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Abstract
In this paper we consider the problem of computing tail probabilities of the distribution of a random sum of positive
random variables. We assume that the individual claim variables follow a reproducible natural exponential family (NEF)
distribution, and that the random number has a NEF counting distribution with a cubic variance function. This specific
modeling is supported by data of the aggregated claim distribution of an insurance company. Large tail probabilities are
important as they reflect the risk of large losses, however, analytic or numerical expressions are not available. We propose
several simulation algorithms which are based on an asymptotic analysis of the distribution of the counting variable and on
the reproducibility property of the claim distribution. The aggregated sum is simulated efficiently by importance sampling
using an exponential change of measure. We conclude by numerical experiments of these algorithms, based on real car
insurance claim data.

Keywords: aggregated claim distributions, natural exponential families, reproducibility, Tweedie scale, variance func-
tions, discrete counting variables, Monte Carlo simulations, importance sampling

1. Introduction

Let Y1,Y2, . . . be i.i.d. positive random variables representing the individual claims at an insurance company, and let
N ∈ N0 = {0, 1, . . .} designate the total number of claims occurring during a certain time period, where N and the Yi’s
are independent. For modeling convenience, we define Y0 ≡ 0. The total claimed amount is called the aggregated claim
variable, denoted by

S N =

N∑
k=0

Yk.

A major issue for insurance companies is the uncertainty of the occurrence of a large aggregated claim, because, if this
happens, the company faces large losses that may ultimately lead to a ruin. Thus, an important quantity to compute is the
insurance risk factor

ℓ(x) = P
(∑N

k=0
Yk > x

)
, (1)

for large levels x. (Other risk/loss factors or models can be found in the fundamental monograph by Klugman et al.(2008)).
Because of its importance for insurance companies, many actuarial studies deal with this problem, see the monograph of
Kaas et al. (2008). However, there are many other practical situations in which the object of interest is a random sum of
i.i.d. random variables (Bahnemann, 2015). For instance, S N might represent the total loss of a financial institute due to
defaults of N obligors with credit sizes Y1,Y2, . . ..

Two rather moderate remarks should be noted at this stage. The first relates to another approach of dealing with the
random aggregated sum. Such an approach considers N = N(t) to form a renewal counting process up to time t, in which
case the aggregated sum variable becomes a renewal risk model (Dickson, 1998; Asmussen and Albrecher, 2010). The
second remark relates to the notion of reproducibility or reproductive distributions. Indeed, denote by f (n) the probability
mass function (p.m.f.) of N and by G the common cumulative distribution function (c.d.f.) of the Yk’s. Then the c.d.f. of
S N is

∞∑
n=0

f (n)G∗n(s), s ≥ 0,

where G∗n stands for the n-fold convolution of G with itself. In the case where G is the gamma distribution then the
convolution of i.i.d. gamma variates is also gamma, a fact which led to an easy-to-calculate exact formula for the aggre-
gate distribution function (Bahnemann, 2015, p. 113). However, as opposed to Bahnemann’s claim that ”this desirable
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reproductive property—the distribution of a sum of identical independent random variables having the same distribution
type as the components—is shared by just a few families of distributions (notably the normal distributions, which are
not generally useful as claim-size distributions)”, is not entirely adequate as the class of reproducible families is huge
and contains all natural exponential families (NEF’s) having a power variance function that belong to the Tweedie’s scale
(Tweedie, 1984; Bar-Lev and Enis, 1986; Bar-Lev and Cassalis, 2003). In particular all NEF’s generated by stable distri-
butions are reproductive, though stable distributions by themselves have complicated analytical forms (see in the sequel).
As a consequence, ”actuaries have since the mid-1900s sought to develop various procedures for calculating values of
an aggregate distribution. Among these are several approximations using easily calculable parametric distributions, algo-
rithms featuring recursive formulas, Fourier-transform-based methods, and Monte Carlo simulation” (Bahnemann, 2015,
p. 115). Also, see Vinogradov et al. (2012, 2013) regarding the case of positive stable distributions.

Now, for doing the actual computations of the risk factor in (1), one needs to fit a model for the counting distribution of
N and the claim size distribution of Y . Nowadays we see that the Poisson and the gamma distributions, respectively, are
often being used (Bowers et al., 1997). Other proposals include negative binomial for the counting number and inverse
Gaussian for the claim size and positive stable distributions.

However, due to large uncertainties, many realistic data show large overdispersion. In fact, our study is motivated by
available data of a car insurance company for which the traditional distributions clearly do not fit properly. The (empirical)
variance of the counting number data shows a power law with respect to the (empirical) mean, with a power close to
three. This observation was the reason that we decided to consider counting distributions with tails that go beyond (are
heavier than) the Poisson and negative binomial. A natural modeling technique to introduce families of distributions is
by considering the concept of NEF’s (Letac and Mora, 1990; Smyth and Jorgensen, 2002; Dunn and Smyth, 2005, 2008).
In our case we are interested in NEF’s with cubic variance functions (Letac and Mora, 1990). Concerning the counting
variable N, we shall investigate

• The NEF generated by the Abel distribution (hereafter the Abel distribution);

• the NEF generated by the strict arcsine distribution (hereafter the strict arcsine distribution);

• the NEF generated by the Takács distribution (hereafter the Takács distribution).

These are new distributions for insurance modeling, and have to our knowledge not been considered before in computation
and simulation studies. As said above, our objective is to execute numerical computations of the insurance risk factor,
for which we consider using Monte Carlo simulations. This was motivated because there are no easily workable analytic
expressions available for the probability functions of the Abel, strict arcsine arcsine and Takács distributions. Thus, a
main part of our paper deals with developing simulation algorithms for generating samples from these distributions.

Also concerning the claim size distributions, we propose modeling by NEF’s. Specifically, we consider

• gamma distribution;

• positive stable distributions;

• inverse Gaussian distribution.

These are well-known distributions in insurance modeling, for which simulation algorithms for generating samples have
been established (Shuster, 1968; Chambers et al., 1976; Michael et al., 1976; Devroye, 1986). However, please note that
when we write positive stable distributions (for which no integer moments exist) we mean NEF’s generated by positive
stable distributions (for which all moments exist).

In this way, our aggregate models become Tweedie models in the sense that both the distributions of the counting number
and the distributions of the claim size belong to NEF’s (Smyth and Jorgensen, 2002; Dunn and Smyth, 2005, 2008). Hence,
we shall investigate whether the statistical procedures for estimating the parameters in these models can be applied to our
data, or whether we need to develop other procedures. Commonly, one models the mean and dispersion in terms of risk
factors, for instance by regression models or by generalized linear models (Smyth and Jorgensen, 2002). However, we
propose to directly compute the risk as a tail probability of the aggregated claim distribution by executing Monte Carlo
simulations.
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The simulation algorithm exploits two efficiency improvements with respect to standard Monte Carlo. Firstly, the claim
size distributions show the reproducibility property (Bar-Lev and Enis, 1986), which says that convolutions can be con-
sidered being affine transformations of univariates. Thus, for example, a single sample of the inverse Gaussian distribu-
tion suffices for generating a sum of i.i.d. inverse Gaussian. Secondly, we apply importance sampling by implementing a
change of measure which is based on the exponentially tilting the probability distributions (Asmussen and Glynn, 2007(@,
Chapter VI). The optimal tilting factor is determined by a saddle-point equation, and results in a logarithmically efficient
estimator.

