
Monte Carlo Matrix Inversion and

Reinforcement Learning

Andrew Barto and Michael Duff
Computer Science Department

University of Massachusetts

Amherst, MA 01003

Abstract

We describe the relationship between certain reinforcement learn
ing (RL) methods based on dynamic programming (DP) and a class

of unorthodox Monte Carlo methods for solving systems of linear

equations proposed in the 1950's. These methods recast the solu

tion of the linear system as the expected value of a statistic suitably

defined over sample paths of a Markov chain. The significance of

our observations lies in arguments (Curtiss, 1954) that these Monte

Carlo methods scale better with respect to state-space size than do

standard, iterative techniques for solving systems of linear equa

tions. This analysis also establishes convergence rate estimates.
Because methods used in RL systems for approximating the evalu

ation function of a fixed control policy also approximate solutions

to systems of linear equations, the connection to these Monte Carlo
methods establishes that algorithms very similar to TD algorithms

(Sutton, 1988) are asymptotically more efficient in a precise sense

than other methods for evaluating policies. Further, all DP-based
RL methods have some of the properties of these Monte Carlo al

gorithms, which suggests that although RL is often perceived to

be slow, for sufficiently large problems, it may in fact be more ef
ficient than other known classes of methods capable of producing

the same results.

687

688 Barto and Duff

1 Introduction

Consider a system whose dynamics are described by a finite state Markov chain with
transition matrix P, and suppose that at each time step, in addition to making a
transition from state Xt = i to XHI = j with probability Pij, the system produces
a randomly determined reward, rt+1! whose expected value is R;. The evaluation

junction, V, maps states to their expected, infinite-horizon discounted returns:

It is well known that V uniquely satifies a linear system of equations describing
local consistency:

V = R + -yPV,

or

(I - -yP)V = R. (1)

The problem of computing or estimating V is interesting and important in its
own right, but perhaps more significantly, it arises as a (rather computationally
burdensome) step in certain techniques for solving Markov Decision Problems. In
each iteration of Policy-Iteration (Howard, 1960), for example, one must determine

the evaluation function associated with some fixed control policy, a policy that
improves with each iteration.

Methods for solving (1) include standard iterative techniques and their variants
successive approximation (Jacobi or Gauss-Seidel versions), successive over
relaxation, etc. They also include some of the algorithms used in reinforcement

learning (RL) systems, such as the family of TD algorithms (Sutton, 1988). Here

we describe the relationship between the latter methods and a class of unorthodox
Monte Carlo methods for solving systems of linear equations proposed in the 1950's.

These methods recast the solution of the linear system as the expected value of a
statistic suitably defined over sample paths of a Markov chain.

The significance of our observations lies in arguments (Curtiss, 1954) that these
Monte Carlo methods scale better with respect to state-space size than do stan
dard, iterative techniques for solving systems of linear equations. This analysis also
establishes convergence rate estimates. Applying this analysis to particular mem

bers of the family of TD algorithms (Sutton, 1988) provides insight into the scaling
properties of the TD family as a whole and the reasons that TD methods can be

effective for problems with very large state sets, such as in the backgammon player

of Tesauro (Tesauro, 1992).

Further, all DP-based RL methods have some of the properties of these Monte

Carlo algorithms, which suggests that although RL is often slow, for large problems

(Markov Decision Problems with large numbers of states) it is in fact far more prac
tical than other known methods capable of producing the same results. First, like

many RL methods, the Monte Carlo algorithms do not require explicit knowledge
of the transition matrix, P. Second, unlike standard methods for solving systems
of linear equations, the Monte Carlo algorithms can approximate the solution for
some variables without expending the computational effort required to approximate

Monte Carlo Matrix Inversion and Reinforcement Learning 689

the solution for all of the variables. In this respect, they are similar to DP-based
RL algorithms that approximate solutions to Markovian decision processes through
repeated trials of simulated or actual control, thus tending to focus computation
onto regions of the state space that are likely to be relevant in actual control (Barto
et. al., 1991).

This paper begins with a condensed summary of Monte Carlo algorithms for solv
ing systems of linear equations. We show that for the problem of determining an

evaluation function, they reduce to simple, practical implementations. Next, we

recall arguments (Curtiss, 1954) regarding the scaling properties of Monte Carlo

methods compared to iterative methods. Finally, we conclude with a discussion of

the implications of the Monte Carlo technique for certain algorithms useful in RL
systems.

2 Monte Carlo Methods for Solving Systems of Linear

Equations

The Monte Carlo approach may be motivated by considering the statistical evalua

tion of a simple sum, I:k ak. If {Pk} denotes a set of values for a probability mass
function that is arbitrary (save for the requirement that ak =P 0 imply Pk =P 0), then

I:k ak = I:k (~) Pk, which may be interpreted as the expected value of a random

variable Z defined by Pr { Z = ~ } = Pk.

From equation (1) and the Neumann series representation of the inverse it is is clear
that

V = (1 - -yp)-l R = R + -yP R + -y2 p2 R + ...
whose ith component is

Vi = R; + -y L P"l R;l + -y2 L P"lP'1'2 R;2 + ...

