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[1] Monte Carlo inversion techniques were first used by
Earth scientists more than 30 years ago. Since that time
they have been applied to a wide range of problems,
from the inversion of free oscillation data for whole
Earth seismic structure to studies at the meter-scale
lengths encountered in exploration seismology. This pa-
per traces the development and application of Monte
Carlo methods for inverse problems in the Earth sci-
ences and in particular geophysics. The major develop-
ments in theory and application are traced from the
earliest work of the Russian school and the pioneering
studies in the west by Press [1968] to modern importance
sampling and ensemble inference methods. The paper is
divided into two parts. The first is a literature review,
and the second is a summary of Monte Carlo techniques
that are currently popular in geophysics. These include

simulated annealing, genetic algorithms, and other im-
portance sampling approaches. The objective is to act as
both an introduction for newcomers to the field and a
comprehensive reference source for researchers already
familiar with Monte Carlo inversion. It is our hope that
the paper will serve as a timely summary of an expanding
and versatile methodology and also encourage applica-
tions to new areas of the Earth sciences. INDEX TERMS:3260

Mathematical Geophysics: Inverse theory; 1794 History of Geophysics:

Instruments and techniques; 0902 Exploration Geophysics: Computa-
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1. INTRODUCTION

[2] Hammersley and Handscomb [1964] define Monte

Carlo methods as “the branch of experimental mathe-
matics that is concerned with experiments on random
numbers.” (A glossary is included to define some com-
monly used terms. The first occurrence of each is itali-
cized in text.) Today, perhaps, we would modify this
definition slightly to “experiments making use of random
numbers to solve problems that are either probabilistic
or deterministic in nature.” By this we mean either the
simulation of actual random processes (a probabilistic
problem) or the use of random numbers to solve prob-
lems that do not involve any random process (a deter-
ministic problem). The origin of modern Monte Carlo
methods stem from work on the atomic bomb during the
Second World War, when they were mainly used for
numerical simulation of neutron diffusion in fissile ma-
terial, that is, a probabilistic problem. Later it was real-
ized that Monte Carlo methods could also be used for
deterministic problems, for example, evaluating multidi-
mensional integrals. Early successes came in the fields of
operations research: Thomson [1957] describes a Monte

Carlo simulation of the fluctuations of traffic in the
British telephone system.

[3] In the 50 years since the modern development of
Monte Carlo methods by Ulam, von Neumann, Fermi,
and Metropolis, they have been applied to a large array
of problems in the physical, mathematical, biological,
and chemical sciences (see Hammersley and Handscomb

[1964] for an early but still very readable account of their
origins and uses). Although the phrase “Monte Carlo
method” was first used by Metropolis and Ulam [1949],
there are documented examples of essentially the same
principles being applied much earlier. Kelvin [1901] had
described the use of “astonishingly modern Monte Carlo
techniques” (as noted by Hammersley and Handscomb

[1964]) in a discussion of the Boltzmann equation. Ear-
lier still, Hall [1873] recounts numerical experiments to
determine the value of � by injured officers during the
American Civil War. This procedure consisted of throw-
ing a needle onto a board containing parallel straight
lines. The statistics of number of times the needle inter-
sected each line could be used to estimate �. The use-
fulness of Monte Carlo type of numerical experiments
was therefore known well before the beginning of the
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century; however, their systematic development and
widespread use had to wait for the arrival of the elec-
tronic computer.

[4] The direct simulation of probability distributions
is at the basis of all Monte Carlo methods. The early
work of Metropolis et al. [1953] was the first to show how
to sample a space according to a Gibbs-Boltzmann dis-
tribution, using simple probabilistic rules. Today the
development of Monte Carlo techniques and the under-
lying statistical theory is a large and active area of
research [Flournay and Tsutakawa, 1989]. Earth scien-
tists have embraced the use of Monte Carlo methods for
more than 30 years. This paper traces some of those
developments and, in particular, the use of Monte Carlo
methods in inverse problems, where information is to be
inferred from indirect data, for example, estimating the
variations of seismic wave speed at depth in the Earth
from observations at the surface. Real geophysical ob-
servations are often noisy and incomplete and always
imperfectly constrain the quantities of interest. Monte
Carlo techniques are one of a number of approaches
that have been applied with success to geophysical in-
verse problems. Over the past 15 years the range of
problems to which they have been applied has grown
steadily. The purpose of this review paper is to summa-
rize the role played by Monte Carlo methods in (mainly)
geophysical inversion and also to provide a starting point
for newcomers to the field.

[5] This paper consists of two parts. The first is a
literature review, which describes the origins and major
developments in the use of Monte Carlo methods for
geophysical inverse problems. It is hoped that this will
give an overview of the field to the newcomer and act as
a source of references for further study. The second part
of the paper is intended as more of a tutorial. Here we
describe some of the details of how to use modern
Monte Carlo methods for inversion, parameter estima-
tion, optimization, uncertainty analysis, and ensemble

inference. We have tried to emphasize the limitations as
well as the usefulness of Monte Carlo–based methods
and also to highlight some of the trends in current
research. In addition to an extensive bibliography and
glossary of common terms we have also included a list of
world wide web addresses where (at the time of writing)
further material, computer code, and other information
can be found. It is hoped that this will serve as a starting
point for the interested reader to explore this active
interdisciplinary research field for themselves.

2. A BRIEF HISTORY OF MONTE CARLO
INVERSION IN GEOPHYSICS

2.1. Beginnings of Monte Carlo Inversion
[6] In the summer of 1966 the third international

symposium on Geophysical Theory and Computers was
held at Cambridge, United Kingdom. The subsequent
proceedings were published a year later as a special issue

of the Geophysical Journal of the Royal Astronomical

Society and contain some classic papers. One of these is
the now famous article by Backus and Gilbert [1967],
which, along with several others by the same authors
[Backus and Gilbert, 1968, 1970], established the foun-
dations of geophysical inverse theory. In this paper it was
shown that nonuniqueness was a fundamental property
of geophysical inverse problems; that is, if any Earth

model could be found to satisfy “gross Earth data,” then
an infinite number of them would exist. In the same
paper it was shown how this nonuniqueness could be
exploited to generate unique models with special prop-
erties as an aid to interpretation. In the same volume is
a paper by Keilis-Borok and Yanovskaya [1967] (describ-
ing earlier work in the USSR), which was the first to
introduce Monte Carlo inversion methods into geophys-
ics. From that date the use of Monte Carlo inversion
techniques has become widespread in geophysics, but
interestingly enough their initial appeal was that they
offered a way of dealing with the nonuniqueness prob-
lem.

[7] At this time Monte Carlo inversion (MCI) meant
generating discrete Earth models in a uniform random
fashion between pairs of upper and lower bounds, which
were chosen a priori. Each generated Earth model was
tested for its fit to the available data and then accepted
or rejected. The final set of accepted Earth models were
used for interpretation [Press, 1970b]. As the computa-
tional power became available in the latter part of the
1960s, Monte Carlo inversion became feasible for some
important problems in seismology. The first applications
were to the inversion of seismic body-wave travel times
(compressional and shear) and 97 eigenperiods of the
Earth’s free oscillations for variations in the Earth’s
compressional (�), shear (�) wave velocities, and density
(�) as a function of depth [Press, 1968; Wiggins, 1969;
Press, 1970a, 1970b].

[8] The main appeal of MCI was that it avoided all
assumptions of linearity between the observables and
the unknowns representing the Earth model upon which
most previous techniques relied. In addition, it was
thought that a measure of uniqueness of the solutions
would be obtained by examining the degree to which the
successful models agreed or disagreed [Press, 1968]. The
original Monte Carlo paper by Keilis-Borok and

Yanovskaya [1967] introduced the “hedgehog” inversion
(attributed to V. Valius and later published by Valius

[1968]), which sought to map out a region of acceptable

models in parameter space. This was done by determin-
istically sampling all models in the vicinity of an accept-
able model, which had previously been determined by
MCI. The whole process could then be repeated many
times over. This approach was later used in the estima-
tion of upper mantle Q structure from Rayleigh wave
attenuation [Burton and Kennett, 1972; Burton, 1977] and
in other surface-wave dispersion studies [Biswas and

Knopoff, 1974].
[9] Shortly after its introduction, criticisms of Monte
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Carlo inversion followed. One problem was that it is
never known whether sufficient number of models had
been tested. It was always possible that acceptable mod-
els may exist that bear no resemblance to the satisfactory
models that had been obtained; hence the real Earth
may lay outside of the estimated “nonuniqueness
bounds.” An uncomfortable possibility was that the ac-
ceptable models might form multiple unconnected “is-
lands” in parameter space (see Figure 1). An MCI
approach might miss some of these islands altogether.
(In the work of Press [1968], 5 million Earth models were
tested, and just 6 were found that passed all data tests.
See Figures 2 and 3). In practice, this meant that sets of
upper and lower bounds estimated by MCI could not be
literally interpreted as “hard” bounds on, say, velocity or
density as a function of depth. For this reason Press

[1970b] refers to his estimated envelope of acceptable
Earth models as “a guide to hypotheses rather than firm
conclusions.”

[10] An approach developed by Anderssen and Senata

[1971, 1972] went some way to answering these criti-
cisms. They developed a statistical procedure for esti-
mating the reliability of a given set of nonuniqueness
bounds. Their method was subsequently applied to the
inversion of seismic and density profiles by a number of
authors [Worthington et al., 1972, 1974; Goncz and

Cleary, 1976].
[11] Another criticism of MCI, argued by Haddon and

Bullen [1969], was that the successful models generated
were likely to contain unnecessary complexity (e.g., the
typical small-scale oscillations that had been obtained in

velocity or density depth profiles). This was because the
likelihood of generating a parametrically simple model
was very small, and hence MCI results were biased
toward physically unrealistic Earth models. One way this
difficulty was addressed was by seeking families of “un-
complicated” Earth models, with acceptable fit to data.
Wiggins [1969] devised a parameterization for 1-D veloc-
ity profiles that allowed one to impose velocity, velocity
gradient with depth, and velocity curvature bounds si-
multaneously. This technique has been used in a number
of areas since [e.g., Cary and Chapman, 1988; Kennett,
1998]. Anderssen et al. [1972] extended the earlier work
of Anderssen and Senata [1972] to include constraints on
the form of the Earth models generated by MCI. They
noted that the resulting set of parameter bounds ob-
tained by MCI would be affected by the constraints
imposed on the Earth model. For example, if the gradi-
ent of a density profile were constrained tightly over a

Figure 1. Contours of a data misfit function, �(m), (shaded)
in the parameter space of a nonlinear problem. The two
shaded areas represent the regions of acceptable data fit, while
the darker elliptical lines are contours of some regularization
function, �(m). The diamond represents the model with the
best data fit and is distinct from the triangle, which is the
data-acceptable model with least �. The square is the model
with minimum �, but it does not satisfy the data.

Figure 2. The flow chart of the early Monte Carlo algorithm
used by Press [1968]. Note that the 1-D Earth model had to
satisfy data constraints on travel times, eigenfrequencies, and
mass and moment of inertia of the Earth before passing into
the output population (see Figure 3). (From Press [1968].)
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particular depth range, then this would result in rela-
tively narrow bounds on the density, giving the false
impression that the average density over the depth range
was well determined. Clearly, care had to be used when
interpreting MCI results obtained under smoothness
constraints.