The paper is organized as follows. Section 2 summarizes the concepts of Tweedie NEF distributions and reproducibility.
The main contribution of the paper is contained in Section 3 where we analyze the three counting distributions which
leads to the construction of the simulation algorithms for generating samples. Section 4 summarizes a few aspects of the
claim distributions. The aggregated claim risks are computed in Section 5 by Monte Carlo simulation using the algorithms
that we have developed. We show how these risks for large levels can be computed efficiently by an appropriate change of
measure for importance sampling. Finally, Section 6 gives details of the data that motivated this work. Briefly, Section 6
demonstrates that the best fit for the data of a Swedish claims at a car insurance company is obtained for the pair (arcsine,
positive stable) with p-value equals .7460. All fit ranking after are, respectively, (arcsine, inverse Gaussian, p-value
0.4224), (Takács, gamma, p-value 0.4159), (Abel, positive stable, p-value 0.3089), (Takács, inverse Gaussian, p-value
0.2800), (Takács, positive stable, p-value 0.2701), (Abel, inverse Gaussian, p-value 0.2459) and (Abel, gamma, p-value
0.2101). As opposed to these, the worst fit has been obtained for pairs of the Poisson along with the gamma, inverse
Gaussian and positive stable distributions with p-value less than .00001, see Table 3 of Section 6 for a reference.

2. Natural Exponential Family and Reproducibility

We summarize some relevant concepts and properties of distributions NEF’s, see Letac and Mora (1990); Smyth and
Jorgensen (2002); Dunn and Smyth (2005, 2008).

Definition 1. Let ν be a non-Dirac positive Radon measure on R, and L(θ) =
∫

eθx ν(dx) its Laplace transform. Assuming
that Θ = int{θ : L(θ) < ∞} , ∅, then the NEF generated by ν is defined by the probability distributions

F =
{
Fθ : Fθ(dx) = eθx−κ(θ) ν(dx), θ ∈ Θ

}
, (2)

where κ(θ) = log L(θ), the cumulant transform of ν, is strictly convex and real analytic on Θ.

The generating measure ν is called the kernel of the NEF. We may associate a random variable Xθ with the NEF distribution
Fθ. Then

E[Xθ] = κ′(θ); Var[Xθ] = κ′′(θ).

Since κ′ is invertible, we obtain the NEF parameter θ by

θ = θ(m) =
(
κ′
)−1(m).

This means that if we let κ(m) = κ
(
θ(m)
)
, we can represent the NEF equivalently by

F =
{
Fm : Fm(dx) = eθ(m)x−κ(m) ν(dx), m ∈ M

}
,

whereM is called the mean domain of F and is given byM = κ′(Θ). Such a parametrization is called the mean value
parametrization of the NEF F . Finally, if also the variance V(m) = κ′′

(
θ(m)
)

of an NEF distribution is given as function
of the mean m, the pair (V,M) uniquely determines an NEF within the class of NEF’s. Simple algebra shows that θ and
κ(θ) can be represented in terms of m by

θA(m) =
∫
θ′(m) dm =

∫
1

V(m)
dm + A,

κB(m) =
∫
κ′(m) dm =

∫
m

V(m)
dm + B,

(3)

where A and B are constants. The constants A and B need to be chosen appropriately such that the corresponding Fθ is
a probability distribution. A thorough survey on this issue as well on the mean value parameterization of NEF’s can be
found in Bar-Lev and Kokonendji (2017).

We call an NEF a Tweedie NEF when V has the form V(m) = αmγ, α > 0, γ ∈ R\{(0, 1)}; i.e., when V is a power function
of the mean (Tweedie, 1984; Bar-Lev and Enis, 1986; Jorgensen, 1987). Furthermore, the following reproducibility
concept will be a key element in our analysis. It has been developed in (Bar-Lev and Enis, 1986).
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Definition 2. Let F be a NEF as in (2), and suppose that X1, X2, . . .
iid∼ Fθ. Denote S n =

∑n
k=1 Xk. The NEF is said to be

reproducible if there exist a sequence of real numbers (cn)n≥1, and a sequence of mappings {gn : Θ→ Θ, n ≥ 1}, such that
for all n ∈ N and for all θ ∈ Θ,

cnS n
D∼ Fgn(θ) ∈ F .

Bar-Lev and Enis (1986) and Bar-Lev and Cassalis (2003) showed that an NEF F is reproducible iff it belongs to the
Tweedie scale. They also provided the corresponding explicit forms of cn and gn(θ) for all NEF’s belonging to the
Tweedie scale (see in the sequel).

3. Counting Distributions

In this section we analyze discrete counting NEF’s that are given by a cubic variance function (VF), see Letac and Mora
(1990). As said in the introduction, we are motivated by data in a case study having a variance showing indeed such a
power law. Our distributions will be used for computing the insurance risk factor by simulations, and, thus, the issue is
how to generate samples from these distributions. Our analysis will lead to the construction of sampling algorithms that
are based on the accept-reject method. As dominating proposal distribution, we can use the same distribution that is used
to sample from the Zipf distribution (Devroye, 1986).

Consequently, we analyze the Abel, the arcsine, and the Takács NEF’s whose kernels and VF’s are given in Letac and
Mora (1990). For each NEF we introduce the VF, develop relevant asymptotic, and then propose our simulation procedure.
It should be noted at this point, however, that the Abel distribution is also commonly known as the generalized Poisson
distribution - see Consul (1989); Consul and Shoukri (1988), whereas the Takács distribution is known as the generalized
negative binomial distribution - c.f., Devroye (1992).

3.1 The Abel NEF

The VF is given by

V(m) = m
(
1 +

m
p

)2
, m > 0, p > 0. (4)

By (3) we deduce that the NEF-parameter function θA(m) and the cumulant function κB(m) as functions of mean m are
derived by

θA(m) =
∫

1
V(m)

dm =
∫

1

m
(
1 + m

p
)2 dm = log

m
m + p

+
p

m + p
+ A(a constant) (5)

κB(m) =
∫

m
V(m)

dm =
∫

1(
1 + m

p
)2 dm = − p2

m + p
+ B(a constant). (6)

The kernel is given in (Letac and Mora, 1990):

ν(n) =
1
n!

p(p + n)n−1, n ∈ N0. (7)

Proposition 1. A = −1 and B = p.

Proof. The constant B follows from (Letac and Mora, 1990, Proposition 4.4):

ν(0) = eκB(0) ⇔ 1 = e−p+B ⇔ B = p.

