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Monte Carlo Methods for Index Computation (mod p)

By J. M. Pollard

Abstract.   We describe some novel methods to compute the index of any integer rela-

tive to a given primitive root of a prime p.   Our first method avoids the use of stored

tables and apparently requires 0(p   ) operations.   Our second algorithm, which may

be regarded as a method of catching kangaroos, is applicable when the index is known

to lie in a certain interval; it requires 0(w  ) operations for an interval of width w, but

does not have complete certainty of success.   It has several possible areas of applica-

tion, including the factorization of integers.

1.  A Rho Method for Index Computation.  The concept of a random mapping

of a finite set is used by Knuth [1, pp. 7-8] to explain the behavior of a type of

random number generator.  A sequence obtained by iterating such a function in a set

of p elements is 'rho-shaped' with a tail and cycle which are random variables with

expectation close to

(1) VW/8) - 0.6267 Vp,

(as shown first in [2], [3] ).   Recently [4], we proposed that this theory be applied

to recurrence relations such as

(2) x/+1 = x2±l    (modp),

and showed how a very simple factorization method results, in which a prime factor p

of a number can be found in only 0(p'A) operations.  The method has been further

discussed by Guy [5] and Devitt [6], who have found it suitable for use in program-

mable calculators.

We now suggest that the same theory can be applied to sequences such as x0 = 1,

[  0< x,.<ip

x.., . = < x? >  (mod p)    for < ̂ p < x,. < ^p V

jP <x¡<p

where r is a primitive root of the prime p, q is any integer, and x¡ is always taken in

the range 0 < xt < p.   The idea of this definition, which can be varied in many ways,

is that the three possibilities are chosen in a 'random' manner, and the resulting se-

quence is sufficiently 'complicated' to be regarded as a random mapping; in addition,

all the Xj axe easily expressible in terms of q and r.  As a consequence, we can give an
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algorithm to compute the index of q in 0(p ) operations, and with a very small

storage requirement.

The method is an alternative to the following method of D. Shanks (see [7,

pp. 9, 575-576]).  Put m = [\fp] + 1, and rewrite the equation q=ram + b (mod p),

(0 < a, b < m) as qr~b = ram (mod p).  To solve this, compute the sets qr~b and

ram (mod p), and find a common member by sorting both sets (the idea has other

applications [8], [9] ).   The method is of order p^log p and requires storage 0(pVl).

The main interest of our method, which may be slightly faster, is that it shows

that such storage is unnecessary.  We are not aware of any particular need for such in-

dex calculations, but believe that the ideas may have other applications (such as those

described in the last section).

Diffie and Hellman [10] conjecture, and hope, that the estimate 0(p'/2) is the

best possible (for a general prime).  But there is some possibility of obtaining a more

powerful method from the ideas of Western and Miller, to which Miller [11] has re-

cently drawn attention; we sketch a possible approach.  We generate the sequence rl

(mod p) and (for r > p) try to find numbers which factor entirely into primes below

some limit (as Brillhart and Morrison [12] do with their Ö,)—or perhaps primes whose

epacts [4], [5] are below some limit, the factoring being by our method mentioned

earlier.  After a sufficient number of successes, we compute the indices of these primes

as the solution of a set of linear equations (mod p - 1).  Then, to obtain the index

of an arbitrary q, we need only find one number qr' (mod p) which factors into this

set of primes.

Continuing the description of our method based on (3), we define sequences

(a¡) and (b¡) such that

(4) x,. = qahbi   (mod p).

Thus, we set a0 = 0 and aj+, = a¡ + 1, 2a¡, or a¡ (mod p - 1), according to the three

cases in (3); similarly, we put bQ = 0 and bi+x = b¡, 2b¡ or b¡ + 1 (mod p - 1).