2.2. Monte Carlo Techniques Fall Out of Favor
[12] During the 1970s, attention moved away from

Monte Carlo inversion and toward linear inverse prob-
lems and the use of prior information to resolve non-
uniqueness (often referred to as ill posedness in linear
problems) [Wiggins, 1972; Jackson, 1972; 1979]. Linear
inversion techniques became popular and were applied
widely (for a recent summary see Snieder and Trampert

[1999]). Uniform Monte Carlo searching of parameter
spaces was thought to be too inefficient and too inaccu-
rate for problems involving large numbers of unknowns,
for example, 50–100. (Note that in the earlier work of
Press [1968] and Wiggins [1969] it was possible to in-
crease efficiency, by testing “partial models” against
subsets of the data, and thereby reject many unaccept-
able models early on. Figure 2 shows an outline of
Press’s original MCI algorithm where this is employed.)
Nevertheless, uniform random search methods still
found applications. In addition to the regional and
global travel time studies, other applications of MCI
have included electromagnetic induction [Anderssen,
1970], Rayleigh wave attenuation [Mills and Fitch, 1977;
Mills and Hales, 1978], regional magnetotelluric studies
[Hermance and Grillot, 1974; Jones and Hutton, 1979],
estimation of mantle viscosities [Ricard et al., 1989], and
estimation of plate rotation vectors [Jestin et al., 1994].

[13] An attractive feature of discrete linear inversion
schemes was that estimates of resolution and model

covariance could be obtained [Franklin, 1970; Jordan

and Franklin, 1971; Wiggins, 1972]. In this case, resolu-
tion measures the degree by which model parameters
can be independently determined (from each other),
while model covariance measures the degree by which
errors in the data propagate into uncertainty in the
model parameters. Together they allow assessment of
confidence bounds and trade-offs between parameters,
which can be very useful in analyzing inversion results.

[14] A difficulty with linearized estimates of resolu-
tion and covariance is that they are based on local
derivative approximations, evaluated about the best data
fitting model, and as such can become less accurate, as
the data-model relationship becomes more nonlinear.
This can often lead to an underestimate of uncertainty
and hence overconfidence in results. Around the same
time as applications of discrete inverse theory were
becoming widespread, it was shown how Monte Carlo
sampling techniques could also be used to determine
resolution estimates but without the need for invoking
derivative approximations [Wiggins, 1972; Kennett and

Nolet, 1978].
[15] The influence of nonlinearity can vary consider-

ably between problems. For example, earthquake hypo-
center location using travel times of seismic phases is
often described as weakly nonlinear [see Buland, 1976]
(although examples exist of the failure of linearization
even in this case [e.g., Billings et al., 1994; Lomax et al.,
2000]). In contrast, the estimation of seismic velocity
structure from high-frequency seismic (body) wave
forms can be highly nonlinear [see Mellman, 1980; Cary

and Chapman, 1988]. In the latter case, subtle changes in
velocity structure can significantly influence the details
of the observed seismograms.

[16] Once nonlinearity is taken into account, it can be

Figure 3. The six seismic and density Earth models that passed all tests shown in Figure 2 from the 5 million
generated (from Press [1968]).
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useful to view the process of inversion in terms of opti-
mization in a high-dimensional parameter space. Usu-
ally, some objective function is devised that measures the
discrepancy between observables and theoretical predic-
tions from a model. The precise nature of the optimiza-
tion problem to be solved can vary considerably. For
example, one might seek to minimize an objective func-
tion based solely on a measure of fit to data [e.g., Cary

and Chapman, 1988] or one based on a linear combina-
tion of data fit and model regularization (for a discussion
see Menke [1989]). A constrained optimization problem
can be produced with the addition of (explicit) con-
straints on the unknowns [e.g., Sabatier, 1977a, 1977b,
1977c; Parker, 1994], or the data itself might enter only
in these constraints, while the objective function repre-
sents regularization on the model. (This is often called
extremal inversion; for examples, see Jackson [1976],
Parker [1977], Constable et al. [1987] and Parker [1994]).
In some cases these formulations are equivalent, and, in
general, the most appropriate one will depend on the
particular problem in hand and the questions being
asked of the data.

[17] In linear problems it is common to use a qua-
dratic criterion to measure data misfit. This leads to least
squares techniques and an ellipsoidal objective function
in parameter space (see Figure 4a). Most (discrete)
linearized inversion techniques correspond to a gradi-
ent-based optimization algorithm, for example, steepest
descent, conjugate gradients, Newton-Raphson (see Gill

et al. [1981] and Press et al. [1992] for summaries]).
Linearized inversion techniques can be applied to
weakly nonlinear problems and in some cases highly
nonlinear ones, when a good enough guess at the solu-
tion is available in advance. As the nonlinearity of the
data/model relationship increases, a data misfit objective
function can become more complex, and hence optimi-
zation can become more difficult. Common descriptions
involve terms like “narrow valleys,” “abrupt (non-
smooth) gradient changes,” and multiple minima, al-
though in truth not too many of these structures have
been looked at in any detail. (See Scales et al. [1992] and
Billings et al. [1994] for some rather nasty examples.)

[18] An example of a multimodal objective function
arising from the residual statics problem is shown in
Figure 4b [see Deng and Scales, 1999]. Here the data fit
is measured by a probability density function (PDF) which
reflects the alignment of phases. The global maximum of
this function corresponds to the best data fit model, and
locating it would be difficult with techniques based on
gradients or matrix inversion, unless one started near the
solution (in the “basin” of the global solution). In any
case, for this type of objective function it might well be
argued that the model corresponding to the globally
maximum was of little use by itself, and inference should
be based on the class of all acceptable models, if they
could be found.

[19] From here on we will use the generic terms
“misfit” and objective function to describe a combina-

tion of data misfit and perhaps a smoothing or regular-
ization term, indeed any multidimensional function that
might be optimized in an inversion procedure. Usually,
one would minimize a misfit function (possibly under
constraints), but as shown by Figure 4b we would seek to
maximize a probability density function. (The latter arise
in a probabilistic treatment of inversion problems dis-
cussed in section 3.3.)

2.3. Monte Carlo and Optimization
[20] Optimization procedures that depend on gradi-

ent approximations or matrix inversion can suffer from
numerical instabilities caused by ill-conditioned matrices

Figure 4. (a) Simple smoothly varying data misfit function
with a single global minimum representing a best fit data
model. Contours are projected onto the lower plane and are
elliptical. (b) Probability density function for a two-dimen-
sional residual statics problem after Deng and Scales, 1999.
Here the global maximum represents the most likely model.
Note that even in this “simple” problem, multiple maxima are
observed with valleys and ridges inclined to the parameter
axes.
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or failure of convergence, etc. These situations usually
arise when the objective function is highly irregular,
multimodal, and nonsmooth or has discontinuities. Since
Monte Carlo methods work by directly sampling a pa-
rameter space, they do not rely on the objective function
being smooth in any sense, nor do they involve any
potentially numerical unstable process, like matrix inver-
sion. In this sense they are inherently stable. If the
random search process is inefficient, then convergence
to an optimum (or even local) solution may be slow, but
it will, nevertheless, continue. With gradient based
methods, there is the possibility that no solution will be
found because of complete failure of the iterative pro-
cedure.

[21] As the available computational power grew in the
1980s and more sophisticated direct search methods be-
came available, Monte Carlo techniques came back into
vogue for geophysical inversion. At this stage our defi-
nition of a Monte Carlo technique needs an update. A
more general definition (and the one we shall adopt) is
a method that uses pseudorandom sampling to search a
parameter space to retrieve Earth models or other in-
formation about the unknowns of interest. The impor-
tant change is that the search no longer needs to be
uniform. Random sampling from highly nonuniform
multidimensional distributions is now included in our
definition of a Monte Carlo method. This issue has led
to some confusion in the literature. The point to remem-
ber is that Monte Carlo does not imply uniform sam-
pling, just as random samples do not imply uniform
random samples.

[22] The work of Rothman [1985, 1986] introduced
into geophysics the technique of simulated annealing,
which is a nonuniform Monte Carlo method for global

optimization. This approach was originally developed to
simulate the statistical mechanics of systems in equilib-
rium but quickly gained attention as a general purpose
global optimization method. Simulated annealing was
originally devised by Kirkpatrick et al. [1983] [see also
Geman and Geman, 1984] and is based on the Metropolis

sampling algorithm of Metropolis et al. [1953]. A refer-
ence work is that of Aarts and Korst [1989]. The tutorial
section of this review paper deals with this topic in more
detail.

[23] In the work of Rothman [1985, 1986], simulated
annealing was applied to the large residual statics prob-
lem of exploration seismics. The impressive results stim-
ulated many applications to other geophysical optimiza-
tion problems. These include the estimation of Earth
models from fitting of seismic body waveforms in explo-
ration seismics reflection seismics and migration [Jakob-

sen et al., 1988; Jervis et al., 1993; Varela et al., 1998;
Landa et al., 1989; Mosegaard and Vestergaard, 1991;
Vestergaard and Mosegaard, 1991; Sen and Stoffa, 1991];
inversion of travel/arrival time data [Pullammanappallil

and Louie, 1993, 1994]; earthquake location and rupture
histories [Billings, 1994; Hartzell and Liu, 1996]; seismic
source and ground motion studies [Scherbaum et al.,

1994; Courboulex et al., 1996; Ihmle and Ruegg, 1997];
estimation of crustal structure [Steck, 1995; Zhao et al.,
1996]; deconvolution of seismograms [Courboulex et al.,
1996; Calderon et al., 1997]; thermodynamic modeling
[Bina, 1998]; groundwater management and remediation
[Dougherty and Marryott, 1991; Kou et al., 1992; Rizzo and

Dougherty, 1996; Rogers et al., 1998]; more residual stat-
ics estimation [Vasudevan and Wilson, 1991; Nørmark

and Mosegaard, 1993]; waste disposal site selection [Mut-

tiah et al., 1996]; geostatistics [Datta et al., 1995; Goo-

vaerts, 1996; Pardo, 1998]; seismic ray tracing [Velis and

Ulrych, 1996]; and electromagnetic, resistivity, and mag-
netotelluric imaging [Gilbert and Virieux, 1991; Dosso

and Oldenburg, 1991; Dittmer and Szymanski, 1995]. This
is only a subset of the many papers making use of this
technique over the past 10 years.

[24] The power of simulated annealing (SA) was that
it could be used in cases where the model-data relation-
ship was highly nonlinear and produced multimodal data
misfit functions (as in Figure 4b). Simulated annealing
remains one of the few approaches specifically designed
for global optimization problems that has been success-
fully applied across several disciplines [Aarts and Korst,
1989]. The price of this sophistication is that control
parameters (an “annealing schedule”) are introduced
that govern the characteristics of the sampling, and these
had to be determined externally. Subsequent work by
Nulton and Salamon [1988], Andresen et al. [1988], and
Hajek [1988] showed that a theoretically optimal anneal-
ing schedule could be achieved by monitoring the
progress of the algorithm and adjusting as necessary [see
also Mosegaard and Vestergaard, 1991]. Other authors
designed more simplistic but quite effective alternatives
[Szu and Hartley, 1987; Ingber, 1989; Basu and Frazer,
1990]. Global optimization techniques were here to stay
and over the following years became a popular addition
to the geophysicist’s tool bag.

[25] Some time after the appearance of simulated
annealing, another direct search method was introduced
into geophysics and applied widely. Genetic algorithms

(GA) were originally devised as a model of adaptation in
an artificial system by Holland [1975]. An early reference
work is by Goldberg [1989], and a more recent tutorial is
given by Whitley [1994]. As was the case with simulated
annealing, geophysicists borrowed this technique from
another discipline and used it for global optimization.
Genetic algorithms fall into the class of Monte Carlo
techniques because they also use random numbers to
control components of the search.