Hence,

κB(m) = − p2

m + p
+ p =

mp
m + p

⇒ κB(m)
p
=

m
m + p

. (8)

The constant A follows from (Letac and Mora, 1990, Example C). The Abel distribution has generating function

g(z) = ez =

∞∑
n=0

1
n!

zn,

and the kernel is computed by

ν(n) =
p

p + n
1
n!

( d
dz

)n
gn+p(z)

∣∣∣∣
z=0
.
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In this we get (7). Furthermore, display (4.27) in Letac and Mora (1990) says

eθA(m)+κB(m)/p = g−1
(
eκB(m)/p

)
.

Substituting g−1 = log and the expression for κB(m)/p in display (8), we get:

eθA(m)+m/(m+p) = m/(m + p) ⇔ θA(m) = log
m

m + p
− m

m + p
= log

m
m + p

+
p

m + p
− 1.

Conclusion A = −1. �

Define

ν0(n) = ν(n)e−n−p =
pe−p

n!
(p + n)n−1e−n

θ(m) = θA(m) − A = log
m

m + p
+

p
m + p

κ(m) = κB(m) − B = − p2

m + p

Then, the NEF Abel counting probability mass function (p.m.f.) of the associated counting variable Nθ is:

P(Nθ = n) = fθ(n) = ν0(n) enθ(m)−k(m). (9)

Conveniently, we omit the NEF parameter θ in our notations when there is no confusion.

3.1.1 Analysis

First we consider an asymptotic of the modified kernel ν0(n), using the Stirling approximation:

n! ∼
√

2πn
(
ne−1)n, n→ ∞,

where ∼ means that the ratio converges to 1 (for n→ ∞). This gives

ν0(n) ∼ pe−p(p + n)n−1 e−n

√
2πn
(
ne−1)n =

pe−p

√
2π

1
n
√

n

(
1 +

p
n

)n−1
∼ p
√

2π

1
n
√

n
.

The right-hand side shows correspondence with a Zipf distribution (Devroye, 1986):

z(n) =
1

ζ(3/2)
1

n
√

n
, n = 1, 2, . . . ,

where ζ(·) is the Riemann zeta function. Sampling from this Zipf distribution is done by an accept-reject algorithm using
the dominating p.m.f. b(n) of the random variable ⌊U−2⌋, where U is the random variable uniformly distributed on (0, 1).

b(n) =
1

√
n + 1

(√
1 +

1
n
− 1
)
, n ∈ N. (10)

The multiplication factor for z(n) ≤ cb(n) is (Devroye, 1986)

c =

√
2

ζ(3/2)
(√

2 − 1
) .

We show that we can use b(n) also as proposal dominating p.m.f. for our NEF p.m.f. f (n). However, because the domains
of b(n) and f (n) differ (N versus N0), we need a minor tweak. Denote the conditional p.m.f. by f (n|n ≥ 1) = P(N = n|N ≥
1).

Lemma 1. There is a constant C (not dependent on n) such that

f (n|n ≥ 1) ≤ Cb(n), n = 1, 2, . . . .

58



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 3; 2019

Proof. Note that f (n|n ≥ 1) = f (n)/
(
1 − f (0)

)
, with f (0) = ν0(0)e−κ(m) = e−p−κ(m). Furthermore, for n ≥ 1 using the lower

bound n! ≥
√

2πn nne−n, we get:

(p + n)n−1 e−n

n!
≤ (p + n)n−1

√
2π n
√

n nn−1

=
1

√
2π n
√

n

(
1 +

p
n
)n−1 ≤ 1

√
2π n
√

n
ep.

Moreover, clearly

θ(m) = log
m

m + p
+

p
m + p

≤ 0.

Taking all together we conclude,

f (n|n ≥ 1) =
pe−p

(1 − f (0))n!
(p + n)n−1e−n enθ(m)−k(m) ≤ pe−κ(m)

(1 − f (0))
√

2π n
√

n

=
ζ(3/2)pe−κ(m)

(1 − f (0))
√

2π
z(n) ≤ ζ(3/2)pe−κ(m)

(1 − f (0))
√

2π

√
2

ζ(3/2)
(√

2 − 1
) b(n) =

pe−κ(m)

(1 − f (0))
√
π
(√

2 − 1
)︸                        ︷︷                        ︸

=C

b(n),

where e−κ(m) = ep2/(p+m). �

Remark 1. Note that when m ≫ p, the constant C is of order p which is reflected in the acceptance probability 1/C in
the accept-reject sampling algorithm. However, for large dispersion parameters p the larger constant C deteriorates this
algorithm. In that case one might improve bounding the kernel and the probabilities. Our case study gave m ≫ p, so we
decided to implement the bounding as given above. That gave acceptance probability 0.25.

Summarizing, the Monte Carlo algorithm for simulating from the Abel distribution (9) becomes:

Sampling Algorithm for NEF Abel Distribution
1: Generate U D∼ U(0, 1).
2: if U < f (0) then
3: N ← 0.
4: else
5: repeat
6: Generate U D∼ U(0, 1).
7: N ← ⌊U−2⌋.
8: Compute P = f (N |N≥1)

C b(N) .

9: Generate U D∼ U(0, 1).
10: until U < P
11: end if
12: return N.

3.2 The Arcsine NEF

The VF is given by

V(m) = m
(
1 +

m2

p2

)
=

m
p2 (m2 + p2), m > 0, p > 0. (11)

By (3) we deduce that the NEF-parameter function θA(m) and the log-moment generating function κB(m) are derived by

θA(m) =
∫

1
V(m)

dm =
∫

p2

m(m2 + p2)
dm = ln m − 1

2
log(m2 + p2) + A = −1

2
log(1 + (p2/m2)) + A; (12)

κB(m) =
∫

m
V(m)

dm =
∫

1(
1 + m2

p2

) dm = p arctan(m/p) + B. (13)
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The kernel is given in (Letac and Mora, 1990):

ν(2n) =
1

(2n)!

n−1∏
i=0

(
(2i)2 + p2)

ν(2n + 1) =
p

(2n + 1)!

n−1∏
i=0

(
(2i + 1)2 + p2).

Proposition 2. A = 0 and B = 0.

Proof. The constant B follows from (Letac and Mora, 1990, Proposition 4.4):

ν(0) = eκB(0) ⇔ 1 = eB ⇔ B = 0.

Hence,

κB(m) = p arctan(m/p) ⇒ κB(m)
p
= arctan(m/p). (14)

The generating function of the arcsine kernel is (Letac and Mora, 1990, Example C),

f (z) =
∞∑

n=0

ν(n)zn = ep arcsin z.

Because, κ(θ) = log f (eθ), and κB(m) = κ
(
θA(m)

)
, we get

κB(m) = log ep arcsin eθA (m)
= p arcsin eθA(m)

= p arcsin e− log
√

1+(p2/m2)+A = p arcsin
eA√

1 + (p2/m2)

⇒ sin
κB(m)

p
=

eA√
1 + (p2/m2)

.