. . . + -yk L Pii1 ... P,/o-li/oR;/o + ... (2)

and it is this series that we wish to evaluate by statistical means.

A technique originated by Ulam and von-Neumann (Forsythe & Leibler, 1950) uti

lizes an arbitrarily defined Markov chain with transition matrix P and state set
{I, 2, "., n} (V is assumed to have n components). The chain begins in state i and

is allowed to make k transitions, where k is drawn from a geometric distribution

with parameter Pdep; i.e., Pr{k state transitions} = P~tep(1 - P,tep)' The Markov

chain, governed by P and the geometrically-distributed stopping criterion, defines

a mass function assigning probability to every trajectory of every length starting in

state i, Xo = io = i --+ Zl = i l --+ ... --+ Zk = ik, and to each such trajectory there
corresponds a unique term in the sum (2).

For the cas/~ of value estimation, "Z" is defined by

690 Barto and Duff

which for j> = P and P,tep = 'Y becomes

k

Pr {z = 1~" } = 'Yk(1 - 'Y) IT Pij_li;-
'Y ;=1

The sample average of sampled values of Z is guaranteed to converge (as the number

of samples grows large) to state i's expected, infinite-horizon discounted return.

In Wasow's method (Wasow, 1952), the truncated Neumann series

~ = R; + 'Y LPiilR;l + 'Y2 LPiilPi li2R;2 + ... + 'YN L Pii l ·· ·PiN_liNR;N

is expressed as R; plus the expected value of the sum of N random variables

ZlI Z2, ... , ZN, the intention being that

E(Zk) = 'Yk L PihPili2" ·pi"_d,,R;,,·

i 1 ···i"

Let trajectories of length N be generated by the Markov chain governed by P. A

given term 'Y"Pii1Pi li2 ·· 'Pi"_li"R;" is associated with all trajectories i -+ i1 -+ i2 -+
... -+ ik -+ ik+1 -+ ... -+ iN whose first k + 1 states are i, ill ... , ik. The measure

of this set of trajectories is just Pii1Pili2 ... Pi"_li". Thus, the random variables Zk,
k = 1, N are defined by

If P = P, then the estimate becomes an average of sample truncated, discounted

returns: ~ = R; + 'YR;1 + 'Y2 R;.2 + ... + 'YN R;N.

The Ulam/von Neumann approach may be reconciled with that of Wasow by pro
cessing a given trajectory a posteriori, converting it into a set of terminated paths

consistent with any choice of stopping-state transition probabilities. For example,

for a stopping state transition probability of 1 - 'Y, a path of length k has proba
bility 'Yk(1 - 'Y). Each "prefix" of the observed path x(O) -+ x(1) -+ z(2) -+ ... can

be weighted by the probability of a path of corresponding length, resulting in an

estimate, V, that is the sampled, discounted return:

00

V = L -rk RZ(k).

k=O

3 Complexity

In (Curtiss, 1954) Curtiss establishes a theoretical comparison of the complexity
(number of multiplications) required by the Ulam/von Neumann method and a

stationary linear iterative process for computing a single component of the solution

to a system of linear equations. Curtiss develops an analytic formula for bounds
on the conditional mean and variance of the Monte-Carlo sample estimate, V, and

mean and variance of a sample path's time to absorption, then appeals to the

Monte Carlo Matrix Inversion and Reinforcement Learning 691

n 1000

900

800

700

600

500

400

300

200

100

)"=.5

),,=.7

)"=.9

O~----------~----~--~--~--~ a 100 200 300 400 500 600 700 800 900 1000

1/~

Figure 1: Break-even size of state space versus accuracy.

Central Limit Theorem to establish a 95%-confidence interval for the complexity of
his method to reduce the initial error by a given factor, e. 1

For the case of. value-estimation, Curtiss' formula for the Monte-Carlo complexity
may be written as

WORKMonte-Carlo = 1 ~ "'; (1 + e22) . (3)

This is compared to the complexity of the iterative method, which for the value
estimation problem takes the form of the classical dynamic programming recursion,
v(n+l) = R + ",;pv(n):

(lOge) 2
WORKiterati'lle = 1 + log",; n + n.

The iterative methodts complexity has the form an2 + n, with a > It while the
Monte-Carlo complexity is independent of n-it is most sensitive to the amount of
error reduction desired, signified bye. Thus, given a fixed amount of computation,
for large enough n, the Monte-Carlo method is likely (with 95% confidence level) to
produce better estimates. The theoretical "break-even" points are plotted in Figure
It and Figure 2 plots work versus state-space size for example values of",; and e.

IThat is, for the iterative method, e is defined via IIV(oo) - yen) II < eIlV(oo) - yeO) II,

while for the Monte Carlo method, e is defined via IV(OD)(i) - VMI < eIlV(OD) - V(O)II,

where VM is the average over M sample V's.