[26] Genetic algorithms were first used by geophysi-
cists in the early 1990s. A number of papers appeared in
quick succession [Stoffa and Sen, 1991; Gallagher et al.,
1991; Wilson and Vasudevan, 1991; Smith et al., 1992; Sen

and Stoffa, 1992; Sambridge and Drijkoningen, 1992;
Scales et al., 1992], largely in the area of seismic wave-
form fitting. Interestingly enough, genetic algorithms
were not originally designed as function optimizers, and
the range of problems to which they have been applied
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is quite broad. (For reviews, see Davis [1987], Goldberg

[1989], and Gallagher and Sambridge [1994].) Neverthe-
less, their main role in geophysics (as in many other
disciplines) has been as a global optimization tool. Like
simulated annealing, the metaphor underlying genetic
algorithms is a natural optimization process, in this case
biological evolution. Many variants of genetic algorithms
exist (even when applied to optimization). Indeed, they
are probably best viewed as a class of methods rather
than as a well-defined algorithm. As with simulated
annealing, some asymptotic convergence results are
known for particular versions [Davis and Principe, 1991].
However, all versions involve control parameters, which
determine the characteristics of the direct search pro-
cess, and tuning them for each problem can be non-
trivial.

[27] Within a few years of their introduction, genetic
algorithms became quite popular within the Earth sci-
ences and were applied in a wide range of areas. Some
examples include earthquake hypocenter location [Ken-

nett and Sambridge, 1992; Sambridge and Gallagher,
1993; Billings et al., 1994; Wan et al., 1997; Muramatsu

and Nakanishi, 1997]; estimation of focal mechanisms
and seismic source characteristics [Kobayashi and Na-

kanishi, 1994; Zhou et al., 1995a; Sileny, 1998; Yu et al.,
1998]; mantle viscosity estimation [King, 1995; Cadek et

al., 1998; Kido et al., 1998]; groundwater monitoring and
management problems [McKinney and Lin, 1994; Ritzel

et al., 1994; Cieniawski et al., 1995; Rogers et al., 1995;
Tang and Mays, 1998]; meteorite classification [Conway

and Bland, 1998]; seismic anisotropy estimation [Horne

and Macbeth, 1994; Levin and Park, 1997]; near-source
seismic structure [Zhou et al., 1995b]; regional, crustal
seismic structure and surface wave studies [Lomax and

Snieder, 1994, 1995a, 1995b; Drijkoningen and White,
1995; Yamanaka and Ishida, 1996; Neves et al., 1996];
design of microseismic networks [Jones et al., 1994];
fission track dating [Gallagher, 1995]; seismic profiling
and migration [Jervis et al., 1993; Jin and Madariaga,
1993; Nolte and Frazer, 1994; Horne and Macbeth, 1994;
Boschetti et al., 1996; Docherty et al., 1997]; seismic
receiver functions studies [Shibutani et al., 1996]; prob-
lems in geotectonics [Simpson and Priest, 1993]; magne-
totelluric inversion [Everett and Schultz, 1993]; inversion
of potential fields [Boschetti et al., 1997]; conditioning of
linear systems of equations [Curtis and Snieder, 1997];
seismic ray tracing [Sadeghi et al., 1999]; there are many
others. Some studies have involved devising variants of
the basic approach and adapting them to the character-
istics of individual problems [e.g., Sambridge and Gal-

lagher, 1993; Koper et al., 1999].
[28] The question as to whether simulated annealing

or genetic algorithms perform better for a particular
problem (i.e., more efficiently, more likely to find ac-
ceptable or even optimal models, etc.) has been ad-
dressed by a number of authors, both within the Earth
sciences and elsewhere [see Scales et al., 1992; Ingber and

Rosen, 1992; Sen and Stoffa, 1995; Horne and Macbeth,

1998]. Most commonly, these studies compare perfor-
mance on particular optimization problems, and from
these it is difficult to draw general conclusions. Quite
clearly, their relative performance varies between appli-
cations and also with the particular versions of each
method that are being compared. For a recent, very
readable, discussion of the types of optimization prob-
lem for which they are each suited, see Gershenfeld

[1999].
[29] A few other global optimization techniques

(again originating in other fields) have made fleeting
appearances in the geophysical literature. Two notable
examples are evolutionary programming [Minster et al.,
1995] and Tabu (or Taboo) search [Cvijović and Kli-

nowski, 1995; Vinther and Mosegaard, 1996; Zheng and

Wang, 1996]. The former is related to genetic algorithms
but was developed quite independently [Fogel, 1962;
Fogel et al., 1966]. Again, the primary motivation was not
optimization but the simulation of complex adaptive
systems (see Gell-Mann [1994] for a popular discussion).
Tabu search is not strictly speaking a Monte Carlo
method since it does not make use of random numbers,
but it is able to climb out of local minima in misfit
functions [Cvijović and Klinowski, 1995; Vinther and Mo-

segaard, 1996]. Very recently, a new Monte Carlo direct
search technique known as a neighbourhood algorithm
(NA) has been proposed, this time developed specifi-
cally for sampling in geophysical inverse problems [Sam-

bridge, 1999a]. The approach makes use of concepts
from the growing field of computational geometry and
bares little resemblance to either genetic algorithms or
simulated annealing. It is difficult to say much about
these approaches with any confidence as experience with
geophysical problems is still rather limited.

2.4. Ensemble Inference Rather Than Optimization
[30] The renewed interest in Monte Carlo techniques

for global optimization and exploration raised a familiar
question, that is, how to make use of the sampling they
produced to assess trade-offs, constraints and resolution,
in multimodal nonlinear problems. Put another way,
how can one use the collection of Earth models gener-
ated by a Monte Carlo procedure to do more than
estimate a set of “best fitting” parameters. This was, in
effect, a return to the questions posed by the first users
of Monte Carlo; however, the response adopted by the
second generation of practitioners was to take a Bayes-
ian approach. This statistical treatment of inverse prob-
lems became well known to geophysicists through the
work of Tarantola and Valette [1982a, 1982b; see also
Tarantola, 1987] and had been applied extensively to
linearized problems. Monte Carlo techniques allowed an
extension of the Bayesian philosophy to nonlinear prob-
lems.

[31] Bayesian inference is named after Bayes [1763],
who presented a method for combining prior informa-
tion on a model with the information from new data. In
this formulation of an inverse problem all information is
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represented in probabilistic terms (i.e., degrees of be-
lief). Bayesian inference is reasonably general in that it
can be applied to linear or nonlinear problems. (It is
dealt with in more detail in the tutorial section of this
paper.) In short, it combines the prior information
known on the model, with the observed data, and pro-
duces the posterior probability density function (PDF) on
the model parameters, which is taken as the “complete
solution” to the inverse problem. (Standard references
are by Box and Tiao [1973], and useful recent books are
by Smith [1991] and Gelman et al. [1995]. Summaries
within a geophysical context are given by Duijndam

[1988a, 1988b] and Mosegaard and Tarantola [1995].)
The Bayesian approach is not without its criticisms. For
example, implicit in its formulation is that one must
know the statistical character of all error, or noise,
processes in the problem, which can be very difficult in
some cases, especially when the theoretical predictions
from a model involve approximations. In addition, it is a
controversial issue as to whether prior information can
be adequately represented probabilistically (see Scales

and Snieder [1997] and Gouveia and Scales [1998] for a
discussion). (Note that probabilistic prior information is
often called “soft” and differs from strict inequalities on
the model parameters, which are referred to as “hard”
prior information [see Backus, 1988; Stark, 1992]).

[32] In a Bayesian approach the posterior PDF spans
the entire model space. The case where it is a Gaussian
can be dealt with effectively using linearized inversion
techniques [see Tarantola, 1987; Menke, 1989]. Linear-
ized techniques use local curvature information on the
PDF about its maximum to estimate resolution and
trade-offs. If the PDF is a Gaussian, then the local
curvature defines the complete structure of the PDF in
parameter space. For highly nonlinear problems the
posterior PDF can have a complex multimodal shape,
arising from the nature of the data fit (likelihood func-

tion) or perhaps from the inclusion of complex prior
information. In this case, global optimization techniques
are needed to identify the maximum of the posterior
probability density; however, as the complexity of the
PDF increases, a single “most probable” model (if one
exists) has little meaning (see Figure 4b). Even if one
could be found, a linearized treatment of resolution
problem would be of little value (essentially because the
local information on the PDF’s curvature is not repre-
sentative of the PDF as a whole). In these cases, infor-
mation on the complete shape of the posterior is needed
to produce Bayesian measures of uncertainty and reso-
lution. It is here that Monte Carlo methods have major
advantages over linearized (local) methods, since the
sampling they produce can be used to calculate Bayesian
integrals. Within a Bayesian context then, the emphasis
is less on optimization and more on sampling the most
probable regions of parameter space as determined by
the posterior PDF, a process known as importance sam-

pling. (Compare this to the early MCI work where the
emphasis was on exploring the acceptable regions of

parameter space, as defined by data and prior con-
straints.)

[33] Monte Carlo integration of multidimensional
probability distributions is an active area of research in
computational statistics (for summaries see Flournay and

Tsutakawa [1989], Smith [1991], Smith and Roberts

[1993], and Gelman et al. [1995]). Over the past 10 years,
geophysicists have begun to use Markov Chain Monte

Carlo (MCMC) methods, which directly simulate the
posterior PDF, that is, draw random samples distributed
according to the posterior PDF, and from these calculate
Bayesian estimates of constraint and resolution [see
Koren et al., 1991; Mosegaard and Tarantola, 1995; Gal-

lagher et al., 1997; Gouveia and Scales, 1998]. It is not
surprising that many of these studies arise in seismology
and in particular the estimation of Earth structure from
high-frequency body waveforms, especially in explora-
tion studies. This is an area where complex multimodal
and multidimensional PDFs can result from the discrep-
ancies between observed and predicted seismograms.
An example is shown in Figure 4b, which comes from the
work of Deng and Scales [1999].

[34] At the end of the 1990s, Monte Carlo integration
and importance sampling have become firmly estab-
lished as the technique of choice for Bayesian inversions
in nonlinear problems. Debate continues over whether
the Bayesian paradigm is appropriate in many cases (see
Scales and Snieder [1997] for a discussion). However,
Monte Carlo (adaptive or nonuniform) sampling of pa-
rameter spaces has also remained popular in studies that
do not invoke the Bayesian philosophy. (Many of the
papers cited above fall into this category.) In these cases
the issues of mapping out and characterizing the class of
acceptable models remain just as relevant today as when
the original hedgehog algorithm was proposed more
than 30 years ago [Keilis-Borok and Yanovskaya, 1967;
Valius, 1968]. Characterizing the properties of all accept-
able models, or an obtained finite ensemble, has been a
central issue for many authors, and a variety of algo-
rithms have been proposed (see Constable et al. [1987],
Vasco et al. [1993], Lomax and Snieder [1994, 1995b]
Douma et al. [1996], and Sambridge [1999b] for exam-
ples). This is perhaps the factor that most clearly distin-
guishes a study of inverse problems from that of param-
eter estimation.