According to display (14):

sin
κB(m)

p
= sin arctan(m/p) =

m/p√
1 + (m2/p2)

,

the last equation a well-known identity of trigonometric functions. Equating:

eA√
1 + (p2/m2)

=
m/p√

1 + (m2/p2)
⇔ eA = 1.

Conclusion A = 0. �

Denote θ(m) = θA(m), and κ(θ) = κB(m), with our choices A = B = 0. Hence, we get the NEF arcsine counting p.m.f. of
the counting variable N, omitting NEF parameter θ in the index notation:

P(N = n) = f (n) = ν(n) enθ(m)−k(m), n ∈ N0. (15)

3.2.1 Analysis

In Appendix A we show that there is a constant K such that for n = 1, 2, . . .

ν(2n) ≤ K
1

n
√

n
.

Thus, for these even terms we recognize again the Zipf distribution. This will be helpful to find a dominating proposal
distribution.
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Lemma 2. Define the double Zipf dominating distribution b2(n), n = 2, 3, . . . by

b2(2n) = b2(2n + 1) =
1
2

b([n/2]),

where b(n), n = 1, 2, . . . is the p.m.f. that dominates the Zipf p.m.f., defined in (10). Then there is a constant C such that

f (n|n ≥ 2) = P(N = n|N ≥ 2) ≤ Cb2(n), n = 2, 3, . . . .

Proof. The NEF parameter satisfies

θ(m) = −1
2

log(1 + (p2/m2)) ≤ 0.

Let A = f (0)+ f (1) = P(N = 0)+P(N = 1). Because f (n) = ν(n)eθ(m)n−κ(m), we can bound the probabilities f (2n|n ≥ 1) =
P(N = 2n|N ≥ 2) by

f (2n|n ≥ 1) =
f (2n)
1 − A

≤ Ke−κ(m)

1 − A
1

n
√

n
≤ C̃ b(n),

where

C̃ =
Ke−κ(m)

1 − A

√
2

√
2 − 1

.

Then f (2n|n ≥ 1) ≤ Cb2(2n) for C = 2C̃.

The constant K depends on a threshold i∗ such that for n > i∗, f (2n + 1) < f (2n), and for n ≤ i∗, ν(2n + 1) ≤ Kn−3/2 (see
Appendix A). Thus also all odd terms satisfy f (2n + 1|n ≥ 1) ≤ Cb2(2n + 1). �

Remark 2. Similarly to our algorithm for sampling from the Abel distribution, also the constant C becomes larger for
larger p, deteriorating the accept-reject sampling method. In our implementation we included one more term in the
bounding procedure that is described in Appendix A. This gave an acceptance ratio of 0.34.

Summarizing, the Monte Carlo algorithm for simulating from the arcsine distribution (15) becomes:

Sampling Algorithm for NEF Arcsine Distribution
1: Generate U D∼ U(0, 1).
2: if U < f (0) then
3: N ← 0.
4: else
5: if U < f (0 + f (1) then
6: N ← 1.
7: else
8: repeat
9: Generate U D∼ U(0, 1).

10: Y ← ⌊U−2⌋.
11: Generate U D∼ U(0, 1).
12: if U < 0.5 then
13: N ← 2Y .
14: else
15: N ← 2Y + 1.
16: end if
17: Compute P = f (N |N≥2)

C b2(N) .

18: Generate U D∼ U(0, 1).
19: until U < P
20: end if
21: end if
22: return N.
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3.3 The Takács NEF

The VF is given by

V(m) = m
(
1 +

m
p

)(
1 +

2m
p

)
, m, p > 0. (16)

By (3), we deduce that the NEF-parameter function θA(m) and the log-moment generating function κB(m) are derived
using partial-fraction decomposition:

θA(m) =
∫

1
V(m)

dm =
∫ ( 1

m
+

1/p
1 + m/p

− 4/p
1 + 2m/p

)
dm

=

∫ ( 1
m
+

1
p + m

− 4
p + 2m

)
dm = log m + log(p + m) − 2 log(p + 2m) + A

= log
m(p + m)
(p + 2m)2 + A.

κB(m) =
∫

m
V(m)

dm =
∫ ( −1

1 + m/p
+

2
1 + 2m/p

)
dm

=

∫ ( −p
p + m

+
2p

p + 2m

)
dm = −p log(p + m) + p log(p + 2m) + B

= p log
p + 2m
p + m

+ B.

The kernel is given in (Letac and Mora, 1990):

ν(n) =
p

n + p
1
n!

(n + p)(n + p + 1) · · · (n + p + n − 1), n ∈ N0. (17)

Proposition 3. A = 0 and B = 0.

Proof. The constant B follows from (Letac and Mora, 1990, Proposition 4.4):

ν(0) = eκB(0) ⇔ 1 = eB ⇔ B = 0.

Hence,

κB(m) = p log
p + 2m
p + m

⇒ κB(m)
p
= log

p + 2m
p + m

. (18)

The constant A follows from (Letac and Mora, 1990, Theorem 4.5). The Takács distribution has generating function

g(z) = (1 − z)−1 =

∞∑
n=0

zn,

and kernel
ν(n) =

p
p + n

1
n!

( d
dz

)n
gn+p(z)

∣∣∣∣
z=0
.

In this way we obtain (17). Furthermore, display (4.27) in Letac and Mora (1990) says

eθA(m)+κB(m)/p = g−1
(
eκB(m)/p

)
.

Substituting g−1(y) = (y − 1)/y = 1 − (1/y) and the expression for κB(m)/p in display (18), we get:

y = eκB(m)/p =
p + 2m
p + m

⇒ g−1
(
eκB(m)/p

)
= 1 − p + m

p + 2m
=

m
p + 2m

,

thus,

eθA(m)+κB(m)/p = g−1
(
eκB(m)/p

)
⇔ θA(m) + log

p + 2m
p + m

= log
m

p + 2m

⇔ θA(m) = log
m

p + 2m
− log

p + 2m
p + m

= log
m(p + m)
(p + 2m)2 .

Conclusion A = 0. �
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Figure 1. Part of the probability mass functions

Define (with A = B = 0)
ν0(n) = ν(n)eθA(m)n; θ(m) = 0; κ(m) = κB(m)

The NEF Takács counting p.m.f. of the random variable N becomes

P(N = n) = f (n) = ν0(n) e−κ(m). (19)

In Appendix B we show that there is a constant K such that

ν0(n) ≤ K
1

n
√

n
, n = 1, 2, . . . .

Lemma 3. There is a constant C (not dependent on n) such that

f (n|n ≥ 1) ≤ Cb(n), n = 1, 2, . . . .

Proof. It follows immediately,

f (n|n ≥ 1) =
f (n)

1 − f (0)
= ν0(n)

e−κ(m)

1 − f (0)
≤ Ke−κ(m)

1 − f (0)
1

n
√

n

=
K e−κ(m)ζ(3/2)

1 − f (0)
z(n) ≤ K e−κ(m)

√
2

(1 − f (0))(
√

2 − 1)
b(n).

