Internal Report, 1999.

[4] A Doucet. On sequential simulation-based methods for
Bayesian filtering. TR CUED/F-INFENG/TR 310, Cambridge
Univ., 1998.

[5] S. Engelson and D. McDermott. Error correction in mobile
robot map learning. ICRA-92.

[6] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo
localization: Efficient position estimation for mobile robots.
AAAI-99.

[7] D. Fox, W. Burgard, and S. Thrun. Markov localization for
mobile robots in dynamic environments. JAIR 11, 1999.

[8] R. Fung and B. Del Favero. Backward simulation in bayesian
networks. UAI-94.

[9] M. Isard and A. Blake. Condensation: conditional density
propagation for visual tracking. IJCV, In Press.

[10] K. Kanazawa, D. Koller, and S.J. Russell. Stochastic simula-
tion algorithms for dynamic probabilistic networks. UAI-95.

[11] S. Lenser and M. Veloso. Sensor resetting localization for
poorly modelled mobile robots. ICRA-2000, to appear.

[12] J. Liu and R. Chen. Sequential monte carlo methods for dy-
namic systems. Journal of the American Statistical Associa-
tion, 93, 1998.

[13] P.S. Maybeck. The Kalman filter: An introduction to concepts.
In Autonomous Robot Vehicles. Springer, 1990.

[14] A. W. Moore. Efficient Memory-based Learning for Robot
Control. PhD thesis, Cambridge Univ., 1990.

[15] M. Pitt and N. Shephard. Filtering via simulation: auxiliary
particle filter. Journal of the American Statistical Association,
1999.

[16] L.R. Rabiner and B.H. Juang. An introduction to hidden
markov models. IEEE ASSP Magazine, 1986.

[17] M.A. Tanner. Tools for Statistical Inference. Springer, 1993.

[18] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Del-
laert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte,
and D. Schulz. MINERVA: A second generation mobile tour-
guide robot. ICRA-99.