[35] With the growth and spread of high-performance
computing, Monte Carlo inversion techniques are no
longer restricted to the owners of supercomputers. As
their use becomes more widespread, we can expect that
direct sampling of a parameter space will become rou-
tine for nonlinear problems, and the need for lineariza-
tion will diminish in many cases. (This is arguably al-
ready the case for problems with relatively few
unknowns, e.g., earthquake hypocenter location.) Also,
one might expect that larger scale problems (i.e., involv-
ing many more unknowns) will increasingly be tackled
using Monte Carlo techniques, within either a Bayesian
or non-Bayesian framework. For the foreseeable future
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very large scale nonlinear problems, like 3-D mantle
seismic tomography, are likely to remain beyond the
range of Monte Carlo techniques; however, it is worth
noting that a Monte Carlo technique has already been
applied to a 2-D borehole tomography problem (involv-
ing fewer unknowns than mantle tomography, but often
more nonlinear) [Vasco et al., 1993]. As Monte Carlo
sampling is better understood and becomes more acces-
sible, it seems likely that it will become an increasingly
useful tool for nonlinear inversion. It is hoped that this
paper, and in particular the following tutorial section,
will add to that awareness and encourage students and
researchers to think about it themselves.

3. MONTE CARLO METHODS: THE TECHNOLOGY
OF INFORMATION

[36] In the next section we outline some of the main
Monte Carlo approaches that have been used to tackle
geophysical inverse problems. We describe some of the
basic concepts and provide a source of references for
further reading. Some open questions are also high-
lighted. At all times we assume that we have some
criterion, �, which measures the discrepancy between
observations and predictions and perhaps includes some
other information. Its evaluation for any given model, x,
constitutes a solution to the forward problem. In some
cases we may be interested in optimizing this objective
function; in others we may be more interested in sam-
pling it adequately enough to either evaluate Bayesian
information measures (as discussed in section 3.3), or
estimate properties of the data acceptable models that
fit within our chosen (usually finite dimensional) param-
eter space.

[37] Several of the approaches discussed here are
commonly associated with a Bayesian approach to inver-
sion. However, it is worth noting that they can also be
employed independently of a Bayesian inversion, that is,
simply to perform a direct search of a parameter space.

3.1. Preliminaries

3.1.1. Linearization or Monte Carlo?
[38] The first question one needs to address is

whether a Monte Carlo technique (like SA, GA, NA,
etc.) or a linearized approach (based on matrix inver-
sion) would be most appropriate for a particular prob-
lem. The answer depends on the nature of the data-
model relationship, the number of unknowns, and, to a
lesser extent, the computational resources available.

[39] As the data-model relationship becomes more
complex, the misfit function (or PDF) will also increase
in complexity (e.g., multimodal, etc.), and Monte Carlo
techniques will be favored over linearized techniques for
two reasons. The first is that they are more numerically
stable in the optimization/parameter search stage. This
is because they do not rely on the convergence of se-

quence of model perturbations (like a linearized ap-
proach) and at the same time avoid the need for matrix
inversion.

[40] The second reason for favoring Monte Carlo
techniques is that they are usually more reliable in
appraising the solution, that is, estimating uncertainty by
means of model covariance and resolution matrices (see
section 3.3). This is (again) because they avoid deriva-
tives and hence the numerical approximations on which
linearized estimates of model covariance and resolution
are based [see Menke, 1989]. Linearized techniques are
prone to underestimate uncertainty when nonlinearity is
severe. Also, a direct search of the parameter space may
indicate significant trade-offs and even multiple classes
of solution, which would not be found using lineariza-
tion.

[41] Unfortunately, it is not possible to know whether
linearized estimates of model covariance and resolution
are accurate until a fully nonlinear calculation has been
performed. The same is true for the optimization pro-
cess itself, that is, whether linearized techniques are
likely to be unstable or require heavy damping to con-
verge, problems that could well be alleviated using a
direct search technique.

[42] In some cases, for example, in many waveform
inversion studies encountered in seismic exploration, the
data-model relationship can become so complex that
fully nonlinear direct search techniques are the only
viable approach. At the opposite end of the scale, with
discrete linear, or linearized, problems with relatively
few unknowns (e.g., 10–50), it is often overlooked that
Monte Carlo techniques can be both very convenient
and efficient.

[43] It is also worth pointing out that linearization is
not always possible or practical in some cases. This is the
case when the observables are not differentiable func-
tions of the unknowns. An example is when the forward
problem involves a complex calculation such as the nu-
merical modeling of landscape evolution in response to
tectonic and erosional processes [van der Beek and

Braun, 1999; Braun, 2002]. In this case the unknowns are
the rate of tectonic uplift and parameters that relate rate
of surface processes to geometrical features like drain-
age area and surface slope, while the observables are
geochronological constraints on exhumation rate and
morphological properties of the landscape. In these
problems, there is no analytical relationship between
unknowns and observables, and hence linearized tech-
niques are not appropriate. However, direct search tech-
niques can still be applied because they only require the
ability to solve the forward problem. Furthermore, all of
the direct search algorithms presented in section 3.2 can
take advantage of parallel computation because each
forward solution can be performed independently. It
seems likely that this is an area where Monte Carlo
techniques will find more applications in the future.

[44] It is important to stress that Monte Carlo tech-
niques are not a panacea for geophysical inversion. They
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are only applicable to discretized problems, that is, ones
where a finite parameterization has been chosen, and as
with all discrete inversion approaches, the results will
inevitably be dependent on the suitability of that choice.
Also, it is clear that as the number of unknowns become
large (say, greater than a few hundred) then direct
search techniques become impractical because of the
computation involved. The actual limiting dimension
will vary considerably between applications because it
depends on the computational cost of solving the for-
ward problem. However, it is also clear that as comput-
ing power continues to grow, so will the range of prob-
lems that can be addressed with Monte Carlo
techniques.

3.1.2. Which Monte Carlo Technique?
[45] The choice between the competing flavors of

Monte Carlo technique is much less clear than whether
one should be used in the first place. In general, there
appears to be no preferred method of choice in all
circumstances. In the next few sections we discuss the
basic mechanics of different classes of Monte Carlo
approach and make some comparisons. Here we make a
few general observations which may help in deciding on
which Monte Carlo technique to choose.

[46] In cases where the cost of the forward modeling
is not excessive and the number of unknowns is small
(say �10), a simple deterministic grid search [e.g., Sam-

bridge and Kennett, 1986] may be practical (see section
3.2.2). This would have the attraction of being both
reliable (guaranteeing a global minimum on the chosen
grid) and useful for uncertainty analysis because the
samples are uniformly distributed and hence produce an
unbiased sample of the parameter space. With modern
computing power this most simplistic of techniques can
become surprisingly efficient for some problems. Of
course, grid search techniques become impractical when
either the number of unknowns or the computational
cost of the forward problem is high, and one must turn
to the more sophisticated irregular parameter space
sampling methods.

[47] It is beyond the scope of this paper to enter the
(perhaps never-ending) argument between Bayesian and
non-Bayesian approaches to inversion [Scales and

Snieder, 1997]. However, it should be noted that a Bayes-
ian inversion is often implemented with a Markov chain
Monte Carlo (MCMC) approach (section 3.2.3.1), for
example, using the Metropolis algorithm. This, in turn, is
closely related to the optimization technique simulated
annealing (section 3.2.3), and so, in general, if a Bayes-
ian approach were preferred, then these would be the
natural algorithms of choice for both optimization and
uncertainty estimation (see section 3.2.3.1 for a discus-
sion).

[48] Several authors have argued for genetic algo-
rithms (section 3.2.4) as a powerful parameter space

search technique (see above), although the ensemble of
parameter space samples produced by a genetic algo-

rithm does not (in general) follow any prescribed prob-
ability distribution and so cannot be used directly for a
quantitative uncertainty analysis (within a Bayesian
framework) (see section 3.4). The neighbourhood algo-
rithm (section 3.2.5), which is both a search and ap-
praisal technique, offers a potential solution to this
problem. Ultimately, the choice between Monte Carlo
direct search techniques will often depend as much on
issues of practical convenience, like the availability of
suitable computer software, as the precise details of the
algorithms.

3.1.3. Generating Random Samples

3.1.3.1. Pseudorandom Deviates
[49] All Monte Carlo techniques make use of random

number generators of some kind. This is the case even
when the ultimate task is to generate multidimensional
random deviates distributed according to complicated
PDFs, for example, with the Metropolis-Hastings algo-

rithm (see section 3.2.3.1). The common approach is to
generate pseudorandom numbers using a linear or mul-
tiplicative congruent method. For a survey of theory and
methods, see Park and Miller [1988], and for descriptions
of “workhorse” techniques, see Press et al. [1992]. Figure
5a shows 1000 pairs of pseudorandom numbers plotted
as points in the plane.

3.1.3.2. Quasi-Random Sequences
[50] It is a nonobvious point that not all random

number generators are equally uniform. One way this
can be measured is in how fast the error in a Monte
Carlo integration decreases as a function of the number
of samples. For example, if one were to calculate the
average of the x or y values of the pseudorandom points
in Figure 5a, then (assuming the sides of the box were 0
to 1) the rate at which the estimate approaches 0.5
would decrease linearly proportional to 1/�N, where N

is the number of points. However, it is possible to do
much better by using quasi-random (or subrandom)
sequences. Figure 5b shows an example of N 	 1000
points generated from two quasi sequences. The quasi
sequence generates a set of points that are (in a well-
defined sense) “maximally self-avoiding.” To the eye this
looks like a regular grid with the vertices randomly
perturbed. It is clear from Figure 5b that in this case the
quasi random numbers are more evenly distributed than
the pseudorandom deviates. It can be shown that as a
consequence they result in more rapid convergence of
Monte Carlo integrals. For example, if we calculated the
average of the x and y values from the points in Figure
5b, then the numerical error would decrease propor-
tional to 1/N, which is much faster than for the pseudo-
random case. As we show in section 3.3, the evaluation
of MC integrals is central to Bayesian inference.

[51] The Sobol-Antonov-Saleev approach [Sobol,
1967; Antonov and Saleev, 1979] is an efficient way to
generate quasi-random sequences and has been imple-
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mented in a convenient form by Press et al. [1992].
However, care must be taken in using quasi-random
numbers, especially when they form the components of a
vector (i.e., Earth model) in a multidimensional space.
In this case each component in the (quasi-random) vec-
tor must be generated from an independent quasi se-
quence. The main problem is that some components of
multidimensional quasi-random vectors can have a high
degree of correlation. It is only when sufficiently many
quasi vectors are generated that the correlation disap-
pears. In dimensions as low as 10, it may require many
thousands of samples before the overall correlation be-

tween all components is negligible, and hence the sam-
ples are usable. Morokoff and Caflisch [1994] describe
these issues in detail. Quasi-random sequences are used
in the neighbourhood algorithm of Sambridge [1999a]
(see also section 3.2.5) and are finding increasing num-
bers of applications in multidimensional numerical inte-
gration [Morokoff and Caflisch, 1994].

3.2. Searching a Parameter Space With Monte Carlo
Methods

3.2.1. Exploration Versus Exploitation
[52] A useful framework for comparing different

search algorithms, random or not, is in terms of a trade-
off between exploration and exploitation. By exploration
we mean trying to improve the objective function by
looking (randomly) in different regions of parameter
space, without regard for what we have already learned
from previous sampling. Exploitation is the opposite; we
make decisions of where to sample next by only using the
previous sampling and sometimes just the current best fit
model. Most direct search Monte Carlo algorithms fall
somewhere in between the extremes. Figure 6 shows our
attempt to classify various techniques according to these
definitions.

[53] From the point of view of optimization the rule of
thumb is that the more explorative an algorithm is, the
less likely it will fall into local minima, but the less
efficient it will be at converging on a solution. Con-
versely, the exploitative algorithms will be more efficient
at convergence but prone to entrapment, and hence the
final result will depend on the starting point. Examples
of methods that lie at the extremes would be a uniform
random search, which is completely explorative, and a
steepest descent algorithm [Gill et al., 1981], which is

a)

b)

Figure 5. (a) The 1OOO uniform points generated with a
pseudorandom number generator, showing typical clustering
and uneveness. (b) The 1OOO uniform points generated with
two sequences of quasi-random numbers. Note the consider-
ably more uniform appearance and even density compared to
Figure 5a.