�

The associated Monte Carlo algorithm for generating Takács samples is similar as the Abel algorithm. The acceptance
ratio in our case study is 0.23.

3.4 Concluding Remarks

These three counting distributions have tails that are much fatter than the more often used Poisson and negative binomial
distributions. As an example, we consider in Section 6 a case study where the data show a mean m ≈ 70, and the variance
V ≈ 52000, which indicates a power function V(m) ≈ mr with r ≈ 2.5. This was one of the reasons to consider our
specific counting distributions.

An important feature of these distributions is their large tails. Figure 1 shows the probability mass functions for 1000 ≤
n ≤ 1200. The Poisson probabilities in this region are virtually zero. The Abel and Takács distributions behave in the tails
equivalently, while the arcsine shows slightly lighter tails.
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4. NEF Claim Distributions

For modeling the individual claim Y , we consider positive reproducible NEF densities represented by

f (y; θ, p) = f (y) eθy−κ(θ), y > 0.

• The gamma NEF given by kernel

ν(y) =
yp−1 e−y

Γ(p)
, y > 0,

with dispersion parameter p > 0. The VF V(m) = m2

p yields by Section 2

θ(m) = 1 − p
m

; κ(m) = p log
m
p
.

By inversion we get

m(θ) =
p

1 − θ ; κ(θ) = p log
1

1 − θ ,

for θ < 1. Hence,

f (y; θ, p) =
(1 − θ)p yp−1 e−(1−θ)y

Γ(p)
.

We observe that we actually deal with a gamma distribution with shape parameter p and scale parameter 1 − θ, and
thus generating samples can be easily done (Devroye, 1986).

Finally, let Y1, . . . , Yn
D∼ f (y; θ, p) i.i.d., and S n =

∑n
i=1 Yi. Then S n

D∼ f (y; θ, np). Thus, the gamma NEF is
reproducible when considered as a two-parameter NEF with parameters θ and p (Bar-Lev and Enis, 1986).

• The inverse Gaussian NEF given by kernel

ν(y) =
1√

2πpy3
e
− 1

2py , y > 0,

with dispersion parameter p > 0. The VF V(m) = pm3 yields by Section 2

θ(m) = − 1
2pm2 ; κ(m) = − 1

pm
.

By inversion we get

m(θ) =
1√
−2pθ

; κ(θ) = −
√
−2θ

p
,

for θ < 0. Hence,

f (y; θ, p) =

√
1

2πpy3 e
− 1

2py + θy +
√
−2θ

p =
1√

2πpy3
e
θ
y
(
y +
√

1
−2pθ
)2
.

Setting

δ =
1
√

p
; γ =

√
−2θ,

we recognize the more traditional form of the inverse Gaussian pdf for which a simulation algorithm has been
developed (Shuster, 1968; Michael et al., 1976).

Finally, let Y1, . . . , Yn
D∼ f (y; θ, p) i.i.d., and S n =

∑n
i=1 Yi. Then

S n
D∼ cn f (cny; gn(θ), p),

where
cn =

1
n2 ; gn(θ) = n2θ.

See (Bar-Lev and Enis, 1986) for details. Substituting these, we get after algebra,

S n
D∼ f (y; θ, p/n2). (20)
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• The positive stable NEF. Recall that a random variable Y has a stable distribution with index α, denoted Y D∼
Sα(σ, β, µ), if its characteristic function satisfies (for convenience α , 1):

log ϕ(t) = −σα|t|α
(
1 − iβsign(t) tan

πα

2

)
+ iµt,

for t ∈ R, where the parameters satisfy

α ∈ (0, 2]; β ∈ [−1, 1]; µ ∈ R; σ > 0,

see e.g. Samorodnitsky and Taqqu (1994); Nolan (2010). Since we consider positive variables Y , we get the so-
called positive α-stable distribution by setting α ∈ (0, 1), β = 1, µ ≥ 0. Furthermore we set location parameter µ = 0
in which case

σ =
(

cos
πα

2

)1/α
,

and the cumulant generating function becomes (Feller, 1971)

κ(θ) = −(−θ)α, θ < 0.

Both moments of the NEF-distributions F(Y; θ, p) are finite, whereas these are infinite for the kernel distribution
F(y) which is positive α-stable.

Note that with this modeling the p.d.f. f (y), y > 0 is only parameterized by index α, but it is not given in explicit
form. However, it generates a NEF with a power VF (Tweedie, 1984; Bar-Lev and Enis, 1986; Jorgensen, 1987)

V(m) = amp,

where

p =
2 − α
1 − α > 2; a = (1 − α)α1/(α−1) > 0.

Also we obtain the θ and κ function of mean m and index α:

θ(m) = −
(m
α

)1/(α−1)
; κ(m) = −

(m
α

)α/(α−1)

Thus, given mean m and variance V(m) we compute the parameters θ and α for the NEF distribution with p.d.f.

f (y; θ, α) = f (y) eθy−κ(θ), y > 0.

Generating samples from the NEF distribution is done by an accept-reject algorithm, using f (y) as proposal p.d.f.
and C = e−κ(θ) = e(−θ)α ≥ 1 as dominating factor. This follows directly from θy ≤ 0. Furthermore, generating
from the proposal p.d.f. f (y) is based on (i) generating from Sα(1, 1, 0) distribution by the Chambers algorithm
(Chambers et al., 1976), and (ii) the property Sα(σ, 1, 0) D= σSα(1, 1, 0).

Sampling from θ-NEF Positive α-Stable Distribution
1: repeat
2: Generate X D∼ Sα(1, 1, 0).
3: Y ← σX.
4: Compute acceptance probability P = eθY .
5: Generate U D∼ U(0, 1).
6: until U < P
7: return Y .

Finally, positive α-distributions satisfy the reproducibility property (Bar-Lev and Enis, 1986): let Y1, . . . , Yn
D∼

f (y; θ, α) i.i.d., and S n =
∑n

i=1 Yi. Then

S n
D∼ cn f (cny; gn(θ), α),

where
cn = n−1/α; gn(θ) =

θ

cn
= θ n1/α.
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Table 1. Estimates of P(S N > x) by Monte Carlo simulation for Abel counting and inverse Gaussian claim distributions

x M ℓ̂ std. error
5000 9000 1.08e-02 1.09e-03

10000 37000 2.59e-03 2.64e-04
15000 150000 6.47e-04 6.56e-05
20000 410000 2.37e-04 2.40e-05
25000 1020000 9.51e-05 9.66e-06

5. Computing Insurance Risk

The goal of our study is to compute efficiently the tail probability ℓ = P(S N > x) for large thresholds x, where S N =∑N
j=0 Y j is the random sum. We consider Monte Carlo simulation while applying two ideas: (i) reproducibility, and (ii)

importance sampling. The reproducibility ensures that given N = n has been generated or observed, we generate S as a
single random variable instead of a sum (convolution).