We introduce an idea of R. W. Floyd [1, p. 4] which was used in [4] ; we will

have xt = x2/. just when / is a positive multiple of the cycle length and not less than

the tail length.   The least such i has been named the epact [5].   For a true random

mapping, it has expectation close to

V(7TSp/288)^1.0308Vp",

and we conjectured [4] that this holds also for sequences of type (2).   For (3), we

believe that the constant may be different, but not by much.  Thus, a calculation on

50 primes near 104 gave a mean value for e(p)/pVi of 1.08.  The individual epacts are

quite variable, some being as large as 3y/p~, as they are for the epacts associated with

(2) for which Guy [5] conjectures that

max e(p) ~(x lnx),/2    as x —* °°.
p<x

Our method is to run through the sets

(5) (xt, at, b¡, x2i, a2i, b2i),      i = 1, 2, 3, ...,
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generating each from the previous one, until the epact is reached, i.e. x¡ = x2¡.  Then

from (4) we have an equation

(6) qm=r"    (modp),

where m=ae - a2e and n = b2e - be (mod p - 1).  In most cases, this substantially

computes the index of q.

Thus, let us compute d = g.c.d.(m, p - 1) by the extended form of Euclid's

algorithm [1, p. 302] obtaining an equation d = Xm + p(p - I).  Raising (6) to the

power X gives qd = rKn (mod p), where Xn is of form dk, and so

(7) q=rk9l    (modp),

where 9 = r^p~1^d is a cfth root of unity, and / (0 < / < d - 1) remains to be de-

termined.   For this we recommend trial of the possible values after computing rk and

9 by the usual power algorithm.

This assumes that d is small, and this point may need amplification.  The hardest

case for computing indices is when p - 1 = 2p', p' prime; otherwise, we can use the

factorization of p - 1 to obtain the index in several stages, as will be described.   In the

hard case it is almost certain that d = 1 or 2.  For a general prime, we argue that the

probability that any prime factor p' of p - 1 divides m, and therefore d, is only 1/p';

this leads us to predict that values of d comparable with p'/2, say, will still be extremely

rare.

Example 1. p = 999959, r = 7, q = 3. Here p - 1 = 2p', p prime, so that 7,

being a quadratic nonresidue, is also a primitive root.   An ICL 1906S computer takes

about 0.5 sec. to find that e = 1174, xe = x2e = 11400, m = 310686 and n = 764000.

Thus,

3310686=7764000     (mod p).

Euclid's algorithm gives 2 = 148845 x 310686 - 46246 x 999958, from which we de-

duce that 32 = 7356324 and 3 = ±7i™i62 (moci p).  Since 3 is a quadratic residue

and -1 a nonresidue, the plus sign holds, and the index is 178162.

The algorithm could be used in many programmable calculators.   For the very

smallest presently available (such as the HP-25) the method is still just possible, but

storage limitations, for data and program, force us to break up the calculation into

several parts, performed by separate programs.

Example 2.  p = 99989, r = 2, q = 107.   The first program runs through the

pairs (x¡, x2i) searching for the epact; the other variables are absent.   The HP-25 takes

35 minutes to find that e = 357, xe = x2e = 60609.  The second program uses a single

set of three related variables (x¡, a¡, b¡).  By running through these sets as far as / = e,

the program obtains ae = 91377, be = 74146.   It then runs on until the first repetition

of xe, which will occur after a further c steps (where c, the cycle length, is a factor of

e).  In our case, c = 119 and ac+e = 4749, bc+e = 84434; the second program takes

a further 15 minutes.   Hence we have

10786628=210288      (mod p).
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A third program applies Euclid's algorithm, obtaining 4 = -12027 x 86628 + 10420

x 99988, from which we have 1074 = 2s 1368 (mod p).  Therefore

1O7 = 2128420'',

where 9 = 2(p'1)l4 = 224997 and 0 < i < 3. With the help of a fourth program,

for computing powers (mod p), we find that i = 3, and the index of 107 is 87833.

The third and fourth programs take less than a minute. Here, as in Example 1, we

have chosen a case where the epact turned out to be close to p  .

2. A Multistage Method, and Other Variants.   By making use of the factoriza-

tion of p - 1, we can improve our method to be of order p\2, where px is the greatest

prime factor of p - 1 ; this can equally be done for Shanks' method, making it of order

p'x  log p (a method of order px is due to R. I. Silver; see next revision of [7]).  To

illustrate, we assume that p - 1 = st and compute the index of q in two stages.   First,

we apply our existing method with Q = qs and R = rs (mod p) replacing q and r.  This

leads to an equation G^1 = RN (mod p), or r7íAÍ = rsN (mod p).   From this we obtain

(7) with d a multiple of s.  Now we have to express qr~k as a power of 9, and can

use the same method again with Q' = qr~k and 9 = /¿p~l^d for q and r.