Figure 6. A schematic representation of various search/opti-
mization algorithms in terms of the degrees to which they
explore the parameter space and exploit information. Shaded
borders indicate a deterministic (non–Monte Carlo) method.
Uniform search includes the deterministic grid search.
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purely exploitative. Clearly, the most appropriate tech-
nique will depend on the nature of the problem. For
smoothly varying near quadratic objective functions we
would prefer an exploitative approach, which allows
rapid converge, for example, a Newton-type descent
method. For highly nonlinear problems with multiple
minima/maxima in the objective function a combination
of exploration and exploitation would probably suit best.
However, controlling the trade-off between the two
properties is often quite difficult, as is deciding in ad-
vance which approach is best suited to a particular
problem.

3.2.2. Uniform Sampling
[54] The simplest form of randomized sampling of a

parameter space is uniform sampling. For a problem
with d distinct unknowns the ith random sample is the
vector xi,

x i � �
i	1

d

r iei , (1)

where ri is a (0,1) uniform random deviate and ei is the
unit vector along the ith axis in parameter space. For
each new sample some data fit, or other objective func-
tion, �, must be evaluated, and hence forward modeling
performed. As discussed above, this was the first fully
nonlinear approach used by geophysicists more than 30
years ago. Note that, by definition, uniform sampling is
not biased toward any particular region of parameter
space, and there is hence no possibility of entrapment in
local minima of �. Equally, however, it does not concen-
trate sampling, and, even with modern supercomputers,
it is usually inefficient once the number of unknowns
becomes greater than 
10. This is the so-called “curse of
dimensionality.” For example, if we imagine the param-
eter space filled by a regular multidimensional Cartesian
grid with (nk � 1) intervals per axis, then the number of
distinct nodes (and hence models) in this grid is nk

d,
which can become enormous, even in relatively small
dimensions.

[55] In practice, one always undersamples a parame-
ter space. In many Monte Carlo studies the total number
of samples generated is much smaller than the number
of vertices of a single “unit cube” in a Cartesian grid,
that is, 2d, and in this sense one always tends to under-
sample parameter spaces in practice. For most problems
the only viable approach is for the MC search algorithm
to concentrate sampling in particular “promising” re-
gions of parameter space, that is, adapt itself to the
objective function �. One area where uniform MC
search has continued to be useful is in sampling under
hard prior constraints on the unknowns. An example
appears in the work of Wiggins [1972] [see also Cary and

Chapman, 1998; Kennett, 1988].

3.2.3. Simulated Annealing
[56] The simulated annealing method exploits a sta-

tistical mechanical analogy to search for the global min-
imum of an objective function � possessing a large
number of secondary minima. The algorithm simulates
the process of chemical annealing in which a melted
crystalline material is cooled slowly through its freezing
point, thereby approximately settling into its energy
ground state. By identifying the objective function with
the energy of the crystalline material and by appropriate
definition of a temperature parameter for the simula-
tions, it is possible to simulate a “cooling” of the system
to be optimized. A sufficiently slow cooling of this sys-
tem will, by analogy to the chemical annealing, result in
convergence to a near-optimal configuration, character-
ized by a near-minimal value of the objective function.

[57] Simulated annealing is based on the Metropolis-
Hastings algorithm or the Gibbs Sampler, and we shall
therefore take a closer look at these algorithms here.
Later, we shall also see why these algorithms are the
workhorses in Bayesian Monte Carlo calculations.

3.2.3.1. Markov Chain Monte Carlo:
Metropolis, Hastings, and Gibbs

[58] The idea behind the Metropolis-Hastings algo-
rithm and the Gibbs Sampler is the same. They are both
so-called Markov Chain Monte Carlo algorithms de-
signed to generate samples of a probability distribution p

over a high-dimensional space � under the special dif-
ficulty that no explicit mathematical expression exists for
p. Only an algorithm that allows us to calculate the
values of p at a given point in the space is available. This
is a typical situation in geophysics where p is a probabil-
ity density derived from a misfit function � through, for
example,

p�mk
 � A � exp (�B��mk
) , (2)

where mk is a model and A and B are constants. Very
often p (mk) can only be evaluated for a particular Earth
model through a very computer-intensive calculation.

[59] Let us consider the mechanics of the Metropolis-
Hastings algorithm, for simplicity, we consider a situa-
tion where we wish to sample a probability distribution p

in a discretized model space �. Sampling from the
distribution p means that the probability of visiting
model m is proportional to p(m). To generate a simple
algorithm that samples p, we can make the following
assumptions:

1. The probability of visiting a point mi in model
space, given that the algorithm currently is at point mj,
depends only on mj and not on previously visited points.
This is the so-called Markov property. This property
means the algorithm is completely described by a tran-
sition probability matrix Pij whose ijth component is the
conditional probability of going to point mi, given the
algorithm currently visits mj.

2. For all points mj in �, there are exactly N points mi,
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including mj itself, for which Pij is nonzero. If this prop-
erty holds, we say that the algorithm is regular, and the
set of N accessible points constitutes what we call the
neighborhood �j of mj.

3. It is possible for the algorithm to go from any point
mj to any other point mi, given enough steps. An algo-
rithm satisfying this property is called irreducible.

[60] The question now is, which transition probability
matrix Pij leads to an algorithm that samples the target
distribution p? The answer is that there exists infinitely
many such transition probability matrices. We will
choose one that is simple, namely, one that satisfies
microscopic reversibility:

P ij p�m j
 � P ji p�m i
 . (3)

It is easy to see that any choice of Pij satisfying micro-
scopic reversibility will continue to sample p once it has
already started doing so. This is a simple consequence of
the fact that if the algorithm has probability p(mj) of
visiting mj, then the probability that a transition from mj

to mi takes place in a given iteration is Pijp(mj). Simi-
larly, the probability that a transition from mi to mj takes
place in a given iteration is Pjip(mi). Microscopic revers-
ibility means that the probability of these two transitions
is the same at all times, and the fact that each pair of
points in � maintains mutual equilibrium in this way
means that there is overall equilibrium sampling at the
target distribution p. For more details see, for example,
Mosegaard and Tarantola [1995] or Mosegaard and Sam-

bridge [2002].
[61] In the Metropolis-Hastings algorithm the transi-

tion probabilities Pij are given by

P ij �

1

N
min �1,

p�m i


p�m j

� , (4)

and hence satisfy equation (3). This is, in practice, real-
ized in the following way.

[62] Assume that the current point visited by the al-
gorithm is mj. We now choose (or, rather, propose) one
of its N neighbors mi with probability

Pproposal � 1/N . (5)

Finally, we accept mi only with probability

Paccept � min �1,
p�m i


p�m j

� . (6)

If mi is accepted, the algorithm goes to mi in this itera-
tion, but if mi is rejected, the algorithm stays in mj (mj is
visited once again). It is clear that the above algorithm
has transition probabilities given by equation (4).

[63] The remaining question of how to make the al-
gorithm sample p in the first place is more complicated,
but fortunately it can be shown [see, e.g., Tierney 1994]
that the distribution of samples produced by any algo-
rithm satisfying our requirements will indeed converge
toward p when the number of iterations goes to infinity.

The problem of estimating the speed of convergence is
presently unresolved, but some practical advice on how
to run this type of algorithm was found by Hastings

[1970] and Mosegaard [1998].
[64] According to the mechanics of the Gibbs Sampler

in a typical implementation, operating in a K-dimen-
sional model space, each iteration consists of K substeps,
one for each parameter. The kth substep perturbs only
the kth parameter, and it has its own transition proba-
bility matrix Pij

k . The neighborhood �j
k of a point mj

consists of all points mi that differ from mj in only the kth
parameter. This means, in particular, that the neighbor-
hoods of two points are either identical or disjoint.

[65] Assume again that the current point visited by the
algorithm is mj. We now run K steps, and in each step,
instead of proposing one of its N neighbors uniformly at
random, we choose mi from the neighborhood �j

k ac-
cording to the conditional probability distribution

p�m i�� j
k
 �

p�m i


�
mk��j

k p�mk

, (7)

without any accept/reject probability (i.e., the chosen mi

is always accepted). In each step, only one parameter is
perturbed (or is possibly left unchanged), so after com-
pletion of one iteration (consisting of all K steps), all
parameters have been perturbed.

[66] That this algorithm samples p is easy to see. The
transition probability matrix for each step is given by

P ij
k

� p�m i�� j
k
, (8)

which clearly satisfies microscopic reversibility, equation
(3), so if mi � �j

k, then

P ij
k p�m j
 � p(m i�� j

k p�m j


�

p�m i


�
mk � �j

k

p�mk

p�mj


	
p(mj)

�
mk � �i

k

p�mk

p�mi


	 p�mj��i
k 
p�mi


	 Pji
k p�mi
 ,

where we have used that the neighborhoods �j
k and �i

k

are identical. Since each step of an iteration satisfies
microscopic reversibility, so does the entire iteration,
and the algorithm samples the target distribution p as-
ymptotically.

[67] Whether the Metropolis-Hastings algorithm or
the Gibbs Sampler is the most efficient depends on the
problem at hand. The Gibbs Sampler takes much fewer
iterations before it samples p correctly, but the many
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steps needed to perform an iteration may render it
inefficient for problems where evaluation of p is com-
puter-intensive. Rothman [1986] gives an example of the
use of a Gibbs Sampler in a case where p can be
efficiently evaluated for all perturbations of a single
model parameter.

3.2.3.2. Simulated Annealing Algorithm
[68] It is an empirical fact that the process of chemical

annealing, where a crystalline material is slowly cooled
through its melting point, results in formation of highly
ordered, low-energy crystals. The slower the cooling, the
more perfect is the crystal growth, and the lower is the
lattice energy. This process can be viewed as a “physical
optimization method” in which the objective function is
the lattice energy E. The process can be simulated in
large numerical systems by identifying the model param-
eters of the system with state space variables and the
objective function of the optimization problem with the
energy E. In each step of the algorithm, thermal fluctu-
ations in the system are simulated by randomly perturb-
ing model parameters, and the fluctuations are con-
trolled by a temperature parameter T. The simulated
annealing algorithm [Kirkpatrick et al., 1983] runs as
follows: In each step a random perturbation of the
model parameters mj of the numerical system is at-
tempted. The new set of model parameters mi are ac-
cepted if the value of the objective function E decreases.
However, if E increases, the new parameters may be
accepted with probability

Paccept � exp ���E

T � , (9)

where �E is the change in the objective function and T

is the temperature parameter. If the new model is re-
jected, a new perturbation is attempted in the next move,
and the above process of decision is repeated.

[69] A close inspection of the above algorithm reveals
that for constant temperature parameter T it is actually
a Metropolis-Hastings algorithm designed to sample the
probability distribution [Metropolis et al., 1953],

PB(m) 	

exp ��E�m


T �
Z�T


, (10)

which is known in statistical physics as the Gibbs-Boltz-
mann distribution. Here 1/Z(T) is a normalization con-
stant. In simulated annealing, however, the temperature
parameter is gradually decreased from a high value,
allowing large “thermal” fluctuations, down to zero,
where only decreasing values of the objective function
are allowed. For decreasing temperature T the Gibbs-
Boltzmann distribution converges toward a distribution
having all its probability mass in the global minimum for
E. In other words, as the temperature gradually ap-
proaches zero, the probability that our system is close to

the global minimum for its objective function ap-
proaches 1.