The standard Monte Carlo algorithm is trivial. Let M be the sample size, then the Monte Carlo estimator is

ℓ̂ =
1
M

M∑
i=1

I{S (i)
N(i) > x},

where in the i-th replication, the counting number N(i) is generated from the counting distribution of interest (Abel, arcsine,
or Takács), according to the algorithms of Section 3. Given N(i) = n, the aggregated claim size S (i)

n is generated from the
claim distribution of interest (gamma, inverse Gaussian, or positive α-stable) using the reproducibility property of Section
2. From the observations I{S (i)

N(i) > x}, i = 1, . . . ,M, we compute the usual estimator and standard error (or confidence
interval) statistics.

However, if the threshold x ≫ E[S N] = E[N]E[Y], we have difficulties in observing the event {S N > x} when we apply
the standard Monte Carlo algorithm. As an illustration, let N be Abel and Y be inverse Gaussian, where the parameters
are fitted by data in our case study of Section 6. The mean aggregate claim size E[S N] ≈ 330. Because our distributions
have large tails, we consider large levels x. As sample size we choose M so large that the standard error is about 10%
of the estimate. We see in Table 1 that the required sample sizes grow exponentially with level x which means that very
small probabilities are practically impossible to compute.

5.1 Importance Sampling Algorithm

The idea of importance sampling is to change the underlying probability measure of the stochastic system in such a way
that more samples are generated from the target event. An unbiased estimator is obtained by multiplying the observations
with the likelihood ratio. Denote the random variables that are generated in importance sampling by Ñ and S̃ , respectively.
Suppose that Ñ = n, and S̃ = s are simulated, then the associated likelihood ratio is

W(n, s) =
P(N = n)

P(Ñ = n)
× fS (s)

fS̃ (s)
.

The importance sampling estimator becomes

ℓ̂ =
1
M

M∑
i=1

I{S̃ (i)
Ñ(i)
> x}W(Ñ(i), S̃ (i)).

We have implemented the following importance sampling algorithm. Let the parameters of the counting distribution be
(θN , pN ,mN) (see Section 3), and of the claim distribution (θY , pY ,mY ) (see Section 4). These parameters are fitted to the
data, but note that the NEF-parameter θ follows from the mean-parameter m, and vice-versa, thus one of these suffices.
For the change of measure we propose changing the NEF-parameter (and consequently the mean-parameter), but not the
dispersion parameter p. In fact, we apply an exponential change of measure using a common tilting parameter, say θ∗, for
both the counting and the claim-size distribution. This parameter is obtained as follows. Let κ(θ) = logE

[
exp(θS N)

]
be

the cumulant generating function of the aggregated sum. Then θ∗ solves the saddle point equation κ′(θ) = x; thus

mN(θN + θ∗) × mY (θY + θ∗) = x.

66



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 3; 2019

Table 2. Estimates of P(S N > x) by importance sampling simulation for Abel counting and inverse Gaussian claim
distributions

x M ℓ̂ std. error
5000 4000 1.01e-02 9.09e-04

10000 6000 2.46e-03 2.43e-04
15000 10000 7.18e-04 6.88e-05
20000 14000 2.22e-04 2.23e-05
25000 16000 8.48e-05 8.40e-06
30000 20000 3.59e-05 3.65e-06
35000 26000 1.29e-05 1.25e-06
40000 34000 4.42e-06 4.41e-07
45000 34000 2.18e-06 2.16e-07
50000 40000 7.68e-07 7.78e-08

The interpretation is that under the change of measure the most likely samples of S N are generated around our target
level x. It is well-known in the rare-event theory that such a change of measure yields a logarithmically efficient (or,
asymptotically optimal) estimator in case of a fixed number of light-tailed claims, i.e. P(S n > x), see Asmussen and
Glynn (2007(@, Chapter VI Section 2) or Bucklew (2004, Chapter V Section 2). However, by a conditioning argument
one can show that the same holds true for a random sum. This means that the required sample sizes grow polynomially
in level x, which we can clearly see in Table 2. Our algorithm contains a minor tweak in that after Ñ has been generated,
say Ñ = n, we check whether E[S n] > x. In that case, we generate S n from the original claim distribution, and otherwise
we apply the change of measure also for the claims.

6. Case Study

Data are available of claims at a car insurance company in Sweden in a specific year (Hallin and Ingenbleek, 1983; Smyth,
2011). The data consist of 2182 categories of 7 variables specifying per category: kilometers, zone, bonus, make, insured,
claims, payment. Let I be the set of categories, with |I|=2182. For any i ∈ I, we model the random variables

• Ni: the number of claims in category i;

• Yi: the claim size of a claimer in category i;

• S i: the total amount of claims in category i.

The data give the numbers ni of claimers and si of total claim amount, but not the individual claim sizes.

For subcategories J ⊂ I we propose that the N j, j ∈ J are i.i.d. as N, and that the Y j, j ∈ J are i.i.d. as Y . Also we
propose that N and Y are independent. Data available are n j, j ∈ J observations from N, and s j =

∑n j

k=1 y jk observations
from S =

∑N
k=1 Yk given N. Let θN be the vector of parameters of the probability distribution of the counting variable N,

and θY of the claim size distribution of Y . Due to the reproducibility property of Y , the distribution of sum S |(N = n) has
the same parameter vector θY (and the given number n). For estimating these parameters we considered the two-moment
fit method because all our distributions are derived from the mean and variance.

That is, let m̂N and v̂N be the sample average and variance of the counting data (n j) j∈J . Then we fit a distribution for N
such that

E[N] = m̂N and Var(N) = v̂N .

For the counting distributions of Section 3 we get

Abel : p =
m̂N
√

m̂N√̂
vN −

√
m̂N

arcsine : p =
m̂N
√

m̂N√̂
vN − m̂N

Takacs : p =
4m̂N
√

m̂N√
8̂vN + m̂N − 3

√
m̂N
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Similarly, let m̂Y and v̂Y be the sample average and variance of the claim data (y jk) j∈J,k=1,...,n j . Then we fit a distribution for
Y such that

E[Y] = m̂Y and Var(Y) = v̂Y .

Note that the individual claim data (y jk) are not observed, but that their sample average can be computed:

m̂Y =

∑
j s j∑
j n j
.

And for the sample variance of the individual claims we use the well-known identity for the variance of the aggregated
sum S =

∑N
k=1 Yk:

Var(S ) = (E[N])(Var(Y)) + (Var(N))(E[Y])2.

6.1 Subcategories Larger Cities

630 data have insured customers from major cities.

data average variance
claim number 70.60 52181.52
aggregate claim size 329.22 1153532.32
individual claim size 4.66 265.34

These yield values of dispersion parameter p of the counting distributions:

p
Abel 2.695844
arcsine 2.598444
Takács 3.821015

The parameters of the claim distributions were obtained as explained above:

θ p α

gamma 0.982425 0.081960
IG -0.008788 2.616360
stable -0.015496 2.134192 0.118315

With these parameters we have fitted the counting distribution and the claim distribution. Then we ran simulations of
aggregated claim sizes in these models and executed the chi-square test for goodness-of-fit (hypothesizing that the samples
came from the same distribution). As an example, below we show the histograms of the data S N and the simulated S N in
case of the Poisson-gamma, Abel-IG and arcsine-stable combinations.