Example 3.  We take p = 99989, r = 2, q = 107, as in Example 2, but note that

p - 1 = 22.7.3571.   First, we compute Q = q2S = 11908, R = r2S = 64980.  Then,

following the method of Example 2, we get e = 88, xe = x2e = 91305 (8 minutes),

then ae = 8288, be = 11665, c = 22, ae+c = 61152, be+c = 93549 (4 minutes more).

Hence

ß47124=/?81884     {mod p)>

from which <719628 =r9301<\  Next, d = 28 and 28 = 1569 x 19628 - 308 x 99988,

soq28 =r59612 axidq =r21299\ where 9 =r3571 and 0</<27.   Trying i = 0,

1, 2, . . .  in turn, we get r2129910 =-q, hence the index of q is 2129 + 10 x 3571

+ ^.99988 = 87833.

Of course, we are free to use this method even in the hard case p - 1 = 2p',

taking s = 2.  Thus, we could write q2 and r2 in (3) in place of q and r; but we pre-

ferred not to do so in our original description.

Many other variations in (3) are possible.  Thus, we could give a different decision

rule between the same three alternatives.  We could manage with only two of these,

say rx¡ and x2; then we find that 2k\m in (6) if 2k \p - 1, which may be a nuisance

in the single stage algorithm.   It would be convenient for programming, especially if

q and r axe small, to use only rx¡ and qx¡.  But this could be disastrous—if ind q is

small and positive, the epact would be of order p instead of p'/2 (thus, with q = r2

(mod p), we have e > c > lAp).

We would not expect any difficulty in translating our algorithms to an arbitrary

finite field; but we have not performed any experiments.

3. A Lambda Method for Catching Kangaroos, and Some Applications.   A more

fundamental change is to a method resembling a lambda rather than a rho. We illustrate

with the problem of catching a kangaroo which is travelling along a known path in a
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series of what appear to be unpredictable bounds; in reality, their lengths are a func-

tion of the state of the ground at the point of take-off.  We suppose that this func-

tion takes values at random from an integer set S, of mean m and largest member L

(known as the upper bound).

We require the services of a second tame kangaroo T of identical jumping be-

havior.  We cause T to start at some point x0, and take N bounds, arriving at xN.  A

hole dug at this point, and suitably camouflaged, will catch the wild kangaroo W if he

lands on any of the points x0, Xj, . . . , x^.  For a crude estimate, we can say that

W has N (ox N + 1) chances of losing his freedom with independent probabilities l/m.

Thus, if N = 9 m, he will be caught with probability about

1 - (1 - l/m)6"1 === 1 - t?_e    (for large m),

i.e. 0.63, 0.86, 0.95, 0.98 for 9 = 1, 2, 3, 4.  In case of success (for us) a comparison

of the distance recorders carried by W and T enables us to find W's starting position,

which is what we really wanted, and W can go free.  Note that young kangaroos will

rarely be caught in this kind of trap, which is good.

As an application, we describe a method to compute the index of an integer q

(mod p) given that it lies in some range A < ind q < B.   The method is of order wVl,

where w = B - A, as compared with w* log w for the obvious modification of the

method of [7] (we consider the hard case p - 1 = 2p').

Our kangaroos are represented by sequences of the form

xt+im*i ******   (modp),

where the 'random' function f(x) takes values in the set S; the distance from x0 to x¡

is then

di=J%x0)+ /(*,) + ••• +/(x,._1).

First T starts at x0 = rB (mod p) and travels to xN, a distance of dN.  Then W starts

at x'0 = q = rind q (mod p).  Capture is indicated by x'M = xN (mod p), after which

we calculate ind q = B + dN - d'M (mod p - 1); otherwise W can stop when dM ex-

ceeds B + dN - A, since he has then certainly passed the trap.

We give an approximate analysis in which the nature of the set S still does not

enter, other than through its mean m.   Let m = awVl and, as before, N = 9m = aOwv'.

The total work of the algorithm when successful is N + M, with expected value

09 »+Ö-S + *)1—'^•♦¿>

this has minimum 20VlwVl at a = l/20y2, e.g. for 0 = 4, a = %, m = %w*, N = w*.