[70] In simulated annealing the Gibbs-Boltzmann dis-
tribution can also be sampled by means of a Gibbs
sampler. Rothman [1986] gives an example where the
residual statics problem of reflection seismology is
solved in this way.

3.2.3.3. Nulton-Salamon Annealing Schedule
[71] In practice, one has to face the fact that the above

theory is only true for an infinitely slow “cooling.” The
problem is therefore to find a way to decrease the
temperature in a finite number of steps, such that the
probability that the system is close to the global mini-
mum for E after the annealing simulation is maximum.

[72] Nulton and Salamon [1988] devised a near-opti-
mal annealing method that keeps the numerical system
close to “thermal equilibrium” at all times. The actual
mean value �E� of the objective function is kept at a
constant distance

v �

�E� � �E�eq

�E�T

(11)

from the never realized equilibrium mean value �E�eq.
Here �E(T) is the standard deviation of the fluctuating
objective function, and the distance v is known as the
“thermodynamic speed.” The authors arrive at the fol-
lowing differential equation for the annealing tempera-
ture schedule T(t):

dT

dt
� �

vT

��T
�C �T

, (12)

where C(T) and �(T) are the heat capacity and the
relaxation time of the system, respectively. Estimation of
C(T) and �(T) from statistical information about the
system, collected during the annealing process, is de-
scribed by Andresen et al. [1988]. An approximate, tem-
perature-dependent transition probability matrix PE (T)

for transitions between “energy levels” is formed during
the annealing process. For each temperature the heat
capacity can be evaluated from the eigenvector of PE

(T 3 �) with eigenvalue 1, and the relaxation time can
be calculated from the second largest eigenvalue of
PE(T).

[73] In practice, the thermodynamic speed v in equa-
tion (12) is adjusted such that the annealing temperature
is close to zero after a predetermined number of itera-
tions, given by the computer resources available to the
optimization.

[74] Figure 7 shows an example where a reflection
seismic data set was inverted through simulated anneal-
ing optimization. A common-depth-point gather from
the data set was transformed into the � � p domain
(essentially a plane-wave decomposition), and two
traces, representing ray parameters p 	 0.000025 s/m

and p 	 0.000185 s/m, respectively, were inverted to
obtain a horizontally stratified nine-layer model. Each
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layer was characterized by a P velocity, a density, and an
attenuation. Figure 7 shows the two traces, each re-
peated 5 times, and the wavelet. Misfit (“energy” in
simulated annealing terminology) was calculated by gen-
erating full waveform acoustic � � p seismograms from
the subsurface model and computing the L2-norm of the
difference between computed and observed (� � p trans-
formed) data.

[75] Figure 8 shows the “thermodynamic portrait” of
the problem, generated by the method described by
Andresen et al. [1988]. The top left graph displays the
approximate “density of states” for the problem, show-
ing the fraction of models having misfit (energy) be-
tween E and E � dE. There are several reasons for the
small values of the density of states at small energies.
First of all, the fractional volume of the model space
with near-optimal models is extremely small, a typical
property of inverse problems with high-dimensional
model spaces. Second, the fact that noise is present in
the data means that zero energy cannot be obtained
(unless we overparameterize the problem). A third rea-
son is that the method used to estimate density of states
is imperfect. Thermodynamic properties of the problem
are estimated through an initial exploratory sampling of
the model space, and this sampling visits very few low-
energy models.

[76] From the density of states the temperature-de-
pendent “heat capacity” for the problem can be calcu-
lated (top right graph of Figure 8). The heat capacity for
this problem has two distinct peaks, and these two peaks
indicate where annealing must “slow down” if the system
is to remain close to equilibrium.

[77] The temperature-dependent relaxation time

(bottom left graph) shows a typical high value at low
temperatures. This is the result of slow movement in an
“energy landscape” with many secondary minima.

[78] The bottom right graph shows the resulting tem-
perature schedule satisfying approximate constant ther-
modynamic speed. Practical experience shows that this
kind of temperature schedule is far superior to ad hoc
schedules not reflecting the thermodynamic properties
of the problem [Jakobsen et al., 1988; Andresen et al.,
1988; Koren et al., 1991; Mosegaard and Vestergaard,
1991].

3.2.4. Genetic Algorithms
[79] It has long been observed that biological evolu-

tion is a form of optimization. In the natural world,
fauna compete for survival and adapt to their surround-
ings. A natural system evolves by using a large popula-
tion to explore many options in parallel rather than
concentrating on trying many changes around a simple
design [Gershenfeld, 1999]. Genetic algorithms, or GAs,
as they have become known, are the class of numerical
method that try to do the same thing. As noted above,
GAs largely grew out of the work of Holland [1975],
although independent earlier work of Fogel et al. [1966]
first established the concept of evolutionary computa-
tion.

[80] In contrast to the basic form of simulated anneal-
ing, which keeps one set of parameters that are contin-
ually updated, GAs work on an ensemble of sets of
parameters, with less emphasis placed on any particular
member. (Note that there also exist more complex forms
of simulated annealing where an ensemble of random

walkers share or exchange statistical information about

Figure 7. The two seismic ��p data traces inverted by a simulated annealing procedure (each trace is
repeated 5 times to facilitate inspection). A nine-layer, horizontally stratified P wave and density model was
fitted to this data set using waveform modeling and the wavelet displayed in the middle of Figure 7.
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the misfit surface. See, for example, Harland and

Salamon [1988], Hoffmann et al. [1990], Mosegaard and

Vestergaard [1991], and Ruppeiner et al., [1991]). The
early history of GAs in the Earth sciences has been
traced above. Here we provide a brief description of how
they can be used to search a parameter space. For more
information the reader is referred to the comprehensive
summaries that have appeared [Davis, 1987; Goldberg,
1989; Rawlins, 1991; Whitley, 1994; Gallagher and Sam-

bridge, 1994; Winter et al., 1995] and also to the web
resources in Table 1.

[81] A key aspect of a genetic algorithm is the repre-
sentation of complicated models with a simple encoding.
The most common is that used by Holland [1975], and it
consists of a simple bit string. For example, in a problem
involving d unknowns, each could be allowed to take 2n

values and be represented by a bit string of length d � n.
This is, in effect, a parameterization of the problem. The
overall effectiveness of a GA can depend crucially on
how it is encoded. There are many other possibilities
besides the simple bit string, some of which do not even
involve direct representation of parameter values [e.g.,
Mathias and Whitley, 1992]. There is no doubt the most
suitable will depend on the particular problem in hand.

[82] The genetic algorithm works with a population of
Q models simultaneously. Usually, the population is
initially generated randomly, but at each iteration it is
altered by the action of three operators. The fitness
(objective function) for each model in the starting pop-
ulation is evaluated by solving the forward problem for
each of the Q models. The purpose of the GA is then to
seek out fitter models in parameter space. The three
operators are known as selection, crossover, and muta-
tion, and they are illustrated for the simple bit string
encoding in Figure 9.

3.2.4.1. Selection
[83] From the initial population of Q bit-strings an

interim population of Q parents is generated by selecting
models from the original group with the probability of
selection determined by the fitness value. For example,

P�mk
 � A exp [�B�(mk)] , (13)

where A and B are problem specific constants. (Note the
similarity with probability function used in the Metrop-
olis-Hastings method, equation (2).) The higher the
fitness of each model, the more likely that it will pass

Figure 8. The “thermodynamic portrait” of the simulated annealing problem arising from inversion of the
seismic data. The heat capacity can be calculated from the density of states. Combined with the relaxation
time, it allows calculation of an annealing temperature schedule satisfying constant thermodynamic speed.
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into the next population. Since the population size does
not change, multiple copies of the fitter models will
survive at the expense of the less fit models, which may
be extinguished completely. This operator introduces
the element of survival of the fittest into the algorithm.

3.2.4.2. Crossover
[84] This operator cuts and mixes pairs of randomly

chosen bit strings together. All Q parent strings are
randomly paired to produce Q/2 couples. A crossover
probability Pc is assigned, and if a random number

between 0 and 1 is less than Pc, parts of the two strings
are interchanged (see Figure 9). If a crossover is se-
lected, the location at which the strings are cut is deter-
mined randomly, otherwise the two parent strings are
passed unscathed to the next generation (see Figure 9).
In this way it is hoped that information is passed on to
subsequent generations.

3.2.4.3. Mutation
[85] The purpose of the mutation operator is to main-

tain a degree of diversity in the population. Note that the

Table 1. World Wide Web Addresses Where Papers, Tutorials, and Software on Monte Carlo and Global Optimization
Methods Can Be Found.a

Subject Title Address

Genetic algorithms IlliGAL home page www-illigal.ge.uiuc.edu
genitor group (Colorado state) www.cs.colostate.edu/
em genitor
genetic algorithm group www.cs.gmu.edu/research/gag
genetic algorithms archive www.aic.nrl.navy.mil/galist
genetic programming notebook www.geneticprogramming.com

Simulated annealing and
global optimisation

ensemble-based simulated annealing www-rohan.sdsu.edu/
frostr/Ebsa
Optimization Technology Center www.ece.nwu.edu/OTC
adaptive simulated annealing www.ingber.com
global optimization survey www.cs.sandia.gov/opt/survey
global optimization archive www.mat.univie.ac.at/
neum/glopt.html

Markov chain Monte
Carlo and other

MCMC reprint service www.statslab.cam.ac.uk/
mcmc
neighbourhood algorithm page rses.anu.edu.au/
malcolm/na
MCMC and SA in inverse problems www.gfy.ku.dk/
klaus/mcinversion
BUGS website www.mrc-bsu.cam.ac.uk/bugs
quasi Monte Carlo www.mcqmc.org

Monte Carlo in
geophysical inversion

a website containing material and links
from this article

rses.anu.edu.au/
malcolm/mcgi

aAll links were active at the time of writing.

Figure 9. The effect of the three bit string operators in a genetic algorithm. In cases 1–4, the crossover
operator cuts, swaps, and rejoins pairs of strings. In case 5, mutation changes a single bit. In case 6 a whole
string is replicated. These operators act sequentially on a population of strings. The shading represents the
values of four different variables encoded into the bit string.
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selection operator acts to remove diversity of bit pat-
terns from the population. In mutation any bit in an
individual string is allowed to flip between 0 and 1. This
is usually performed with a relatively low probability Pm.

[86] Overall, the action of the three operators is to
produce a new population of models for which the
forward problem must be solved and the fitness evalu-
ated. After many iterations the population has the po-
tential to evolve toward a fitter on-average state. Each
stage involves randomized decisions which are influ-
enced by the “control” parameters. Even in this basic
description, we have five control parameters (Q, Pc, Pm,
A, and B), which usually must be chosen (tuned) for each
application. Although a GA is often thought of as a
direct search method of global optimization (i.e., one
not using gradient information), it can still become
trapped in local minima or be stalled by complicated
fitness landscapes. (The same is true of almost all other
search and optimization methods.) Careful tuning of the
control parameters may be required in these circum-
stances, and there is never any guarantee of convergence
to a global minimum. Many variants of the basic genetic
algorithm have been developed, several of them in geo-
science applications (for discussions see Gallagher and

Sambridge [1994], Sen and Stoffa [1995], Koper et al.
[1999], and the references above).