692 Barto and Duff

.::&.50000
o
~45000

I

I

I

I

40000~------------~/------~--------
I

35000 I

30000

25000

20000

15000

10000

5000

,
I

I

I

Iterative

Monte Carlo

Gauss

O~~--~~~~--~~--~--~~--~
o 10 20 30 40 50 60 70 80 90 100

n

Figure 2: Work versus number of states for"Y = .5 and e = .01.

4 Discussion

It was noted that the analytic complexity Curtiss develops is for the work required
to compute one component of a solution vector. In the worst case, all components

could be estimated by constructing n separate, independent estimators. This would
multiply the Monte-Carlo complexity by a factor of n, and its scaling supremacy

would be only marginally preserved. A more efficient approach would utilize data

obtained in the course of estimating one component to estimate other components
as well; Rubinstein (Rubinstein, 1981) decribes one way of doing this, using the

notion of "covering paths." Also, it should be mentioned that substituting more

sophisticated iterative methods, such as Gauss-Seidel, in place of the simple suc

cessive approximation scheme considered here, serves only to improve the condition

number of the underlying iterative operator-the amount of computation required

by iterative methods remains an2 + n, for some a> 1.

An attractive feature of the the analysis provided by Curtiss is that, in effect, it

yields information regarding the convergence rate of the method; that is, Equation
4 can be re-arranged in terms of e. Figure 3 plots e versus work for example values

of"Y and n.

The simple Monte Carlo scheme considered here is practically identical to the
limiting case of TD-A with A equal to one (TD-l differs in that its averaging of

sampled, discounted returns is weighted with recency). Ongoing work (Duff) ex

plores the connection between TD-A (Sutton, 1988), for general values of A, and
Monte Carlo methods augmented by certain variance reduction techniques. Also,

Barnard (Barnard) has noted that TD-O may be viewed as a stochastic approxima-

~ 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0

Monte Carlo Matrix Inversion and Reinforcement Learning 693

...

Iterative

Monte Carlo

10000 20000 30000 40000 50000

Work

Figure 3: Error reduction versus work for "y = .9 and n = 100.

tion method for solving (1).

On-line RL methods for solving Markov Decision Problems, such as Real-Time
Dynamic Programming (RTDP)(Barto et. al., 1991), share key features with the

Monte Carlo method. As with many algorithms, RTDP does not require explicit
knowledge of the transition matrix, P, and neither, of course, do the Monte Carlo
algorithms. RTDP approximates solutions to Markov Decision Problems through

repeated trials of simulated or actual control, focusing computation upon regions of
the state space likely to be relevant in actual control. This computational "focusing"

is also a feature of the Monte Carlo algorithms. While it is true that a focusing
of sorts is exhibited by Monte Carlo algorithms in an obvious way by virtue of
the fact that they can compute approximate solutions for single components of
solution vectors without exerting the computational labor required to compute all
solution components, a more subtle form of computational focusing also occurs.
Some of the terms in the Neumann series (2) may be very unimportant and need
not be represented in the statistical estimator at all. The Monte Carlo method's

stochastic estimation process achieves this automatically by, in effect, making the
appearance of the representative of a non-essential term a very rare event.

These correspondences-between TD-O and stochastic approximation, between TD

). and Monte Carlo methods with variance reduction, between DP-based RL al
gorithms for solving Markov Decision Problems and Monte Carlo algorithms -
together with the comparatively favorable scaling and convergence properties en

joyed by the simple Monte Carlo method discussed in this paper, suggest that DP
based RL methods like TD/stochastic-approximation or RTDP, though perceived
to be slow, may actually be advantageous for problems having a sufficiently large

694 Barto and Duff

number of states.

Acknowledgement

This material is based upon work supported by the National Science Foundation

under Grant ECS-9214866.

References

E. Barnard. Temporal-Difference Methods and Markov Models. Submitted for

publication.

A. Barto, S. Bradtke, & S. Singh. (1991) Real-Time Learning and Control Using

Asynchronous Dynamic Programming. Computer Science Department, University
of Massachusetts, Tech. Rept. 91-57.

1. Curtiss. (1954) A Theoretical Comparison of the Efficiencies of Two Classical

Methods and a Monte Carlo Method for Computing One Component of the Solution
of a Set of Linear Algebraic Equations. In H. A. Mayer (ed.), Symposium on Monte

Carlo Methods, 191-233. New york, NY: Wiley.

M. Duff. A Control Variate Perspective for the Optimal Weighting of Truncated,
Corrected Returns. In Preparation.

S. Forsythe & R. Leibler. (1950) Matrix Inversion by a Monte Carlo Method. Math.

Tables Other Aids Comput., 4:127-129.

R. Howard. (1960) Dynamic Programming and Markov Proceses. Cambridge, MA:

MIT Press.

R. Rubinstein. (1981) Simulation and the Monte Carlo Method. New York, NY:

Wiley.

R. Sutton. (1988) Learning to Predict by the Method of Temporal Differences.
Machine Learning 3:9-44.

G. Tesauro. (1992) Practical Issues in Temporal Difference Learning. Machine
Learning 8:257-277.

W. Wasow. (1952) A Note on the Inversion of Matrices by Random Walks. Math.

Tables Other Aids Comput., 6:78-81.