This represents the best choice of a if the probability of failure is small (i.e. 0 is large).

We propose to compute and store all the powers rs (mod p), (s E S) required by

the algorithm, and hence require S to be sparse (certainly \S\ <wVi, ox our method is

pointless).  In the following example, we could allow only four values.

Example 4. p = 99989, r = 8, q = 428; we are told that -5000 < ind q < 0
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(in fact, ind q was known from Example 2).  Our HP-25 program takes f(x¡) = 41

(0 < / < 3), where / = x¡ (mod 4); thus the numbers r, r4, r16 and r64   (mod p) are

held in four registers.  If we start T at x0 = 1, then after 100 bounds (and 5 minutes)

he has reached x100 = 89721, and travelled a distance of dxoo = 1966 (yards, say).

W now takes 15 minutes to travel 6017 yards before landing in the trap.  We are now

relieved to find that ind q = 1966 - 6017 = -4051, as it should.  Further experiment

reveals that this trap is perfect and catches all kangaroos starting at or behind x0 = 1 ;

in fact, all trajectories starting at distances 0, 1, . . _, 63 yards past x0 have merged by

the time they reach xls = 15542, a distance of only diS = 399 yards past xQ.

To illustrate the effect of the choice of S, consider the following true Monte

Carlo experiment.   Let T start at the point 0, and W at an integer point chosen at ran-

dom in the interval (-L, -1), where L is the upper bound.  The hindmost kangaroo

now jumps forward by a distance chosen at random from S, and this is repeated until

a collision occurs; then the number of bounds x (> 0) taken by T is recorded.

According to our previous argument, x has negative exponential distribution with

mean m, and standard deviation m also.  Some exact values for mean m and standard

deviation a axe:

(i) S = (I, 2, . . . , 2m - l), m = m - I, o' = {(m - 1) (3m - l)/3}y\

(ii) 5 = (1, 2m - 1), m = (2m2 +m- 3)/6.

Thus (i) is satisfactory for our method (but not sparse), while (ii) is not; we give

some experimental results for these and some intermediate cases (100 trials each):

(i) S = (1, 2,_19), m = 10, m = 8.68, o' = 7.69,

(ii) S = (1, 19), m = 10, m = 37.2, o = 47.1,

(iii) 5 = (1,2,4.128), m = 31.88, m = 35.0, o = 27.8,

(iv) S =(1, 4, 16, 64), m = 21.25, m = 28.9, o = 35.1.

From these and other experiments, we conjecture that the powers of 2 give an

acceptable set S, but that sparser sets are less satisfactory.

The problem of Example 4 may seem unnatural, so we give two other situations

in which the same idea might possibly be applied:

(a) to compute the order of an element x of an Abelian group, given that the

order h of the group lies in the range A < h < B; we first seek a solution i in this

range of the equation x' = 1. This problem has some resemblance to the situation in [8] ;

(b) to factorize an integer n, given a factor bound M > n1 '3, by a version of

Fermat's method [1], [5].   Let n = pc7, where M <p <q < n/M, and let (a, n) = 1 ;

then the equation

a2x=an + i    (modn),

has a solution with 2nh < 2x < M + n/M, namely x = xh(p + q).  We can find the

solution (or fail to find it) in 0((n/M)Vl) steps and hence factor n (sometimes).  In

calling this method the Square Root Sieve we are assuming that it is possible to intro-

duce some degree of sieving [13], [14], without losing the advantage of the square

root.  Certainly some improvement, at least, is possible; thus [5], if n = 11 (mod 12),

thenx = 0 or 6 (mod 12) according as n = -1 or 3 (mod 8), and we can easily make

use of such a restriction on x to a single residue class.
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We have not been able to experiment with this method. We remark that it likes

best a number composed of two nearly equal prime factors, which the rho method [4]

likes worst.
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Added in Proof.   We understand that our lambda method is already known to

conjurors as 'Kruskal's principle' (see Scientific American, February 1978).  We doubt

if they use a more sophisticated version, with two herds of kangaroos each confined to

a residue class, with which we have obtained the factorization:  272 - 3 = 83 x 131 x

294971519 x 1472414939.
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