[87] The field of research into genetic algorithms has
grown significantly over the past 10 years. A large liter-
ature has now developed, much of which can be found
either through the papers cited above or the web re-
sources in Table 1. Outside of the Earth sciences genetic
algorithms have found applications in a range of areas
and not just in function or combinatorial optimization
problems. For example, in the original book by Holland

[1975] the idea that GAs could be used to train neural
networks is presented. As a Monte Carlo inversion
method, GAs are perhaps best thought of as a direct
search method in a parameter space. The result is an
ensemble of models that are geared toward the better/
fitter regions of parameter space. Information still needs
to be extracted from the resulting ensemble, which is a
focus of current research and is discussed further in
section 3.4.

3.2.5. Other Approaches
[88] A major field within computational statistics is

the development of techniques for Monte Carlo integra-
tion. Essentially, this means numerically evaluating mul-
tidimensional integrals of the form

I � �
�

f�x)dx . (14)

This type of integral occurs repeatedly in Bayesian in-
ference studies. The main issue is to sample the multi-
dimensional function f(x) in some efficient manner so
that numerical estimates of the integral can be made. A

large literature exists on the subject [see Flournay and

Tsutakawa, 1989, and references therein]. The Metrop-
olis-Hastings algorithm and Gibbs Sampler (discussed
above) are examples of statistical importance sampling
techniques that can be used for this task. Hence there is
a direct connection between Monte Carlo integration
and Monte Carlo (adaptive) sampling of a parameter
space. In principle then, other types of importance sam-
pling methods specifically designed for multidimensional
integration might be useful to adaptively sample a pa-
rameter space.

[89] One such technique, widely used in the field of
particle physics, is the Adaptive Monte Carlo algorithm
of Lepage [1978]. This procedure iteratively generates its
own sampling density function, which approximates the
integrand in equation (14). The sampling density is cho-
sen to be separable, that is, a function of M variables that
is a product of M 1-D functions, one for each axis in
parameter space. By drawing random samples according
to this density function the algorithm samples in the
significant regions of f(x). If f(x) were taken as the data
misfit/objective function, then the algorithm could be
used to successively concentrate sampling where the
function was high and hence act as an MC search algo-
rithm. For further details see Lepage [1978] and Press et

al. [1992]. Given the wide use of this approach for
multidimensional integration, it is surprising that to date
it does not seem to have been used in geophysical
inversion. One potential problem is that a separable
sampling density may poorly represent multidimensional
distributions when variables are highly correlated, which
is likely in many inverse problems. In this case, narrow
valleys can occur in the multidimensional fitness func-
tion, which is inclined with all of the parameter axes (A.
Lomax personal communication, 1996).

[90] Another recent technique is the neighbourhood
algorithm [Sambridge, 1998, 1999a, 1999b]. In this case
the main idea is to generate a set of samples, at each
generation, whose sampling density function is con-
structed from all previous models using the neigh-
bourhood approximation. This is a partition of parame-
ter space into Voronoi (nearest-neighbor) cells about
each of the previous models. In this way the information
in the previous samples drives the search for new mod-
els. At regular intervals the approximation is updated,
and sampling can concentrate in multiple regions.

[91] As Sambridge [1999a] points out, the number of
vertices of Voronoi cells grows exponentially as the
dimension of the parameter space increases, because of
the curse of dimensionality. However, the NA sampling
algorithm does not require their explicit calculation and
hence remains practical in problems with hundreds of
unknowns. Figure 10 shows an example of the neigh-
bourhood sampling algorithm on a simple test problem
from Sambridge [1998]. At each iteration a choice must
be made on how to sample from the current approxi-
mate fitness function. Sambridge [1998] used a Gibbs
Sampler, while Sambridge [1999a] resampled particular
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subsets of Voronoi cells. Like a genetic algorithm, the
neighbourhood approach updates a population of mod-
els at each iteration but does so using the Voronoi cell
concept to identify “promising regions” of parameter
space. Initial results with this technique are quite prom-
ising, but more experience is required.

3.3. Bayesian Inference
[92] In a Bayesian formulation the solution to an

inverse problem is given by the so-called posterior prob-
ability distribution � (m) over the model space �. � (m)
carries all information available on models originating
from two sources:

1. The data are one source. This information is given
by a likelihood function L(m), measuring the likelihood
of a given model m through its misfit �(m). A typical
likelihood function can be expressed as

L�m
 � const � exp (��(m)) . (15)

2. Data-independent prior information, expressed
through a prior probability density �(m), is another
source. Prior probability densities may be simple Gaussian
PDFs [see, e.g., Mosegaard, 1998; Mosegaard and Ryg-

aard-Hjalsted, 1999], or they may be more complicated

PDFs carrying information from earlier observations or
measurements [see, e.g., Mosegaard et al., 1997].

[93] The posterior PDF is related to data and prior
information through the relation

��m) 	 const � L�m)�(m) . (16)

In cases where no explicit mathematical expression for
L(m) and/or �(m) is available, Monte Carlo sampling is
the only efficient way to explore �(m). In Bayesian
analysis the Metropolis-Hastings algorithm or the Gibbs
Sampler is used to generate samples from �m), thereby
allowing us to estimate averages over the model space.
The algorithm will sample a large number of models m1,

� � � , mN, according to � (m), after which any average of
a function f(m) over the model space � (e.g., a covari-
ance or an expectation) can be approximated by the
simple average:

Ef � �
�

��m
 f�m
dm �
1

N
�
n	1

N

f�mn
 . (17)

The probability of an event � � �, containing all
models in model space with a given feature, is found by
putting f(m) equal to the indicator function

Figure 10. Voronoi cells drawn around the sampling produced by a neighbourhood algorithm [Sambridge,
1999a] for a simple 2-D problem. (a–c) Voronoi cells of about 10, 100, and 1000 generated samples,
respectively. Figure 10c shows the true fitness surface. As the algorithm proceeds, each Voronoi diagram is
used to guide the sampling. Note how the Voronoi cells are more concentrated in the darker regions where
the fit is high. (From Sambridge [1999a].)
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f�m
 � � 1 if m � ε
0 otherwise. (18)

ε may, for instance, contain all Earth models that are
“approximately” constant in a given area of the subsur-
face (appropriately defined) or models containing a
sharp boundary (again appropriately defined) in a cer-
tain depth interval. In the special case when ε 	 � and
f(m) 	 mi, the integral Ef is simply the mean �mi� of the
ith model parameter mi. If f(m) 	 (mi � �mi�)(mj � �mj�),
Ef becomes the posterior covariance between the ith and
jth model parameters.

[94] In the general inverse problem, direct evaluation
of Ef may be impossible because no analytical expression
for �(m) is available. Even for a linear inverse problem
with known �(m), we may not be able to evaluate Ef

directly because of the complexity of f support ε. In all
these cases the Metropolis-Hastings algorithm or the
Gibbs Sampler allows us to perform an approximate,
numerical evaluation of Ef.

[95] A large collection of samples from �(m) also
allows us to compute approximate marginal distribu-
tions. For instance, samples from the 1-D marginal
�(mk) are obtained simply by collecting values of mk

from samples m 	 (m1, � � � , mk, � � � , mM) of the posterior
�(m).

[96] It is often very difficult to obtain good estimates
of the averages Ef because the posterior �(m) may be
multimodal and typically undersampled. The 1-D mar-
ginals, however, are usually quite well sampled because
all the samples from the high-dimensional model space
contribute to the 1-D histogram of mk. For this reason,
posterior 1-D marginals play an important role in appli-
cations.

[97] Although the above procedure looks very general
and simple, the practical problem is often how to dis-
cover which features of the model have a high probabil-
ity (in traditional non-Bayesian terminology: which fea-
tures of the model are “well resolved”). It turns out that
inspection of the output from the Monte Carlo sampling
algorithm is often the most efficient way to discover
well-resolved structure. An example of this is seen in
Figures 11 and 12, taken from Mosegaard et al. [1997].
Seismic vertical-incidence reflection data dobs from the
base of the crust (Figure 11) were analyzed using a
Metropolis-Hastings algorithm, generating posterior
acoustic impedance models mn of the subsurface. A
wavelet was estimated, and a full waveform forward
algorithm was used to generate synthetic data d(m) in
the two-way time interval between 8.0 and 10.0 s. A
likelihood function

L(m) 	 exp� 	dobs � d�m)	2

�2 �
measured the degree of fit between observed and com-
puted data, where � is the estimated standard deviation
of the noise in the data. The prior probability density
�(m) for the acoustic impedance models was derived

from histograms of reflection coefficients and layer
thicknesses (Figure 13), obtained from laboratory mea-
surements on near-surface rocks similar to those ex-
pected at the base of the crust (and corrected for pres-
sure differences between surface and Moho). Samples
from the posterior distribution �(m) are shown in Figure
12. Well-resolved structure is seen as structure that is
persistent (occurs very often) in the output. In this case
the simplest way to discover persistent structure is to
plot all output models side by side or on top of each
other. Figure 12 shows that impedance structure be-
tween 4.4 and 4.7 s two-way time is persistent and
therefore well resolved. In contrast to this the main
trend of the impedance and impedance fluctuations be-
low 4.7 s are transient (nonpersistent) and therefore are
poorly resolved.

[98] However, the above method is not useful for
models which are more naturally plotted as a function of
two or three spatial dimensions. A more generally valid
method is to display all output models sequentially as
pictures in a movie [Mosegaard and Tarantola, 1995].
Often, the human eye will be able to discover which

Figure 11. The seismic data used for Bayesian inversion,
covering the time range of 8–10 s that contains the Moho
reflection at 
8.9 s. (From Mosegaard et al. [1997].)
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structure is well resolved by the data and the prior
information. This method can often be facilitated by
viewing movies of models with different degrees of
smoothing.

3.4. Ensemble Inference
[99] All of the Monte Carlo direct search algorithms

discussed above require the solving of the forward prob-
lem many times. In each case the result is an ensemble of
models, and the task is to try and use their collective
sampling to extract some meaningful information about
the Earth. In most cases the distribution of the complete
ensemble (i.e., all models for which the forward problem
has been solved) is arbitrary and follows no prescribed
distribution. However, as discussed above, when Monte
Carlo sampling is applied within a Bayesian context, the
aim is to generate samples that follow a particular sta-
tistical distribution, usually the posterior PDF. In that
case, “Bayesian information measures” (e.g., model co-
variance estimates, etc.) can be derived from a subset of
the complete distribution. For the case when one has an
arbitrary ensemble of models with a range of fits to the
data, the question remains of how to draw inferences.

[100] A simple answer would be to examine the fea-
tures present in only the best data fitting model. How-
ever, as discussed above, in almost all cases this is
insufficient because of nonuniqueness in the problem
and noise in the data. A useful thing to do may be to
filter the complete ensemble into only those which have
acceptable fit to the data (given a prior understanding of
noise processes, etc.), as done by Press [1968, 1970a].

One could also include other criteria like prior con-

straints on the form of acceptable solutions, for example,

the velocity gradient constraints used by Wiggins [1969,

1972]. The task then would be to try and determine

properties that all of these acceptable models share in

the hope that the real Earth shares it also.

[101] Several authors have proposed methods for

characterizing an ensemble of data acceptable models. A

summary is given by Sen and Stoffa [1995]. The earliest

approach was simply to compare the models directly,

usually by plotting them on top of one another [e.g.,

Press, 1968]. As more modern search algorithms were

used, and many more acceptable models produced,

more quantitative analyses were performed. Figure 14

shows an example from Lomax and Sneider [1995a]

where upper mantle seismic S velocity models are sought

that satisfy synthetic Rayleigh wave group-velocity dis-

persion data contaminated by noise. Figure 14a shows

the ensemble of data-acceptable velocity models, and

Figure 14b shows the �1 and �2� spread, calculated for
each depth. Although strictly speaking these intervals
are not formal confidence limits on the velocity at each
depth, they do provide an effective means at character-
izing the ensemble. Note that in this synthetic problem
the true solution is the IASP91 Earth model [Kennett

and Engdahl, 1991], which plots neatly within the �1�

bounds. Other authors have made similar attempts at a
graphical representation of the acceptable ensemble.
Variations include plots of the density of acceptable
models or all models weighted by data fit. For examples,

Figure 12. The results of the inversion on the seismic data set. A selection of a posteriori models are plotted
side by side to facilitate the discovery of well-resolved structure. Such structure is characterized by its presence
in most (or all) of the posterior models. (From Mosegaard et al. [1997].)
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see Basu and Frazer [1990], Nolte and Frazer [1994],
Shibutani et al. [1996], and Kennett [1998].