Table 3 summarizes the test results in terms of p-values.

We may conclude that the arcsine counting variable with positive stable claim size gives the best fit. The computations of
the risk probabilities in this model are easily implemented by the algorithms that we exposed in Section 3 for the arcsine
samples, in Section 4 for the positive stable samples, and in Section 5 for the Monte Carlo and importance sampling
simulations. Table 4 shows results for both standard Monte Carlo and importance sampling simulations. Again we see
the exponential versus polynomial increase of the required sample sizes. For levels x ≤ 25000 the estimates fall in their
corresponding confidence intervals (in most cases), while for large levels, x > 25000, we have no Monte Carlo results.

7. Conclusion

We analyzed insurance claim data and modeled the accumulated claim during a certain a period as a random sum of
positive random variables representing the individual claims. The data showed that both the random sum and the random
claim size have variances as large as cubic powers of their means. For fitting distributions with cubic VF’s to the insurance
data we used the NEF modeling. In this way we considered three discrete counting variables for fitting the random
sum, and three positive continuous distributions for fitting the claim size, all coming from NEF’s. We gave a thorough
analysis of the nontrivial discrete counting variables for the purpose of developing sampling algorithms. These sampling
algorithms are all accept-reject based, where the dominating proposal distribution is a Zipf distribution. Our claim size
distributions are commonly known and sampling algorithms can be found in the literature.
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Figure 2. Histograms of the data and 2000 simulated samples (normed to form pdf’s)

Table 3. p-values of the fitted models

count claim p-value
Poisson gamma ≈ 0
Poisson IG ≈ 0
Poisson stable ≈ 0
Abel gamma 0.2101
Abel IG 0.2459
Abel stable 0.3089
arcsine gamma 0.1306
arcsine IG 0.4224
arcsine stable 0.7460
Takács gamma 0.4159
Takács IG 0.2800
Takács stable 0.2701
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Table 4. Estimates of P(S N > x) by Monte Carlo and importance sampling simulation for arcsine counting and positive
α-stable claim distributionsl

Monte Carlo importance sampling
x M ℓ̂ std. error M ℓ̂ std. error

5000 10000 1.02e-02 1.00e-03 4000 9.89e-03 9.39e-04
10000 46000 2.11e-03 2.14e-04 7000 2.23e-03 2.23e-04
15000 128000 7.64e-04 7.73e-05 9000 8.12e-04 8.20e-05
20000 394000 2.49e-04 2.51e-05 14000 2.21e-04 2.25e-05
25000 1360000 7.13e-05 7.24e-06 16000 8.37e-05 8.52e-06
30000 20000 4.18e-05 4.13e-06
35000 24000 1.42e-05 1.42e-06
40000 30000 5.10e-06 5.15e-07
45000 36000 2.31e-06 2.35e-07
50000 38000 1.08e-06 1.08e-07

Being able to sample from the aggregate claim distribution, we executed Monte Carlo simulations for computing tail
probabilities, specifically for large losses. The efficiency of these simulations was improved by two techniques. The first
being that the claim size distributions satisfy the reproducibility property implying that convolutions come from the same
family as the individual distribution. The second improvement is the application of importance sampling. Our numerical
experiments showed that the exponential complexity of standard Monte Carlo is reduced to polynomial complexity.

Acknowledgements

The part of work of Shaul Bar-Lev is partially supported by the Netherlands Organization for Scientific Research (NWO)
project number 040.11.608. The part of work of Ad Ridder is partially supported by the Zimmerman foundation while he
was visiting the University of Haifa in January 2017.

References

Asmussen, S., & Albrecher, H. (2010). Ruin Probabilities (2nd ed.). World Scientific, Singapore.
https://doi.org/10.1142/7431

Asmussen, S., & Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer-Verlag, New York.
https://doi.org/10.1007/978-0-387-69033-9

Bahnemann, D. (2015). Distributions for Actuaries. Casualty Actuarial Society, Arlington, Virginia.

Bar-Lev, S. K., & Cassalis, M. M. (2003). A classification of reproducible natural exponential families in the broad sense.
Journal of Theoretical Probability, 16, 175-196. https://doi.org/10.1023/A:1022286606451

Bar-Lev, S. K., & Enis, P. (1986). Reproducibility and natural exponential families with power variance functions. Annals
of Statistics, 14(4), 1507-1522. https://doi.org/10.1214/aos/1176350173

Bar-Lev, S. K., & Kokonendji, C. C. (2017). On the mean value parameterization of natural exponential families – a
Revisited Review. Mathematical Methods of Statistics, 26(3), 159-175. https://doi.org/10.3103/S1066530717030012

Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial Mathematics (2nd ed.).
Society of Actuaries, Itasca, Illinois. https://doi.org/10.1017/S0071368600009812

Bucklew, J. A. (2004). Introduction to Rare Event Simulation. Springer-Verlag, New York. https://doi.org/10.1007/978-
1-4757-4078-3

Chambers, J. M., Mallows, C. L., & Stuck, B. W. (1976). A method for simulating stable random variables. Journal of
the American Statistical Association, 71(354), 340-344. https://doi.org/10.1080/01621459.1976.10480344

Consul, P. C. (1989). Generalized Poisson Distributions: Properties and Applications. Marcel Dekker, New York.

Consul, P. C., & Shoukri, M. M. (1988). Some chance mechanisms related to a generalized Poisson probability model.
American Journal of Mathematical and Management Sciences, 8, 1-2, 181-202.
https://doi.org/10.1080/01966324.1988.10737237

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York. https://doi.org/10.1007/978-
1-4613-8643-8

70



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 3; 2019

Devroye, L. (1992). The branching process method in Lagrange random variate generation. Communications in Statistics
- Simulation and Computation, 21(1), 1–14. https://doi.org/10.1080/03610919208813005

Dickson, D. C. M. (1998). On a class of renewal risk processes. North American Actuarial Journal, 2(3), 60-68, 72-73.
https://doi.org/10.1080/10920277.1998.10595723

Dunn, P. K., & Smyth, G. K. (2005). Series evaluation of Tweedie exponential dispersion densities. Statistics and
Computing, 15(4), 267–280. https://doi.org/10.1007/s11222-005-4070-y

Dunn, P. K., & Smyth, G. K. (2008). Evaluation of Tweedie exponential dispersion model densities by Fourier inversion.
Statistics and Computing, 18(1), 73-86. https://doi.org/10.1007/s11222-007-9039-6

Feller, W. (1971). An Introduction to Probability Theory and its Applications, Volume II (2nd ed.). Wiley, New York.

Hallin, M., & Ingenbleek, J.-F. (1983). The Swedish automobile portfolio in 1977. Scandinavian Actuarial Journal,
1983(1), 49–64. https://doi.org/10.1080/03461238.1983.10408691

Jorgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical Society. Series B (Methodological),
49(2), 127-162. https://doi.org/10.1111/j.2517-6161.1987.tb01685.x

Kaas, R., Goovaerts, M., Dhaene, J., & Denuit, M. (2008). Modern Actuarial Risk Theory (2nd ed.). Springer, Heidelberg.
https://doi.org/10.1007/978-3-540-70998-5

Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2008). Loss Models: From Data to Decisions (3rd ed.). John Wiley.
https://doi.org/10.1002/9780470391341

Natural real exponential families with cubic variance functions. The Annals of Statistics, 18(1), 1-37.
https://doi.org/10.1214/aos/1176347491

Michael, J. R., Schucany, W. R., & Haas, R. W. (1976). Generating random variates using transformations with multiple
roots. The American Statistician, 30(2), 88–90. https://doi.org/10.1080/00031305.1976.10479147

Nolan, J. P. (2010). Stable Distributions: Models for Heavy Tailed Data. Birkhäuser, Boston.
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Appendix A

Arcsine Bound

Recall the kernel on the even outcomes

ν(2n) =
1

(2n)!

n−1∏
i=0

(
(2i)2 + p2) = n−1∏

i=0

(2i)2 + p2

(2i + 1)(2i + 2)
=

n−1∏
i=0

4i2 + p2

4i2 + 6i + 2︸        ︷︷        ︸
=ρi

.

We shall bound the ρi’s for sufficiently large i. The threshold lies at i∗ that is such that both i∗ + 1 ≥ 6, and

3
2i
−
(9 + p2

4i2
− 3p2

8i3
+

9p2

4i4
)
> 0 qquadfor all i ≥ i∗ + 1.

First, dividing by 4i2 we easily get (for all i ≥ 1),

ρi =
1 + p2/(4i2)

1 + 6/(4i) + 2/(4i2)
≤ 1 + p2/(4i2)

1 + 6/(4i)

≤ (1 + p2

4i2
)(

1 − 6
4i
+

36
(16i2

)
= 1 − 3

2i
+
( 9 + p2

4i2
− 3p2

8i3
+

9p2

4i4︸                     ︷︷                     ︸
=ϵi

)
.

Thus for i ≥ i∗ + 1 we have that 3
2i − ϵi > 0, and therefore we can bound

log ρi ≤ log
(
1 − ( 3

2i
− ϵi
)) ≤ −( 3

2i
− ϵi
)
.

Define G =
∏i∗

i=0 ρi. So we get for n ≥ i∗ + 1,

log ν(2n) = log G +
n−1∑

i=i∗+1

log ρi

≤ log G −
n−1∑

i=i∗+1

( 3
2i
− ϵi
)
= log G − 3

2

n−1∑
i=i∗+1

1
i
+

n−1∑
i=i∗+1

ϵi.

The second term is easy:
n−1∑

i=i∗+1

1
i
=

n−1∑
i=1

1
i
−

i∗∑
i=1

1
i
≥ log n −

i∗∑
i=1

1
i
.

The ϵi’s are clearly positive, and for i ≥ 6,

ϵi =
9 + p2

4i2
− 3p2

8i3
+

9p2

4i4
=

9
4i2
+

p2

8i2
(

2 − 3
i
+

18
i2︸        ︷︷        ︸

≤2

)
≤ 9 + p2

4i2
.

Hence, for n ≥ i∗ + 1,

n−1∑
i=i∗+1

ϵi ≤
9 + p2

4

n−1∑
i=i∗+1

1
i2
=

9 + p2

4

( n−1∑
i=1

1
i2
−

i∗∑
i=1

1
i2
)

≤ 9 + p2

4

( ∞∑
i=1

1
i2
−

i∗∑
i=1

1
i2
)
=

9 + p2

4

(
ζ(2) −

i∗∑
i=1

1
i2
)
,

where ζ(·) is the Riemann-zeta function. Wrapping up we get by exponentiating, ν(2n) ≤ K1n−3/2 for n ≥ i∗ + 1, where

K1 = G exp
(3
2

i∗∑
i=1

1
i
+

9 + p2

4
(
ζ(2) −

i∗∑
i=1

1
i2
))
.
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Find K0 such that both ν(2n) ≤ K0n−3/2 for n = 1, . . . , i∗. We demand this inequality also for the odd terms; i.e.,
ν(2n + 1) ≤ K0n−3/2, n = 1, . . . , i∗. Then by setting K = max{K0,K1},

ν(2n) ≤ K
1

n
√

n
, n ≥ 1.

Again we recognize the Zipf distribution, which will be useful for an accept-reject sampling algorithm.

Appendix B

Takács Bound

Recall the adapted kernel

ν0(n) = ν(n)eθ0(m)n =
p

n + p
1
n!

(n + p)(n + p + 1) · · · (n + p + n − 1) eθ0(m)n

=
p

n + p
(2n + p − 1)!
n!(n + p − 1)!

eθ0(m)n, n = 9, 1, . . . .

The Stirling bounds of n! are
√

2πn
(
ne−1)n < n! <

√
2πn
(
ne−1)n e1/12, n = 1, 2, . . . .

Applying these bounds, we get

ν0(n) ≤ p
n + p

e1/12

√
2π

√
2n + p − 1

n(n + p − 1)

(2n + p − 1
n + p − 1

)p−1 ( (2n + p − 1)2

n(n + p − 1)
eθ0(m)

)n
The factors of this expression are worked out below:√

2n + p − 1
n(n + p − 1)

=
1
√

n

√√
2 + p−1

n

1 + p−1
n

≤ 1
√

n

√
2,

because in our models p > 1. Thus, also,

(2n + p − 1
n + p − 1

)p−1
=
(2 + p−1

n

1 + p−1
n

)p−1
≤ 2p−1.

Finally,

(2n + p − 1)2

n(n + p − 1)
eθ0(m) =

(2n + p − 1)2

n(n + p − 1)
m(p + m)
(p + 2m)2

=
4n2 + 4np − 4n + (p − 1)2)

n2 + np − n
mp + m2

p2 + 4mp + 4m2

=
n2 + np − n + (p − 1)2/4

n2 + np − n
mp + m2

p2/4 + mp + m2

=
(
1 +

(p − 1)2/4
n2 + n(p − 1)

) (
1 +

p2/4
m2 + mp

)−1
.

This expression is less than 1 for all n ≥ m. Putting it all together, we get

ν0(n) ≤ p
n + p

e1/12

√
2π

√
2
√

n
2p−1, n ≥ m.

Let

K1 = p
e1/12

√
2π

√
2 2p−1,

then ν0(n) ≤ K1n−3/2 for all n ≥ m. Find K0 such that ν0(n) ≤ K0n−3/2 for n = 1, . . . ,m. Then by setting K = max{K0,K1},
we conclude

ν0(n) ≤ K
1

n
√

n
, n ≥ 1.
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