[102] An alternative to graphical methods is the clus-
ter analysis method proposed by Vasco et al. [1993]. They
used statistical techniques to characterize the acceptable
ensemble and make inferences about properties that all
models shared. They illustrated their approach with
some impressive applications to gravity inversion and
cross-borehole seismic imaging. A related approach is
that proposed by Douma et al. 1996. In their method the
ensemble of acceptable models is projected onto a set of
orthogonal functions. In this way they hope to determine

Figure 14. (a) Ensemble of upper mantle S velocity models
generated by Lomax and Snieder [1995a], which have an ac-
ceptable level of data fit. The data are synthetically generated
Rayleigh wave group velocity dispersion measurements. The
dashed lines show the boundaries of the parameter space. (b)
The �1� (gray shaded region) and �2� (solid line) in the
distribution of the acceptable models, calculated at each depth.
The outer dashed lines are the �2� spread of a uniform
distribution of models. Note how the spread measures are
smooth, even though the individual acceptable models are not.
The true model (thick white line) lies, for the most part, in the
center of the �1� region. (After Lomax and Snieder [1995a].)

Figure 13. A priori information used in the Bayesian inver-
sion scheme. (a) Reflection coefficients distribution obtained
from studies of the igneous intrusions of Rum, Scotland, and
the Great Dyke, Zimbabwe. The solid curve is a Gaussian
distribution with standard deviation � 	 0.047. (b) Layer
thickness distribution as a function of one-way travel time
derived from observations of the Rum and Great Dyke intru-
sions. The solid curve is an exponential distribution with � 	
225.0 s�1. (From Mosegaard et al. [1997].)
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the well constrained information hidden in the ensem-
ble. As with the method of Vasco et al. [1993] the
technique is appropriate if the ensemble forms a single
cluster and not multiple disjointed clusters, as depicted
in Figure 1. If multiple clusters exist, then they must be
identified, and the approach applied separately to each.

[103] Recently, Sambridge [1999b] has proposed an
approach to estimate Bayesian information measures
from an arbitrarily distributed ensemble. In this case the
neighborhood approximation (mentioned above in con-
nection with a search algorithm) is applied to the com-
plete ensemble, that is, all models for which the forward
model has been solved. A standard MCMC integration
procedure is then used to resample according to the
neighborhood approximation and to produce unbiased
estimates of Bayesian integrals. The advantage of this
approach is that it can, in principle, extract Bayesian
estimates from ensembles generated by any method, for
example, a genetic algorithm. A caveat, which applies to
all of these techniques, is that at best they can only
extract what information exists in a given ensemble of
models. If the available ensemble does not adequately
represent (or sample) the acceptable region in parame-
ter space, then the result will be biased.

[104] In the past few years, geophysicists have begun
to develop techniques for ensemble inference. The un-
derlying idea is that basing inferences on an ensemble of
potential solutions is more useful than considering just
one (usually best fit) model. The current range of ap-
proaches available are useful but by no means complete
or applicable in all circumstances. It seems likely that
this will be an area of further research in the next
decade.

3.5. Resources on the Net
[105] It may be useful to the reader to have a list of

web site addresses where more information can be found
on various topics discussed in this paper. At some sites a
computer code is also available. Table 1 shows a collec-
tion that we are aware of. Many other sites can be found
by following the links on these pages.

4. CONCLUSIONS

[106] In this paper we have summarized the current
state of the Monte Carlo methodology, as applied in
geophysics. Some open questions and directions for fu-
ture research have been discussed. The Earth sciences
are a rich source of large and complicated inverse prob-
lems. Often they can be posed in a way suitable for
attack with MC methods. In doing so, the Earth scientist
must remember that the development of Monte Carlo
techniques is a multidisciplinary effort, and it can be
beneficial to look at what has been done elsewhere. It is
hoped that this paper will facilitate that process by
drawing the attention of geophysicists to relevant refer-

ence material in computational statistics and other
fields.

[107] We have highlighted the connection between the
computational approaches commonly used for data fit-
ting and model appraisal with those in the fields of
optimization and statistical inference. Techniques such
as simulated annealing, genetic algorithms, and other
statistical importance sampling methodologies have all
started life elsewhere but become useful additions to the
geophysicists tool bag. One issue that was prevalent at
the outset (�30 years ago) was how to make robust
inferences from an ensemble of data acceptable models.
In recent times this question has come back into focus.
Geophysicists are good at generating models, and even
at finding some that fit data, but quantitative and reliable
inferences are needed for drawing conclusions. The sta-
tistical and other approaches discussed in this paper
have begun to answer these questions in a quantitative
manner.

GLOSSARY

[108] Acceptable models: A set of Earth models (see
definition) that are consistent with observations, taking
into account the presence of noise and errors in the
observables. Usually, the acceptable models are those
for which the objective (or data misfit) function is less
than, or equal to, a predetermined value.

[109] Bayesian inference: A (purely) probabilistic pro-
cedure for information updating. In the typical scenario
prior information, represented by a prior probability
distribution, is updated by information from experimen-
tal data, represented by a likelihood function. The re-
sulting state of information is represented by the (nor-
malized) product of the prior distribution and the
likelihood function, the so-called posterior probability
distribution. The terms “prior” and “posterior” refer to
“before” and “after” data collection, respectively.

[110] Direct search: A parameter space search method
(see definition) that does not use Fréchet derivatives or
gradient information of the objective function. It only
uses evaluations of the objective function at points in
parameter space.

[111] Earth model: A representation of some physical
properties of the Earth, usually in a discrete form where
the earth property, for example, Earth’s density varia-
tion, is described by a finite number of parameters, for
example, the average density of rocks in a series of depth
intervals from the surface of the Earth.

[112] Ensemble inference: The procedure whereby in-
formation is extracted or conclusions are drawn from a
collection of inputs, or Earth models, rather than a
single model. Genetic Algorithms, Simulated Annealing,
and the Neighbourhood algorithm are all examples of
ensemble inference (direct search) techniques.

[113] Forward problem: The calculation of predictions
from an Earth model, to be compared with the observa-
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tions. The solution of the forward problem is a necessary
step in determining the fit to the data. The degree of
nonlinearity in the forward problem can be a major
cause of difficulty in finding Earth models that fit data.

[114] Genetic algorithm: A computational method
popular for global optimization problems. This is a fully
nonlinear direct search method, which means that it
avoids linearization and does not use derivatives of the
objective function being optimized. The procedure is
based on an analogy with principles of evolution and
“survival of the fittest.” Originally developed as a model
for adaptive behavior in an artificial system, it has been
applied to complex optimization problems across the
physical sciences.

[115] Global optimization: A numerical procedure
where the values of some variables are sought that give
an optimum value of some function, that is, maximum or
minimum over all possibilities.

[116] Importance sampling: A Monte Carlo algorithm
designed to sample a given function, or probability den-
sity, with a sampling density proportional to that func-
tion or probability density.

[117] Inverse problem: The term used to describe the
situation where inversion is applied. (See definition of
inversion).

[118] Inversion: The process by which information is
obtained about a physical quantity from indirect infor-
mation, for example, on Earth’s seismic structure from
the travel times of elastic waves generated by earth-
quakes.

[119] Likelihood function: A function describing the
probability that a given parameterized model is consis-
tent with observed data. The likelihood function is a
function of the model and measures the fit between
model predictions and observations.

[120] Markov Chain: See random walk.
[121] MCI (Monte Carlo Inversion): The term used to

describe the earliest forms of uniform random parame-
ter space searching, as applied to seismological problems
in the work of Press [1968, 1970a].

[122] MCMC (Markov Chain Monte Carlo): A multi-
dimensional random sampling procedure where the next
sample only depends on the location of the current
sampling point.

[123] Metropolis-Hastings algorithm: A simple im-
portance sampling algorithm (see definition of impor-
tance sampling) based on a random walk.

[124] Misfit function: The same as objective function,
except that one always minimizes a misfit function.

[125] Monte Carlo: A prefix indicating that the
method or approach makes use of repeated trials, or
sampling, generated with the use of random numbers,
named after the famous French city associated with
casinos.

[126] Monte Carlo integration: A numerical integra-
tion procedure for functions, which is efficient in high-
dimensional spaces. Instead of using functional values in
a uniform grid to produce a numerical approximation of

an integral, they are evaluated at randomly selected
points (often generated by an importance sampling al-
gorithm (see above). The integral can then be approxi-
mated by an average of these values, and the chance of
missing areas of high functional values is strongly re-
duced.

[127] Objective function: A function calculated from
one or more variables which is usually the subject of an
optimization process, that is, the variables are sought,
which optimize the objective function. The objective
function can be a measure of discrepancy with observed
data (data misfit) or a combination of data misfit and
other criteria.

[128] Parameter space: An abstract multidimensional
region describing the set of all possible values that Earth
models can take. Each point in the parameter space
represents an Earth model.

[129] Parameter space search: The process of finding
Earth models that have an acceptable or optimal value
of the objective function.

[130] Posterior PDF: A probability density represent-
ing, in a Bayesian computation, the combination of prior
information and data information.

[131] Prior probability density: A probability density
representing, in a Bayesian computation, the informa-
tion available before data is acquired (or considered).

[132] Probability density function (PDF): A statistical
term used to describe the probability distribution asso-
ciated with a random variable. For example, the well-
known “bell-shaped” Gaussian distribution is a PDF of a
one-dimensional normal random variable. The area un-
der the curve between any two given values represents
the probability that a realization of the variable will fall
between these values. Multidimensional PDFs are used
to describe the joint behavior of a random vector (whose
components are all random variables).

[133] Pseudorandom number: The result of a numer-
ical procedure (a generator), which has certain statistical
properties. For example, the histogram of many pseudo-
random numbers will tend toward a uniform distribu-
tion. Most computing systems provide pseudorandom
number generators that use a linear congruent method
[see Park and Miller, 1988].

[134] Quasi-random number: Sometimes called “sub-
random” numbers, similar definition as for pseudoran-
dom numbers. Often it is based on number theoretic
techniques and usually converges much faster than pseu-
dorandom numbers to a uniform distribution.

[135] Random Walk: A perturbative sequence of ran-
dom changes to a point in a multidimensional space. A
uniform random walk is one where the asymptotic con-
vergence is to a uniform density of samples in parameter
space. See also Markov Chain Monte Carlo (MCMC).

[136] Simulated annealing: A Metropolis-Hastings al-
gorithm designed to simulate certain aspects of a statis-
tical mechanical system. The simulated annealing (SA)
algorithm samples a Gibbs-Boltzmann distribution in
the model space, and a characteristic feature of this

3-24 ● Sambridge and Mosegaard: MONTE CARLO INVERSION 40, 3 / REVIEWS OF GEOPHYSICS



distribution is its temperature parameter. When this
parameter is gradually lowered, it is possible to simulate
an annealing process in which the system is taken from
a disordered high-temperature state to a well-ordered
low temperature state.
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